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Extension of the modified effective medium approach to nanocomposites
with anisotropic thermal conductivities
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An extended modification of the effective medium approach (emEMA) has been developed for the thermal
conductivity of anisotropic nanocomposites. This is based on extending approaches developed to treat an
anisotropic particle insert and host matrix in electromagnetism of composites to anisotropic thermal interface
resistance, with the inclusion of insert size and interface boundary density effects. The method has been applied
to the case of spherical inclusions of the 2H dichalcodenide WS2 within a matrix of 2H MoS2, with input bulk
thermal conductivities calculated using our recently developed semi-ab initio method. We find that the overall
effects of anisotropy are strongest for small particles, but that as particle size increases, the surface anisotropy
effects become more apparent.
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I. INTRODUCTION

Effective medium approaches (EMAs) have long been
applied to problems in electromagnetism, elasticity, and ther-
mal conductivity in order to account in a simple way for the ef-
fects of inclusions with a different value of the dielectric con-
stant, stiffness, or thermal conductivity from the surrounding
matrix or background medium. Nan et al.’s seminal paper [1]
derives a general EMA expression for thermal conductivity
of a two-component composite in the presence of interface
(Kapitza) resistance that can be shown to reduce to various
previously derived special cases. Palla and Giordano [2] have
examined particles with anisotropic conductivity and isotropic
boundary resistances embedded within isotropically conduct-
ing matrices using a similar scheme, and Gavalas [3] has
examined spherical core-shell systems with finite shell-size.
Minnich and Chen [4] have proposed a modified effective
medium approach (mEMA) that incorporates the effects of in-
terface boundary density and insert size for spherical particles,
providing better agreement with Monte Carlo simulations.
Ordonez-Miranda et al. [5] and Behrang et al. [6–8] have
further examined the effects of differing insert shapes and
interface roughness within the mEMA.

However, the basic formulas on which both methods
(EMA and mEMA) depend are derived on the assumption
that the thermal (or electrical) conductivity of the matrix
medium is isotropic. This is not true of materials in general:
for example, graphene and transition-metal dichalcogenides
(TMDs) possess anisotropic thermal conductivities due to
their layered structures, and if they are used as a matrix for
particle insertions to produce composite structures, this must
be taken into account in order to obtain the correct solution
to Laplace’s equation on which both EMA and mEMA rely.
For the electromagnetic EMA, Sihvola [9] has derived a
generalized form of the Maxwell-Garnett equation that is
valid for anisotropic external dielectric tensors (see also the
discussion and references within Ref. [10]). For the thermal
conductivity EMA recent publications examine the problem

rigorously within multipole [11] and micromechanical [12]
frameworks, but as far as the authors are aware, the effects
of matrix anisotropy within the mEMA have not yet been
examined.

In this work, we examine the extension of the basic
anisotropic EMA of Sihvola [9] to a Minnich and Chen-type
mEMA [4] for spherical inclusions within an anisotropic
thermally conducting matrix, using a generalization of Nan
et al.’s basic approach [1] to account for anisotropic Kapitza
resistances. We use this extended modification of the effec-
tive medium approach (emEMA) to examine the effects of
including anisotropy for the case of spherical inclusions of
the 2H TMD WS2 within a matrix of MoS2, where the input
thermal conductivities have been calculated using a previously
described semi-ab initio method [13,14]. We find that the
anisotropies present in the system have a noticeable effect on
the results of the calculation.

II. THEORY

Following Nan et al. [1], we consider a system consisting
of a matrix with a thermal conductivity tensor κm, an insert
with a thermal conductivity tensor κi , and a surface layer that
surrounds the insert and separates it from the matrix with a
thermal conductivity tensor κs . If either the matrix or insert
(or both) exhibits an anisotropic thermal conductivity (i.e., at
least one of the xx, yy, and zz components differs from the
others), then since the surface region can be thought of as a
mixture of the matrix and insulating region, it is reasonable
to assume that it will also exhibit anisotropy, and that this
will persist when we come to consider the Kapitza resistance
of the surface region in the limit where it is thin and poorly
conducting. That is, for a spherical insert, the heat flux normal
to the interface (which is not generally parallel to the x, y, or z

axis) could be decomposed into different x, y, z components,
implying a directionally dependent (i.e., anisotropic) surface
conductance and hence resistance. To correctly calculate the
effective thermal conductivity of the insert and its surface
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together, we must perform an affine transformation that re-
stores the isotropy of the surface, resulting in an effective
distortion of the insert shape [9,10].

We begin with Sihvola’s generalization [9] of the Maxwell-
Garnett equation, rewritten for the case of thermal conductiv-
ities κs and κi :

κ∗ = κs + v(κi − κs )L−1,

L = I + (1 − v)Ns (κi − κs )(κs )−1, (1)

where the thermal conductivity tensors L, Ns , and I are all
3 × 3 matrices. κ∗ is the effective thermal conductivity tensor
for the surface and insert considered together, I is the identity
matrix, Ns is the geometry-dependent depolarization tensor
for the system following the affine transformation required to
solve Laplace’s equation in the presence of anisotropy [9,10],
and v = a3/(a + δ)3, where a is the radius of a spherical
insert and δ is the thickness of the surface layer.

We assume that the system is oriented such that κs is
diagonal, and we take the limits δ → 0 and κs → 0. The
anisotropic Kapitza resistance is defined as follows:

RK =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

lim
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κs
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0 0
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)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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where the limits are taken such that
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RK
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= lim
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κs
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(
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)
,
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yy
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= lim
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κs
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(
κs

zz
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)
. (3)

From this we may recover a generalized form of the EMA
equation [1] of a spherical insert in the presence of surface
resistance:

κ∗ = κi

[
I + 3

a
Nsκ

iRK

]−1

. (4)

In the case in which the κs is isotropic, Ns = 1
3I and Eq. (7)

of Ref. [1] may be recovered for the case of a spherical insert.
To obtain the overall effective thermal conductivity tensor

κE for the insert-matrix composite, we utilize Sihovola’s
generalized equation in its unaltered form [9], assuming that
our coordinate axes are such that κm is diagonal:

κE = κm + f (κ∗ − κm)J−1κm,

J = κm + (1 − f )Nm(κ∗ − κm). (5)

Here, f is the volume fraction of inserts within the matrix,
and Nm is the depolarization tensor following the affine
transformation with respect to the anisotropy of the matrix
(this is different from Ns , which is the depolarization tensor
due to the anisotropy of the interface/surface). We have not
attempted to derive a closed-form expression here, but this
approach should give identical results and is readily gener-
alizable to more complex nanocomposites.

Expressions for the depolarization tensor in different cases
may be found in (for example) Ref. [15]. For the system

examined in this study, we will need only the definitions for
the case of prolate spheroids. First, we define affine transfor-
mations [9,10]:

as, x =
√
RK

xx

RK
zz

a, as, y =
√
RK

yy

RK
zz

a, as, z = a,

am, x =
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κs
zz

κs
xx

a, am, y =
√

κs
zz

κs
yy

a, am, z = a, (6)

where we have used the relationship between resistance
and conductivity to obtain an effective thermal conductivity
anisotropy in the case of the surface. Assuming that al, z >

al, x = al, y for l = s,m, and that the system is oriented so
that κl is diagonal for its respective mixing step, Nl will be
a diagonal matrix with nonzero components [15]:

Nl, zz = 1 − e2

2e3

(
ln

1 + e

1 − e
− 2e

)
, where e =

√
1 − a2

l, x

a2
l, z

,

Nl, xx = Nl, yy = 1

2
(1 − Nl, zz). (7)

The final ingredient of our approach is the modification of
κi and κm in accordance with the mEMA approach outlined
in Ref. [4]. The method of calculation is outlined in the
Appendix. In brief, we obtain κi and κm using our recently
developed semi-ab initio theory [13] based on the single-mode
relaxation time approximation for the linearized phonon trans-
port equation. κi is calculated in the usual fashion but with the
insert boundary scattering length LB set equal to LB,I = 2a

(i.e., the diameter of the insert), whereas κm acquires an
additional scattering length LIS = 4/� representing scatter-
ing from insertion interfaces. Here � = 6f/LB,I represents
the interface density of the composite at a given volume frac-
tion f and insert size 2a. We calculate the thermal boundary
resistance matrix RTBR using a generalized form of Chen’s

expression [4,16], but with the modification v‖ =
√

v2
x + v2

y

and v⊥ = |vz| for the speed of a given phonon mode when
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FIG. 1. Comparison of isotropic and anisotropic thermal bound-
ary resistivities as temperature is varied for a 2H WS2/MoS2

composite structure.
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FIG. 2. Behavior of the cross-plane κzz and in-plane thermal conductivities κxx, yy in units of W m−1 K−1 and their ratio with temperature
for WS2 inserts in a MoS2 matrix. (a) and (b) Comparisons of LB, I = 1000 and 10 nm, respectively, for f = 0.08; (c) and (d) comparisons of
LB, I = 1000 and 10 nm, respectively, for f = 0.2.

considering the anisotropic case:

RTBR = 4

( 〈C1v1〉 + 〈C2v2〉
〈C1v1〉〈C2v2〉

)
. (8)

Here, 1 and 2 label the matrix and the insert, respectively,
and 〈Civi〉 = ∑

qs Ci, qsvi, qs , with Ci, qs being the specific-
heat contribution from mode qs for material i. Note that
this expression is an approximation since the original form is
derived for scattering from a superlattice, in which it will tend
to overestimate the value of the thermal boundary resistance.
Accurate computation of this quantity is not straightforward,
and may require a detailed ab initio approach (e.g., Ref. [17]).

III. RESULTS AND DISCUSSION

As a sample application of the method, we consider
nanocomposites of the dichalcogenides MoS2 and WS2 in
their 2H bulk form. Specifically, we model spherical inserts
of WS2 in a matrix of MoS2 (sample size LB,M = 10 μm),
where the cross-plane conductivity components of both are
taken to be parallel to each other. We discuss the method used
to calculate the thermal conductivities for each material in the
Appendix.

Figure 1 compares the isotropic RTBR with the anisotropic
RTBR. For both cases, the resistances decrease with an increase
in T toward an asymptotic value, saturating at around T =
500 K. The in-plane (x or y direction) anisotropic RTBR is
virtually identical to the isotropic RTBR since the in-plane
velocity components make up the bulk of the contribution
to the isotropic average velocities, whereas the cross-plane
(z direction) anisotropic RTBR is different, saturating at a value
that is an order of magnitude larger. This is consistent with
what we would expect of a layered material—the frequency
dispersion of phonons in the cross-plane direction is much
lower than in the planar direction, thus lowering the thermal
conductivity in that direction and so leading to a larger thermal
resistance.

In Figs. 2 and 3, the legend “All isotropic” refers to
calculations carried out using the isotropic mEMA formalism
using the anisotropic thermal conductivities, and we compare
the effects of the inclusions of different levels of anisotropy
with this uncorrected result.

The effects of anisotropic thermal resistance for two dif-
ferent concentrations of 10 and 1000 nm (1 μm) spherical
inserts can be seen in Fig. 2. Calculations using anisotropic
RTBR and isotropic EMA formulas leave the in-plane κxx, yy
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FIG. 3. Behavior of the ratio of cross and in-plane thermal con-
ductivities with respect to volume fraction f for WS2 inserts in a
MoS2 matrix. Black labels 1000 nm inserts, red 100 nm inserts, blue
10 nm inserts. Full lines represent fully isotropic formalism; dashed
lines include only anisotropic thermal boundary resistance and no
more; dotted lines include matrix anisotropy only; and dot-dashed
lines show the full calculation (i.e., anisotropic thermal boundary
resistance, effects of matrix and surface anisotropy).

unchanged while lowering the thermal conductivity κzz in the
cross-plane direction. [This is most obvious in Figs. 2(b) and
2(c).] Typically, the inclusion of the effects of surface and
matrix thermal conductivity counteract this by lowering the
in-plane thermal conductivity and increasing the cross-plane
thermal conductivity. In both directions, the thermal conduc-
tivity calculated for an isotropic RTBR while including the
effects of the anisotropic matrix is larger than that calculated
with all anisotropic effects included, but for the 10 nm inserts
the fully anisotropic results are closer in value to it than for
the 1000 nm inserts. This is to be expected since the effect of
RTBR on the effective thermal conductivity should be smaller
for smaller-sized inserts, and the effect of internal and external
scattering from insert interfaces introduced in the mEMA
become more important in those cases.

To facilitate comparisons between different levels of
theory, we also present in each panel of Fig. 2 the ratio of
in-plane and cross-plane conductivities. We find that κxx, yy/

κzz(anisotropicRTBRonly) > κxx, yy/κzz(isotropic) > κxx, yy/

κzz(anisotropicmatrixonly)>κxx, yy/κzz(allanisotropies).
Increasing the volume fraction f increases the range
between the highest and lowest values of the ratio
for each insert size. Decreasing the insert size while
keeping f constant also increases this range. However,
the difference between κxx, yy/κzz(anisotropic matrix only)
and κxx, yy/κzz(all anisotropies) is only significant for the
1000 nm insert. This provides a good measure of the effect
of the surface contribution; we can see that for the smaller
particle it is negligible, but for the larger particle it will reduce
the ratio of the conductivities further than might be expected
from consideration of the anisotropy of the matrix alone.

Figure 3 displays the behavior of the conductivity ratio
κxx, yy/κzz for three insert sizes at T = 300 K as the volume
fraction f is increased from 0.08 to 0.5. It is clear that not only

does the anisotropy increase as the particle size is decreased,
but that the size of the overall correction due to anisotropy
also increases. However, the effect of the surface anisotropy
decreases with a decrease in particle size. This suggests that
while one can in principle ignore surface effects for very small
f or insert sizes in an mEMA model, the matrix anisotropy
cannot be so ignored. We also note that the behavior of
κxx, yy/κzz as f is increased is sample-size-dependent: 10 and
100 nm inserts reach a different maximum value before de-
creasing at different rates, while the 1000 nm inserts increase
monotonically. Note that the emEMA approach is at best valid
for f less than ≈ 0.2. Beyond this point, the effects of insert-
insert interactions must be considered, and so the regions of
the figure where we begin to see that different sample sizes
exhibit similar conductivity ratios are at this point somewhat
speculative.

As the percolation threshold is reached, one would expect
a sudden jump in the thermal conductivity. This is not just a
result of the isolated insert assumption of the EMA formalism
becoming invalid at the transition, but because the clusters of
inserts connecting one side of the sample to the other will
suddenly have a different, longer effective scattering length
from the isolated inserts considered in the mEMA. As a result,
the value of κi considered must sharply increase. It is difficult
to predict the effect of the surface and matrix anisotropies
in this regime, not only because the perturbation theory we
have relied on has broken down but because the extended
clusters of inserts could be considered to be single objects
with overall depolarization tensors very different from those
of spheroids. One might speculate from the trends seen in
Fig. 3 that because the surface area of a given cluster is
large, both the surface and the matrix anisotropy might be
expected to have a notable effect, reducing κxx, yy/κzz well
below the value predicted using a wholly isotropic formalism.
This remains to be verified, however.

IV. CONCLUSION

In summary, we have derived a formalism that accounts
for the effects of anisotropic thermal boundary resistance
within nanocomposites whose components have anisotropic
thermal conductivities. We have considered a simple example
of such a system and shown that surface layer anisotropic ther-
mal conductivity effects can be seen for spherical inserts of
1000 nm size, and that the effects of the overall matrix
anisotropy should not be neglected for smaller inserts down
to 10 nm size. Note that in this work we have considered one
of the simplest possible geometries together with the simplest
possible particle orientation, and that different orientations,
different boundary resistance models, and different geome-
tries within the emEMA could display more profound effects
as a result of thermal conductivity anisotropy.
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APPENDIX

1. Calculation of the thermal conductivity

We work within the single-mode relaxation time [18]
approximation. The thermal conductivity tensor is written as

κij = h̄2

N0�kBT 2

∑
qs

ω2(qs)vi
s (q )vj

s (q )τqs n̄(qs)[n̄(qs) + 1].

(A1)

Here, � is the volume of each unit cell and N0 their number,
ω(qs) is the frequency of a phonon mode with wave vector q
and polarization s, vi

s (q ) is the corresponding group velocity
component, and we denote the Bose-Einstein distribution
function with n̄(qs). τqs is the single-mode relaxation time
expressed as the inverse of the sum of the following scattering
rates:

τ−1
qs = τ−1

qs (bulk) + τ−1
qs (coll),

τ−1
qs (bulk) = τ−1

qs (md) + τ−1
qs,N + τ−1

qs,U , (A2)

where τ−1
qs (bulk) are the contributions independent of scatter-

ing from sample or interface boundaries (isotope mass-defect,
normal anharmonic, and umklapp anharmonic, respectively)
and τ−1

qs (coll) gives the contributions arising from interface
and boundary scattering as described in the mEMA model.

Note that the single-mode relaxation time approximation
typically gives a lower bound for the thermal conductivity in
2D and quasi-2D systems [19] and is being used here for its
relative simplicity since our concern is the qualitative effect
of surface and matrix anisotropies on the effective medium.
More accurate calculations that include effects ignored by
the single-mode relaxation time approximation may be per-
formed using the Callaway [18,20,21] or iterative [22–24]
approaches.

a. Contributions independent of sample or interface scattering

We obtain the isotopic mass-defect contribution to the total
scattering rate from the expression [18]

τ−1
qs (md) = π

2N0
ω2

qs

∑
q ′s ′

δ(ωqs − ωq ′s ′ )

×
∑

b

�md(b)|e�
qs (b) · eq ′s ′ (b)|2, (A3)

where b labels the site of an atom in the unit cell, the eigenvec-
tors of the lattice-dynamical matrix are given by eqs (b), and
we compute the mass disorder coefficient �md(b) for atom b

using

�md(b) =
∑

i

fi (b)[1 − Mi (b)/M̄ (b)]2. (A4)

Here, M̄ (b) is the average mass of the bth atom and fi (b) is
the proportion of the ith isotope that has mass Mi (b).

We use our semi-ab initio scheme [13] to calculate the
anharmonic contribution arising from three-phonon processes
[18]:

τ−1
3ph, qs = πh̄

�N0�

γ̄ 2(T )

c̄2

∑
q ′s ′, q ′′s ′′, G

ωω′ω′′δq+q ′+q ′′,G

×
[
n̄′(n̄′′ + 1)

(n̄ + 1)
δ(ω + ω′ − ω′′)

+ 1

2

n̄′n̄′′

n̄
δ(ω − ω′ − ω′′)

]
, (A5)

where we have suppressed the wave vector and polarization
indices for ω and n̄. Here, c̄ is the average acoustic velocity,
� is the mass density, and γ̄ 2(T ) is the mode-averaged,
temperature-dependent squared Grüneisen parameter calcu-
lated within the quasiharmonic approximation [18,25–27].
G = 0 indicates normal processes, G 
= 0 indicates umklapp
processes.

b. Sample and interface scattering contributions
within the mEMA model

As noted in the main text, we account for interface and
sample boundary scattering in the insert and in the matrix
differently in accordance with the directions of Minnich et al.
[4]:

τ−1
qs (coll) = |vs (q )|

LB

,

where L−1
B =

{
L−1

B, I for inserts,
L−1

B, S + L−1
IS for the matrix,

(A6)

where LB, I is the diameter of the insert, LB,S is the size of the
matrix sample (10 μm in this case), and LIS is the effective
scattering length arising from the presence of interfaces in the
matrix. These are described more fully in the main text.

2. Generation of phonon eigensolutions using
density functional theory

Phonon force constants were generated ab initio for bulk
MoS2 and WS2 using the QUANTUM ESPRESSO package [28]
for 8 × 8 × 2 Monkhorst-Pack (MP) [29] grids and PBE [30]
pseudopotentials. From these, frequencies, eigenvectors, and
velocities were generated for 28 × 28 × 7 MP grids. For full
details of these calculations, see Ref. [14].

[1] C.-W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, J. Appl.
Phys. 81, 6692 (1997).

[2] P. L. Palla and S. Giordano, J. Appl. Phys. 120, 184301
(2016).

[3] G. R. Gavelas, AIP Adv. 7, 095222 (2017).

[4] A. Minnich and G. Chen, Appl. Phys. Lett. 91, 073105 (2007).
[5] J. Ordonez-Miranda, R. Yang, and J. J. Alvarado-Gil, Appl.

Phys. Lett. 98, 233111 (2011).
[6] A. Behrang, M. Grmela, C. Dubois, S. Turenne, and P. G.

Lafleur, J. Appl. Phys. 114, 014305 (2013).

094201-5

https://doi.org/10.1063/1.365209
https://doi.org/10.1063/1.365209
https://doi.org/10.1063/1.365209
https://doi.org/10.1063/1.365209
https://doi.org/10.1063/1.4967316
https://doi.org/10.1063/1.4967316
https://doi.org/10.1063/1.4967316
https://doi.org/10.1063/1.4967316
https://doi.org/10.1063/1.4999331
https://doi.org/10.1063/1.4999331
https://doi.org/10.1063/1.4999331
https://doi.org/10.1063/1.4999331
https://doi.org/10.1063/1.2771040
https://doi.org/10.1063/1.2771040
https://doi.org/10.1063/1.2771040
https://doi.org/10.1063/1.2771040
https://doi.org/10.1063/1.3593387
https://doi.org/10.1063/1.3593387
https://doi.org/10.1063/1.3593387
https://doi.org/10.1063/1.3593387
https://doi.org/10.1063/1.4812734
https://doi.org/10.1063/1.4812734
https://doi.org/10.1063/1.4812734
https://doi.org/10.1063/1.4812734


IORWERTH O. THOMAS AND G. P. SRIVASTAVA PHYSICAL REVIEW B 98, 094201 (2018)

[7] A. Behrang, M. Grmela, C. Dubois, S. Turenne, P. G. Lafleur,
and G. Lebon, Appl. Phys. Lett. 104, 063106 (2014).

[8] A. Behrang, M. Grmela, C. Dubois, S. Turenne, and P. G.
Lafleur, RSC Adv. 5, 2768 (2015).

[9] A. Sihvola, Electromagnetics 17, 269 (1997).
[10] O. Levy and E. Cherkaev, J. Appl. Phys. 114, 164102

(2013).
[11] V. I. Kushch, I. Sevostianov, and A. Giraud, Proc. R. Soc. A

473, 20170472 (2017).
[12] S. Lee, J. Lee, B. Ryu, and S. Ryu, Sci. Rep. 8, 7266 (2018).
[13] I. O. Thomas and G. P. Srivastava, J. Phys.: Condens. Matter 29,

505703 (2017).
[14] I. O. Thomas and G. P. Srivastava, J. Appl. Phys. 123, 135703

(2018).
[15] A. Sihvola, Electromagnetic Mixing Formulas and Applications

(The Institute of Electrical Engineers, London, 1999).
[16] G. Chen, Phys. Rev. B 57, 14958 (1998).
[17] A. Alkurdi, S. Pailhès, and S. Merabia, Appl. Phys. Lett. 111,

093101 (2011).

[18] G. P. Srivastava, The Physics of Phonons (Taylor and Francis,
New York, 1990).

[19] J. Ma, W. Li, and X. Luo, Phys. Rev. B 90, 035203 (2014).
[20] J. Callaway, Phys. Rev. 113, 1046 (1959).
[21] G. P. Srivastava, Rep. Prog. Phys. 78, 026501 (2015).
[22] M. Omini and A. Sparavigna, Physica B 212, 101 (1995).
[23] M. Omini and A. Sparavigna, Phys. Rev. B 53, 9064 (1996).
[24] D. A. Broido, A. Ward, and N. Mingo, Phys. Rev. B 72, 014308

(2005).
[25] L. Bjerg, B. B. Iverson, and G. K. H. Madsen, Phys. Rev B 89,

024304 (2014).
[26] G. H. K. Madsen, A. Katre, and C. Bera, Phys. Status Solidi A

215, 802 (2016).
[27] A. Katre and G. K. H. Madsen, Phys. Rev. B 93, 155203 (2016).
[28] P. Gianozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009);

code available from http://www.quantum-espresso.org.
[29] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
[30] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).

094201-6

https://doi.org/10.1063/1.4865093
https://doi.org/10.1063/1.4865093
https://doi.org/10.1063/1.4865093
https://doi.org/10.1063/1.4865093
https://doi.org/10.1039/C4RA12368A
https://doi.org/10.1039/C4RA12368A
https://doi.org/10.1039/C4RA12368A
https://doi.org/10.1039/C4RA12368A
https://doi.org/10.1080/02726349708908536
https://doi.org/10.1080/02726349708908536
https://doi.org/10.1080/02726349708908536
https://doi.org/10.1080/02726349708908536
https://doi.org/10.1063/1.4826616
https://doi.org/10.1063/1.4826616
https://doi.org/10.1063/1.4826616
https://doi.org/10.1063/1.4826616
https://doi.org/10.1098/rspa.2017.0472
https://doi.org/10.1098/rspa.2017.0472
https://doi.org/10.1098/rspa.2017.0472
https://doi.org/10.1098/rspa.2017.0472
https://doi.org/10.1038/s41598-018-25379-8
https://doi.org/10.1038/s41598-018-25379-8
https://doi.org/10.1038/s41598-018-25379-8
https://doi.org/10.1038/s41598-018-25379-8
https://doi.org/10.1088/1361-648X/aa995e
https://doi.org/10.1088/1361-648X/aa995e
https://doi.org/10.1088/1361-648X/aa995e
https://doi.org/10.1088/1361-648X/aa995e
https://doi.org/10.1063/1.5017034
https://doi.org/10.1063/1.5017034
https://doi.org/10.1063/1.5017034
https://doi.org/10.1063/1.5017034
https://doi.org/10.1103/PhysRevB.57.14958
https://doi.org/10.1103/PhysRevB.57.14958
https://doi.org/10.1103/PhysRevB.57.14958
https://doi.org/10.1103/PhysRevB.57.14958
https://doi.org/10.1063/1.4997912
https://doi.org/10.1063/1.4997912
https://doi.org/10.1063/1.4997912
https://doi.org/10.1063/1.4997912
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRevB.90.035203
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1103/PhysRev.113.1046
https://doi.org/10.1088/0034-4885/78/2/026501
https://doi.org/10.1088/0034-4885/78/2/026501
https://doi.org/10.1088/0034-4885/78/2/026501
https://doi.org/10.1088/0034-4885/78/2/026501
https://doi.org/10.1016/0921-4526(95)00016-3
https://doi.org/10.1016/0921-4526(95)00016-3
https://doi.org/10.1016/0921-4526(95)00016-3
https://doi.org/10.1016/0921-4526(95)00016-3
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.53.9064
https://doi.org/10.1103/PhysRevB.72.014308
https://doi.org/10.1103/PhysRevB.72.014308
https://doi.org/10.1103/PhysRevB.72.014308
https://doi.org/10.1103/PhysRevB.72.014308
https://doi.org/10.1103/PhysRevB.89.024304
https://doi.org/10.1103/PhysRevB.89.024304
https://doi.org/10.1103/PhysRevB.89.024304
https://doi.org/10.1103/PhysRevB.89.024304
https://doi.org/10.1002/pssa.201532615
https://doi.org/10.1002/pssa.201532615
https://doi.org/10.1002/pssa.201532615
https://doi.org/10.1002/pssa.201532615
https://doi.org/10.1103/PhysRevB.93.155203
https://doi.org/10.1103/PhysRevB.93.155203
https://doi.org/10.1103/PhysRevB.93.155203
https://doi.org/10.1103/PhysRevB.93.155203
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
http://www.quantum-espresso.org
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevB.13.5188
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865



