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A direct and local deep learning (DL) model for atomic forces is presented. We demonstrate the model
performance in bulk aluminum, sodium, and silicon and show that its errors are comparable to those found
in state-of-the-art machine learning and DL models. We then analyze the model’s performance as a function
of the number of neighbors included and show that one can ascertain physical attributes of the system from the
analysis of the deep learning model’s behavior. Finally, we test the size scaling performance of the model and the
transferability between different temperatures and show that our model performs well in both scaling to larger
systems and high- to low-temperature predictability.
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I. INTRODUCTION

The computation of large systems’ atomistic dynamics
is required in fields such as biochemistry, surface science,
electrochemistry, and many others. Ab initio molecular dy-
namics (AIMD) [1] is a powerful tool but can have a high
computational cost which prohibits the computation of large
systems for long enough time intervals. A successful ap-
proach, with a significantly lower computational cost, is the
use of classical force fields (FFs) to model the forces between
the atoms [2,3]. This scheme enables the simulation of the
dynamics of large systems (more than 106 atoms) within the
nanosecond and microsecond timescales. The disadvantage
of classical models is that they often need system-specific
parametrization and cannot handle chemical reactions where
molecules break or form new bonds. Another example that
can be challenging for a classical FF approach is that of metal
oxidation; a metal atom is neutral inside the metal bulk but is
charged inside the oxide layer. A possible way to model such
varying environments is to introduce more complicated FFs,
such as the variable-charge force field [4], charge-optimized
many body (COMB) potentials [5] and reactive force-fields
(ReaxFF) [6,7]. Such FFs can successfully describe more
challenging situations but need greater parametrization and,
again, cannot cover all possible atomic configurations.

An approach that was developed in the last decade is to use
machine learning (ML) and deep learning (DL) [8] algorithms
to build “on-the-fly” computationally cheap predictors for the
energy, forces, and other physical properties. This approach
enables the performance of calculations with an accuracy that
is close enough to fully quantum molecular dynamics (MD)
but with running speeds that are more than 100 times faster.

One way to tackle the statistical learning of chemical
properties is kernel-based ML. Within this approach the
atomic system is represented by physical fingerprints such
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as the “Coulomb” matrix [9–11], the bag of bonds [12], the
bispectrum [13], the smooth overlap of atomic positions [7],
bonding angular machine learning [14], tensor representation
[15], and more [16–22].

Additional approaches include scattering transforms [23]
with the use of wavelets, neural network regression with
generalized symmetry functions [24], and feature matrix rep-
resentation and the idea of covariant kernels, represented with
Gaussian processes regression [25,26].

Several DL implementations have been developed re-
cently [27–30]. It is possible to define two main DL algorithm
strategies: convolutional neural network (CNN) [18,28,31]
and fully connected deep neural network (DNN) [32–35]. The
DNN approach is size extensive and is the simplest option to
model energies, as shown in several recent studies.

A desired goal for both the ML and DL approaches is to be
able to train the model on a small system and then to use the
accrued knowledge in much larger and diverse environments.
This requires a formulation of a “local-environment” input to
the model.

DL models with a local-environment input were recently
suggested by Han et al. [36], Zhang et al. [30], and Lubbers
et al. [37]. In these models, the input of the system is presented
as a simple function of the atomic positions of each atom’s
neighbors. The output of the model was the energy, while the
forces were estimated from the energy derivatives with respect
to the atoms’ locations.

In this work, we describe the construction and use of local
environments for a DNN-based model for the forces in solids.
This model is very close in spirit to the one reported by Han
et al. [36] but makes a direct prediction of the forces instead
of the energy. We first show that with this DNN model we
can reach an accuracy that is comparable to that found in
state-of-the-art ML and DL models. We demonstrate this for
bulk Al, Si, and Na at temperatures of 300 and 2000 K. We
then analyze the dependence of the error on the number of
neighbors used for the input and show that physical attributes
of the underlying system can be learned from this analysis.
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TABLE I. Force component MAE comparison for all systems. In all of the cases in this table the temperature and the cell size are the same
in the training and validation sets. The values in the literature differ in temperatures and the definitions of error criteria. Reference [19] does
not specify temperature and reports the forces’ MAE. Reference [61] uses T = 300 K and T = 600 K and reports the root-mean-square error
(RMSE) for the force components and not the MAE (RMSE is typically a bit higher than the MAE for the same data). Reference [25] uses
T = 300 K and T = 800 K; Ref. [26] uses T = 1000 K and calculates the error for the whole force vector (should be divided by 2 to compare
to the component MAE). A more detailed analysis is shown in the SM [60].

Atom Training temperature Unit cell K points MAE, this work Literature values
(K) size (ev/Å) (ev/Å)

Al 2000 27 125 0.025 0.02 [19]
300 27 125 0.022 0.02 [61]

Na 2000 27 125 0.014
300 27 125 0.004
2000 16 8 0.058 0.08 [61]

Si 300 16 8 0.030 0.1 [25,26]

Finally, we analyze the ability of the developed DL model to
do actual size scaling, that is, to use training in a small cell for
prediction in larger cells. We also test the ability to operate
at different temperatures, i.e., to train at one temperature and
predict at another temperature. We conclude with a discussion
of how to proceed and build fully scalable and transferable
DL models that can work with a wide range of environments.
The rest of the paper is organized as follows: we first describe
the model, methods, and data sets; we then show the results
for systems with the same size, different sizes, and different
temperature. Finally, we discuss the meaning of some of the
observations and the challenges faced in developing a fully
scalable prediction.

II. METHODS

A. Tools

We used the VASP [38–40] package for all quantum simu-
lations of bulk Al and bulk Na. We analyzed VASP files to get
the radial distribution function (RDF) using the AFLOW [41]
package. We used the following PYTHON libraries for build-
ing the network structure and for the training: NUMPY and
SCIPY [42], PANDAS [43], IPYTHON [44], MATPLOTLIB [45],
TENSORFLOW [46], TFLEARN [47], ASE [48] and SCIKIT-
LEARN [49]. All the code was written in PYTHON. In addition,
the MATLAB software [50] was used to draw most of the
figures.

B. Data sets

We used the following bulk supercells for the training and
validation of Al and Na: a 3 × 3 × 3 supercell (27 atoms) and
5 × 5 × 5 supercell (125 atoms). For Si, we used supercells of
2 × 2 × 2 (16 atoms) and 4 × 4 × 4 (128 atoms).

The training set consisted of about 1620 MD steps that we
randomly chose from a trajectory of 1800 steps. The other
180 configurations were used for validation. When changing
the supercell size M × M × M , we changed the number of k

points, defined by a Monkhorst-Pack [51] grid Mk × Mk ×
Mk , so that the Born–von Kármán cell [52] stays roughly
constant (i.e., M × Mk is kept constant) and so the level of
electronic sampling is similar.

The data sets were prepared with the following protocol.
First, the supercells were built for each material: fcc for Al,
bcc for Na, and diamond structure for Si with the experimental
lattice constants 4.05, 4.29, and 5.43 Å, respectively [53].
Then an AIMD was run with VASP for Na and Si, and classical
MD was run for Al with the EMT force field and the ASE pack-
age. The MD was performed with a constant supercell volume
and shape to produce the relevant atomic positions. For Al,
the atomic configuration was recorded each 50 fs. For Na and
Si, the atomic configuration was recorded each 1 fs. The MD
time propagation was performed in the canonical ensemble
and with the Nosè algorithm for Si and Na. The Al run was
conducted in the microcanonical ensemble with temperatures
around T = 300 K and T = 2000 K. For the final calculation
of the forces, we applied the following protocol. Each of the
produced structures was run with density functional theory
(DFT) [54] without further geometrical relaxation; we used
the Perdew-Burke-Ernzerhof functional [55] without spin po-
larization, the VASP projector augmented-wave pseudopoten-
tials [56,57], and an energy cutoff of 260 eV for Si and Na
and 520 eV for Al, which was found to be sufficient for the
accuracies we report later. The number of k points for each of
the cells is shown in Table I.

C. Deep learning models and learning procedure

In this section, we describe the structure of the DL model,
as well as its input and output.

Network architecture. For each atom, the output of the
model is a three-dimensional vector of the Cartesian forces.
For each atom, we find the N nearest neighbors (we used
N = 13 in most simulations); the convergence of errors with
respect to N is discussed later in the text. We sort the atoms
according to their distance (closest is first) and then assign
for each neighbor the following quantities: (dn, 1/dn, 1/d2

n),
where dn is the scalar distance. In this work we analyze only
monoatomic systems, so the atomic number Zn is irrelevant
and does not contribute to the model.

The input is fed to a fully connected neural network with
two hidden layers. The first hidden layer has L nodes, and the
second hidden layer has L/3 nodes. L was typically around
3800 for Si and around 250 for Al and Na; we analyze the
model mean absolute error (MAE) sensitivity as a function of
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FIG. 1. Schematic illustration of the NN model. The input layer
consists of the distance vectors of the atom from its nearest neigh-
bors. The output layer has three nodes with the values of the forces
in each direction.

L later. Finally, the output corresponds to the three Cartesian
forces. We used the CRELU[58] function for activation of the
two first layers and a linear function for the output layer. We
tried more hidden layers and larger hidden layers but found
that this did not improve the model accuracy much. A typical
model architecture is illustrated in Fig. 1.

Network training and optimization. We used the adaptive
moment estimation (Adam) [59] algorithm to train the model
against the results of quantum calculations for the forces.
We used a learning rate of 0.0001, β1 = 0.9, β2 = 0.999,
ε = 10−8, and minibatches of 100 samples.

Rotational symmetry. The model, as defined above, is not
rotationally invariant; hence, it will have significantly higher
errors when the data are rotated. To solve this we have added
rotation operations, applied during the training, which bring
the first neighbor to the x̂ axis and the second neighbor to the
xy plane. Those rotations are then applied for the input of the
test data, and the inverse rotation is applied for the model pre-
diction. With that, the model becomes rotationally invariant.
We describe the transformation in the Supplemental Material
(SM) [60] and also analyze the effect of this transformation
on the model performance and show that it does not lead to
larger errors.

III. RESULTS

A. Model performance for aluminum, sodium, and silicon

In this section, we show the model performance when
the cell and temperature are the same for the training and
validation of the model. We used cells of 27 atoms for Al
and Na and 16 atoms for Si. The cells were trained and
tested at 300 and 2000 K. The results are shown in Fig. 2
and demonstrate that a small enough MAE was achieved. The
MAEs are also listed in Table I. We also add in the SM [60]
an analysis of the force vector error, which was found to be
around two times the force components’ MAE.

A comparison of these results with those from previous
studies shows that the presented DL models reach sufficient

FIG. 2. Comparison of the estimated forces to DFT forces at (a)–(c) 300 K and (d)–(f) 2000 K. Results are shown for (a) and (d) Na (27
atoms), (b) and (e) Al (27 atoms), and (c) and (f) Si (16 atoms). The training set results are shown with black dots, while the test set results are
shown with red diamonds. The solid line is a result of linear fit between the model and DFT results.
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FIG. 3. Average radial distribution function (RDF) of the different structures: (a) Al, (b) Na, and (c) Si. The RDF of the ground-state crystal
is shown with a solid black line, the RDF at T = 300 K is shown with a dash-dotted red line, and the T = 2000 RDF is shown with a solid
blue line.

accuracy for the atomic forces. Such an accuracy was shown
to allow running MD simulations without any precalculated
FFs at an accuracy that is close to that of AIMD [36,62]. It
should be noted that the inclusion of the 1/dn and 1/d2

n terms
was important to achieve reasonable MAEs. We show in the
SM [60] that we can reach similar results by adding either
1/dn, dn, or the combination of 1/dn and 1/d2

n and that supply-
ing only the distance vector dn results in significantly higher
errors. Our interpretation of this is that the distance norm is an
important parameter that “helps” the model to locate the radial
position on the energy surface. Supplying either dn or 1/dn

results in a similar performance. The inclusion of additional
terms such as 1/d6

n and 1/d12
n did not help to further improve

the results.

B. Sensitivity to the number of neighbors

In this section we analyze the MAE dependence on the
number of neighbor atoms that were used in the model. We
performed this analysis both at 300 and 2000 K. At 300 K
all three materials are solids. The melting points for Si, Al,
and Na are 1687, 933, and 371 K, respectively [63]. Since
we conducted the simulations at a constant volume, this is
an underestimation, and we can assume that the materials
are somewhere between solid and liquid. A possible measure
of the material atomic structure is the RDF. Figure 3 shows
the normalized RDF of the different systems at both 300 and
2000 K. At 300 K, both Si and Al exhibit an RDF that is close
to the crystalline system. In contrast, although for Na it still
shows peaks that are related to the crystalline structure, it is
already heavily smeared. At 2000 K, all systems are heavily
smeared, with Al still showing some structural peaks. It is
very clear that at 2000 K there are many distances that do not
appear at 300 K.

We expected that systems with more nearest neighbors
(NNs), like Al (fcc, 12 NNs), would generally require more
neighbors to converge in comparison to systems like Na (bcc,
8 NNs) and Si (diamond, 4 NNs). Furthermore, we expected
that this trend would be clearer at the lower temperature,
where all the materials are solids. Figure 4(a) shows the results
for 300 K, and Fig. 4(b) gives the results for 2000 K. It is

evident that at both temperatures Si and Na converge faster
than Al. Si converges slightly faster than Na at 2000 K but
reaches a significantly higher converged MAE. The trends are,
in fact, clearer at the higher temperature; one possible reason
is that the AIMD at that temperature covered a wider range
of configurations. Further analysis of this trend will follow in
future work.

This analysis, namely, of MAE as a function of NNs,
makes it possible to uncover physical attributes of the system
in question from the DL algorithm. While in the systems we
analyzed the physical attributes are known, we suggest that for
more complex systems, such an analysis can give new insight
into the internal structure of the system.

C. Temperature analysis

Here, we analyzed the ability of a model that was trained
at one temperature to predict results at another temperature.
Naturally, if we use low-temperature MD as our training
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FIG. 4. Mean absolute error (MAE) as a function of the number
of input neighbor atoms that are used for the model [data produced
(a) at 300 K and (b) at 2000 K]. Al with red circles, Na is shown with
blue triangles, and Si is shown with black squares.

094109-4



SIZE AND TEMPERATURE TRANSFERABILITY OF … PHYSICAL REVIEW B 98, 094109 (2018)

FIG. 5. Comparison of the estimated forces to DFT forces at (a)–(c) 300 K and (d)–(f) 2000 K. Results are shown for (a) and (d) Na (27
atoms), (b) and (e) Al (27 atoms), and (c) and (f) Si (16 atoms). The training set results are shown with black dots, while the test set results are
shown with red diamonds. The solid line is a result of linear fit between the model and DFT results.

set, there is a high chance that most of the set will be
around the ground-state minimum energy. Therefore, the out-
come might not predict well other metastable minima of the
potential-energy surface. Furthermore, as is obvious from
Fig. 3, the T = 300 K simulation does not always deviate
enough from the ground-state crystal, so some distances that
exist at T = 2000 K are completely absent at T = 300 K.
If we use high-temperature MD results as our training set,
we have a higher chance to cover more configurations, but
we might have sparser coverage for each minimum. Conse-
quently, it is natural to assume that training at higher temper-
atures might lead to performing well at lower temperatures,
while the opposite is less probable. In Fig. 5 we show the
results of all systems for 300 → 2000 K and for 2000 →
300 K. It is very clear that the first case, training at low and
testing at high temperature, yields poor performance; this is
especially true for Si, where it is clear that the model seems to
be almost random. The second case, training at high temper-
ature and testing at low temperature, gives a higher MAE in
comparison to the same temperature tests but behaves reason-
ably well and can be used. This result shows that it is possi-
ble to construct temperature-transferable DL models for MD
simulations.

D. Scaling analysis

In this section we evaluate the ability of a model that was
trained with a cell of a given size to perform with cells that
are larger. As we use a local environment for the training
input, the model is, in a way, “blind” to the number of the
atoms in the cell. Clearly, there can be long-range forces that
a local environment will not capture. A similar problem can
also exist in classical FFs that do not include polarization

terms and have a cutoff. A full solution to the problem of
scaling will require some specific treatment or training for
the response to long-range forces and is beyond the scope of
this work. We can still hope that the local model can yield
reasonably good force predictions in many scenarios. In Fig. 6
we show the prediction of forces for the three materials. For
Al (2000 K), training with 27 atoms and testing with 125
atoms yields an MAE of ∼0.03 eV/Å, which is comparable
with the same-size performance. For Na (2000 K), training
with 27 atoms and testing with 125 atoms yields an MAE of
∼0.03 eV/Å, which is a bit worse than the same-size model
performance. For Si (300 K), going from 16 atoms to 128
atoms yields an MAE of 0.12 eV/Å, higher than the same-size
performance of 0.03 eV/Å.

It is evident that reasonable scaling was demonstrated for
Al and Na, which means that we could use the smaller cell to
estimate errors in the larger cell. With Si, further work should
be done, as the performance penalty is a bit too high.

IV. NETWORK ARCHITECTURE ANALYSIS

To study the required network size, we checked the MAE’s
sensitivity to the number of hidden layers and the size of
the first layer. In the first test, we used two hidden layers,
the first with L nodes and the second with L/3 nodes, and
we varied L. This parameter can strongly affect the model
computational efficiency. Since we have two layers, we can
expect the model computation time to have O(L2) scaling.
Figure 7(a) demonstrates that for T = 300 K, in Na and Al,
we can reduce L to ∼250�20N (N = 13 being the number
of neighbors that are used) without significantly increasing the
MAE. With Si, even at T = 300 K, there is an improvement
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FIG. 6. Comparison of estimated forces and DFT forces when the sizes of the training system and validation system are not the same. The
following sets are shown: (a) Al, train with 27 atoms and validation with 125 atoms, (b) Na, train with 26 atoms and test with 125 atoms, and
(c) Si, train with 16 atoms and test with 128 atoms. The training set results are shown with black dots, while the test set results are shown with
red diamonds. The solid line is a result of linear fit between the model and DFT results.

in performance when increasing L to ∼2000. The picture at
T = 2000 K, shown in Fig. 7(b), is slightly different. For Si,
we see significant but slow improvement in performance when
increasing L; however, for L above 2000 the algorithm starts
to have convergence problems and does not always find the
minimal possible MAE. A larger L means more degrees of
freedom for the model and hence theoretically lower MAE; in
practice, at some point there are too many degrees of freedom
for a given set of data, and hence, convergence becomes more
difficult. In Si and Na, it is evident that the improvement
with L is more significant at the higher temperature. An
essential physical reason for the ability to use small L at low
temperatures is the following. As the temperature becomes
low, the deviations from equilibrium can be described mostly
within the harmonic approximation. Hence, the calculated
quantum forces become linear with the distance vector. A
description of a linear transformation of the distances requires
a minimal L, so it is easy to build a small model for the
force prediction. As the temperature becomes high, there
is a significant deviation from the harmonic approximation,
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FIG. 7. MAE dependence on the number of nodes L of the first
hidden layer, (a) showing T = 300 K and (b) showing T = 2000 K.
Al is shown with red circles, Na is shown with blue triangles, and Si
is shown with black squares.

and hence, the energy function becomes more complicated.
This more complicated energy surface requires more do-
mains of piecewise linearity for the forces and therefore a
larger L.

In the second test, we used L � 200N and checked
whether increasing the number of hidden layers helps to
improve the results. In this test, the first hidden layer was
with L nodes, and all the next layers had L/3 nodes. As is
evident from Fig. 8, increasing the number of hidden layers
beyond 2 does not improve the error. This trend is true for both
T = 300 K and T = 2000 K. Increasing the number of hidden
layers beyond 6 resulted in overfitting problems, probably
because more data were needed for the number of parameters
that are fitted.

We also checked the model sensitivity for the number of
nodes in the second hidden layer L2, which was initially set
to L/3. We show this analysis in the SM [60]; we also show
that we can build a reasonably small model with only a single
hidden layer and with similar performance.
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FIG. 8. MAE dependence on the number of hidden layers. The x

axis is the number of hidden layers, while the y axis is the model’s
MAE: (a) T = 300 K and (b) 2000 K. Al is shown with red circles,
Na is shown with blue triangles, and Si is shown with black squares.
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V. SUMMARY AND DISCUSSION

In this work, we presented and implemented a new DL
model for atomic forces. This model enables predicting di-
rectly atomic forces with a close to DFT accuracy while
using a MD sampling learning procedure. We also studied
the model properties and the physical insights that this model
provides. As the model predicts the forces directly and not
as an energy derivative, it has the potential of being faster
and more accurate than models that calculate the energy and
then use numerical derivatives to find the forces. However,
it is possible to argue that since it is not an explicit energy
derivative, it might not conserve energy. A possible and simple
solution is to predict also the energy and use it in the MD
thermostat. An approach that combines direct force prediction
and energy prediction was demonstrated with kernel-ridge
regression by Botu and Ramprasad [19] and Huan et al. [61].

DL and ML models differ from classical FFs by not
assuming an explicit physical model for the forces. We can
therefore expect that their transferability behavior from one
temperature to another might be different as well. In this work,
we used MD as the sampling method to construct the training
and test sets. We showed that sampling at low temperatures
does not have sufficient coverage of the configuration space,
so the trained model cannot predict the behavior at a higher
temperature. In contrast to low-temperature sampling, once
we use a training set constructed from high-temperature MD
runs, we can use the model at lower temperatures with reason-
able accuracy. This can be explained by a better sampling of
the configuration space at higher temperatures. We expect that
other DL and ML models will behave similarly, as the lack of
any assumption of an explicit physical model for the forces is
common to most of them.

Another significant observation is the scalability property
of the suggested model. As we showed above, for Al and Na,
one can study relatively small systems such as a 3 × 3 × 3 unit
cell (27 atoms) to gain knowledge about much larger 5 × 5 ×
5 unit cells (125 atoms). We demonstrated this in Fig. 6, which
shows results for the transition from small to large cells. For
Al and Na, this was shown for data sets that were produced at
2000 K, which can have forces that are significantly beyond
the harmonic regime. Temperature and size transferability was
also demonstrated for Si with ML and kernel-ridge regression

by Suzuki et al. [22]. They showed size transferability from
64 atoms to 512 atoms and temperature transferability in the
range of 300 to 1650 K.

The analysis of the model sensitivity to the number of
neighbors that are used, as shown in Fig. 4 for T = 300 K and
T = 2000 K, demonstrates that we can learn some physical
properties of the system (e.g., the atom coordination) from the
model performance. Some qualitative trends are evident from
the graphs; first, at low temperatures, even the first neighbor
can produce a reasonable estimation of the forces in the metals
Al and Na. However, Si, which has four covalent bonds,
needs at least four neighbors at both checked temperatures to
estimate reasonably the atomic forces. At the high tempera-
ture, more than 12 neighbors are required for Al, and more
than 6 neighbors are needed for Na, where 12 and 8 are the
numbers of first-nearest neighbors for the fcc Al and bcc Na
structures.

To summarize, the presented model demonstrates two es-
sential properties: size scalability and temperature transfer-
ability. Size scalability means that one can predict atomic
forces of large systems while learning from small systems
that one can study by DFT. Temperature transferability of a
force field is extremely important for MD simulations when
one would like to find phase transitions and temperature-
dependent processes. Obviously, there are also limitations
in this method; first of all, a local predictor will probably
underperform in situations where long-range forces, not cap-
tured by the model, dominate the picture. Furthermore, it is
evident that the performance is not equally good for different
materials, with Si seen to be more challenging, and this
might require a more complicated model. Finally, we have
checked a relatively homogeneous environment, and while the
environment is local, there might be a need for significant
additional training in situations that include interfaces and
surfaces.
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