
PHYSICAL REVIEW B 98, 094102 (2018)

Ferroelectricity induced by oxygen vacancies in relaxors with perovskite structure
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The influence of oxygen vacancies on the relaxors with perovskite structure was considered in the framework
of Landau-Ginzburg-Devonshire phenomenological theory. We focused on the PZN-PLZT relaxor, where an
earlier experimental investigation of the influence of oxygen vacancies on the polar properties was performed
and evidence of oxygen vacancy induced ferroelectricity was obtained. Since the oxygen vacancies are known
to be elastic dipoles, they affect the elastic and electric fields due to Vegard and flexoelectric couplings. We
have shown that a negative Curie temperature TC

∗ of a relaxor is renormalized by the elastic dipoles due to
the electrostriction coupling and could become positive at some large enough concentration of the vacancies. A
positive renormalized temperature T R

C = T ∗
C + �T is characteristic for the ferroelectric state. At T < T R

C , all the
polar properties could be calculated in the conventional way for ferroelectrics, but the obtained experimental data
favor the coexistence of the ferroelectric phase with a relaxor state, i.e., the presence of a morphotropic region
in PZN-PLZT relaxor. At T > T R

C , the random field characteristic for relaxors is preserved, but since the mean
square deviation of the polarization is nonzero, the coexistence with a dipole glass state is not excluded. For the
case T > T R

C , we calculated the local polarization and electric field induced by the flexochemical coupling with
oxygen vacancies.
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I. INTRODUCTION

The broad application of relaxor ferroelectrics in modern
sensors, actuators, high performance electromechanical trans-
ducers, and other electronic devices [1,2] constantly generates
interest in the investigation and fabrication of these materi-
als. These applications are based on the peculiar properties
of the relaxors absent in ordinary ferroelectrics [3]. The
peculiarities appear due to random electric fields induced
by two factors. The first one is substitutional disorder in
cation positions because the general formula can be written as
A1−xA

′
xB1−yB

′
yO3, which leads to a local shift of ions from

their conventional equilibrium positions. The second one is
the presence of vacancies and other unavoidable defects. In
previous years the influence of random fields was considered
in great detail (see, e.g., references in Ref. [3] with special
attention to Refs. [4,5]), but the attention was concentrated
mainly on the first factor, which is inherent to any relaxor. The
changes of oxygen vacancies concentration (VO) can open a
way to manipulate the relaxor properties, which motivates us
to study the influence of VO on properties. To the best of
our knowledge, VO were considered theoretically mainly as
random field sources up to now. As for experimental papers
on this topic, we would like to draw your attention to Ref. [6],
where the influence of VO on the phase diagram and properties
were studied. The authors considered the PZN-PLZT relaxor.

*Corresponding author: anna.n.morozovska@gmail.com

They increased the VO concentration by addition of nitrogen
flow when sintering the relaxor (NS samples), and after this
procedure some of the samples were annealed in oxygen (OA
samples). Comparative analysis of the dielectric permittivity
temperature dependence of NS and OA samples showed that
the relaxor characteristics were suppressed by inducing oxy-
gen vacancies with high concentration. In other words, VO

added a ferroelectric (FE) phase to the relaxor. The aim of
this paper is to find out the physical mechanism of FE phase
induced by VO.

II. OXYGEN VACANCIES IN THE RELAXORS AND THEIR
CHARACTERISTIC FEATURES

Oxygen vacancies in ABO3 ferroelectrics greatly impact
their physical properties (see Ref. [6] and references therein)
and the perovskite structure is able to conserve the structure
stability even for high concentration of oxygen vacancies [7].
B cations are usually shifted from the central position in the
neighborhood of an oxygen vacancy, because in ABO3 struc-
ture the size of oxygen ions and their vacancies is larger than
the size of the cations and their vacancies. To compensate for
the loss of oxygen negative charges, the equivalent amount of
B4+ cations should be in a B3+ state. The PZN-PLZT samples
sintered in nitrogen atmosphere appeared to be black and
opaque [6] because off-central Ti4+ transforms into color cen-
ter Ti3+. Note that Ti3+ can create layers of ordered dipoles
at large concentration of oxygen vacancies [8]. The electrons
necessary for the transformation of Ti4+ into Ti3+ can be
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created from the ionization of neutral oxygen vacancy VO →
V•

O + e, V•
O → V••

O + e, the V•
O and V••

O being positively
charged vacancies. The uncharged vacancy VO represents a
dilatational center, which creates local compressive strain.

Since generally the conductivity is mainly attributed to
the electromigration of oxygen vacancies (see Refs. [9,10])
in perovskite ferroelectrics, measurements of dc conductivity
temperature dependence of the NS and OA specimens were
carried out in order to estimate the oxygen vacancy concen-
tration and charge states. It was shown that NS specimens
have several orders larger conductivity at high temperature
(>300 °C). A comparison of activation energies extracted
from the conductivity temperature dependence showed that
the concentration of oxygen vacancies in the NS samples
is high and attributed to V••

O at low temperatures, while
in OA samples contributions of V••

O and V•
O were detected

at high and low temperatures, respectively. As to the high-
temperature activation energy in NS specimens (0.95 eV),
which appeared to be smaller than that in OA specimens
(1.54 eV), the authors of Ref. [6] wrote that this effect is
attributed to the higher concentration of oxygen vacancies in
NS samples. To our mind, this statement could be correct for
the same type of vacancies in both samples, e.g., compare
Ea for V••

O in them. A singly ionized vacancy with Ea =
0.95 eV has also to be rejected because for such vacancy in
an AO sample, Ea = 0.31 eV, which is much smaller than the
0.95 eV energy in the NS sample with a much larger concen-
tration of oxygen vacancies. Because of this, we suggest that
uncharged vacancies can contribute, as we will show later, to
the activation energy of 0.95 eV in NS samples when complete
compensation of loss oxygen negative charge 2e originates
from two off-central Ti3+ ions. Because this complex defect
can be represented as V••

O + 2Ti3+, it can be observed in the
high-temperature region only. Therefore, in the NS sample
with the high concentration of oxygen vacancies, we see
evidence of existence of V••

O and VO.
Note that vacancies tend to accumulate in the vicinity

of any inhomogeneities, surfaces, and interfaces, since the
energy of vacancy formation in such places can be much
smaller than in the homogeneous volume [11–14]. In the
places of vacancy accumulation they can create sufficiently
strong fields, which in turn can lead to the appearance of new
phases in relaxors, for example, polar (ferroelectric) phases.
On the contrary, in places where there are few vacancies,
the nonpolar relaxor remains. So, a coexistence of polar
ferroelectric and nonpolar relaxor states can be realized in the
case.

III. TEMPERATURE DEPENDENCE OF MODIFIED
DIELECTRIC PERMITTIVITY
IN PZN-PLZT NS SPECIMEN

It is well-known (see, e.g., Ref. [15]) that the temperature
dependence of the dielectric permittivity of a ferroelectric
relaxor can be described by a modified Curie-Weiss law:

1

ε
− 1

εmax
= 1

K
(T − TM )p. (1)

Here, p = 2, TM marks the temperature of the dielectric
permittivity maximum, K is a constant, while for normal

ferroelectrics TM = TC , p = 1, and TC is the Curie temper-
ature. This difference originates from the relaxor’s broken
translational symmetry, so the modified Curie-Weiss law in-
cludes the frequency dependence in ε and also in TM contrary
to the classical Curie-Weiss law for ferroelectrics. The pro-
nounced frequency dependence in relaxors is known to be pro-
duced by the broad relaxation time spectrum, described by the
Vogel-Fulcher law 1/τ = (1/τ0)exp[−U/(k(T −Tg ))], where
Tg is the freezing temperature. This and other peculiarities
of relaxor ferroelectrics originate from random electric field,
induced by substitutional disorder, presence of vacancies, and
other unavoidable defects (see, e.g., Ref. [3] and references
therein).

Deng et al. [6] measured the temperature dependence of
PZN-PLZT relaxor dielectric permittivity for NS and AO
samples and obtained respectively p = 1.53 and 1.91. The
obtained data speaks in favor of the statement that large
concentration of oxygen vacancies induces ferroelectricity
in the NS sample, which coexists with the relaxor state.
This compound looks like PMN1−xPTx solid solution, where
one could observe the so-called morphotrophic region where
relaxor and polar phases coexist (see, e.g., Ref. [16]). In what
follows, we will consider the physical mechanism of induced
ferroelectricity.

IV. POSSIBLE MECHANISMS OF FERROELECTRICITY
INDUCED BY OXYGEN VACANCIES

Let us briefly consider possible mechanisms of ferroelec-
tricity in NS samples of PZN-PLZT. As we discussed above,
the oxygen vacancies in this sample are uncharged VO, and
singly and doubly positively charged V•

O and V••
O , respec-

tively. Because of the required oxygen loss, negative charges
compensating approximately an equivalent amount of Ti3+
off-central ions is another group of defects. Keeping in mind
the electrostriction in disordered systems the elastic dipoles
transform into electric ones.

An illustration of the oxygen vacancy related defect config-
urations in a tetragonal perovskite lattice structure is shown in
Fig. S1 in Ref. [17], adapted from Ref. [18]. The existence of
electric dipoles will lead to the appearance of a ferroelectric
phase due to the indirect interaction of dipoles via soft optic
modes [19]; the soft mode existence in the ferroelectric relax-
ors will be discussed later.

Allowing for that, all the electric dipoles in the regions with
sizes of order of correlation radius rc must be oriented, and
one can write the criterion of ferroelectric phase appearance
as Nr3

c � 1, where N is the concentration of dipoles. In what
follows we will name the lowest concentration Nc = r−3

c the
correlation threshold.

Another possible mechanism of ferroelectricity in the re-
laxors can originate from an inhomogeneous elastic field via
the flexoelectric effect, namely, Pi = fijkl∂ukj /∂xl , where Pi

is the electric polarization component, ∂uij /∂xl is the mechan-
ical strain gradient, and fijkl is the tensor components of the
flexoelectric effect. Detailed consideration of this mechanism
along with the mechanical strain field originating from oxygen
vacancies (Vegard mechanism) will be performed in the next
part.
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V. VEGARD STRAINS CONTRIBUTION TO APPEARANCE
OF FERROELECTRICITY IN RELAXORS

Gehring et al. [20] performed neutron inelastic scattering
measurements of the lowest-energy transverse optic (TO)
phonon branch in the relaxor Pb(Mg1/3Nb2/3)O3 from 400
to 1100 K. Far above the Burns temperature Td = 620 K,
Gehring et al. observed well-defined propagating TO modes
at all wave vectors q, and a zone center TO mode that softens
in a manner consistent with that of a ferroelectric soft mode.
Below Td , the zone center TO mode is overdamped and its
direct measurement becomes cumbersome. However, Gehring
et al. [21] supposed that this mode recovers as has been
reported for PZN, where at 20 K a TO mode was observed.
The latter is very important for us because it was considered
in Ref. [6] in the PZN-PLZT relaxor described by the formula
0.3Pb(Zn1/3Nb2/3)O3−0.7(Pb0.96La0.04(ZrxTi1−x )0.99O3) with
the composition (x = 0.52) near the morphotropic phase
boundary, where the La concentration is 4% and so it
has no relaxor properties, so that relaxor type behavior
has to originate mainly from PZN. Therefore we came to
the possibility of introducing a hidden soft mode in the
considered relaxor. This permits us to use an LGD-type
free energy functional for the quantitative consideration of
ferroelectricity induced by oxygen vacancies in the relaxors.
Note that the same approach was used earlier in Ref. [22] for
the description of the relaxor ferroelectric PLZT ceramics
with 8% and 9% of La and PZN–4.5%PT single crystals.

Note that the applicability of the standard Landau phe-
nomenological model for calculation of the electrocaloric
effect in relaxor ferroelectrics in Ref. [23] is out of doubt
because of the induced by the electric field polarization. The
Gibbs potential density of a relaxor ferroelectric material
having some hidden soft phonon polar mode [20,21,24] has
the following form [25]:

G = α(T )

2
PiPj + αijkl

2
PiPjPkPl + gijkl

2

∂Pi

∂xj

∂Pk

∂xl

+ Fijkl

2

(
σkl

∂Pi

∂xj

− Pi

∂σkl

∂xj

)
− QijklσijPkPl

− sijkl

2
σijσkl + kBT S(Nd,N

+
d )

− PiEi − WijNd (�r )σij , (2)

where Pi are the components of polarization vector (i = 1,
2, 3) and σij is the elastic stress tensor. The summation
is performed over all repeated indices. The dielectric
stiffness coefficient α(T ) is positive because the intrinsic
ferroelectricity is absent, but depends on temperature
reflecting the fact that the hidden phonon mode could soften at
negative absolute temperatures. This statement follows from
the abovementioned fact that in the PZN a soft mode was
observed at T = 20 K, so that its frequency could be zero at
negative temperature. Note that extrapolation of the PMN soft
mode frequency to zero leads to Tc ≈ −150 K. The matrix of
the gradient coefficients gijkl is positively defined. Qijkl is the
electrostriction tensor, sijkl is the elastic compliances tensor,
and Fijkl is the forth-rank tensor of flexoelectric coupling.
Note that a detailed consideration of the coupling contribution
will be performed in the next section. The configuration

entropy function S(x, y ) is taken as S(x, y ) = y ln(y/x) − y

in the Boltzmann-Planck-Nernst approximation, kB =
1.3807 × 10−23 J/K, where T is the absolute temperature.

In Eq. (2), Ei (r) denotes the internal electric field that
satisfies the electrostatic equation

εbε0
∂Ei

∂xi

+ ∂Pi

∂xi

= e(N+
d − n), (3)

where εb is the background permittivity [26] and ε0 = 8.85 ×
10−12 F/m is the universal dielectric constant, e(N+

d − n) is
the space charge density of singly ionized vacancies and elec-
trons, and e = 1.6 × 10−19 C is an electron charge. The field
Ei (r) is induced by nonzero divergence of the bound charge
∂Pi

∂xi
(depolarization contribution) and space charge fluctua-

tions related to ionized vacancies (random field contribution).
Taking into account that the “net” random electric fields

should be created by charged defects [4,27], they are not the
local fields originating around randomly distributed elastic
dipoles due flexoelectric effect, but rather quenched by Imry-
Ma scenario random fields [28]. It should be argued that the
amount of charged vacancies is usually much smaller than
the amount of uncharged vacancies, which are considered
below as the main sources of ferroelectricity allowing for
the Vegard mechanism. Actually, as a rule, the concentration
of the charged defects (ionized vacancies in our case) is of
the order of several percents of the total defect concentration
in the volume of the material, with the exception of near-
surface charged layers, where their accumulation or depletion
is possible [29]. The maximum number of vacancies observed
in NS samples in Ref. [6] is related to uncharged oxygen
vacancies (i.e., to elastic dipoles).

The equations of state ∂G/∂σij = −uij determine the
strains uij . The Euler-Lagrange equations ∂G/∂Pi = 0 deter-
mine the polarization components. The last term in Eq. (2) is
the Vegard-type concentration-deformation energy, WijNdσij ,
determined by the elastic defects (e.g., charged or electroneu-
tral oxygen vacancies) with fluctuating concentration Nd (r) ∼=
〈∑k δ(r − rk )〉 ≡ N̄d + δNd (r), where the equilibrium con-
centration is N̄d , and δNd (r) is the random variation. The
variation δNd (r) is characterized by zero spatial average and
nonzero mean square dispersion values, i.e., 〈δNd (r)〉 = 0
and 〈δN2

d (r)〉 = n2
d > 0. Different cases, N̄d � nd , N̄d ∼ nd ,

and N̄d � nd , are possible for oxygen vacancies. The average
distance between defects centers 2R should be associated with
the average volume per inclusion and so is defined from the
relation 4π

3 R3 = 1
N̄d

. The defect size r0 is much smaller than

the average distance R, e.g., r0 is the ionic radius ∼(0.1−1)Å
3

(see Fig. 1).
The nonzero components of the Vegard stresses induced by

a spherically symmetric elastic point defect (e.g., dilatation
centre) located in the coordinate origin, r = 0, in spherical
coordinates have the form [30]

σW
rr (r) = −Wrr

2π (s11 − s12)r3
,

(4)

σW
θθ (r) = σW

ϕϕ (r) = Wθθ

4π (s11 − s12)r3
.

Equations (4) are derived under the assumption of isotropic
and diagonal Vegard expansion tensor Wij , Wij = Wδij .
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FIG. 1. Schematic presentation of spherical elastic defects with
radius r0 embedded into the matrix. The distance between defects
“i” and “j” is Rij . The average distance between defects is 2R. The
average volume per one defect is V = 4π

3 R3.

In the general case, the structure of the Vegard expansion
tensor Wij [31–33] (elastic dipole) is controlled by the sym-
metry (crystalline or Curie group symmetry) of the material.
In Eq. (4) the distance r > r0. The elastic compliances tensor
sij is written in Voight notations.

Substitution of elastic fields (4) into Eq. (2) leads to the
renormalization of coefficient α(T ) → αR

ij by the joint action
of electrostriction coupling and Vegard expansion,

αR
kl (T , �r ) ≈ α(T ) − 2Qijklσ

W
ij (r). (5)

One can see from Eq. (5) that the local polar state occurred
under the condition αR

kl < 0 is not excluded in the spatial
regions, where the defect concentration is high enough. Let
us make some estimates.

Using ergodic hypothesis, the averaging in Eq. (5) over the
defect distribution function is reduced to the averaging over
the defect partial volume, V = 4π

3 R3, and gives the following
expression:

〈
αR

kl (T , N̄d )
〉 ≈ α(T ) − 4

3
QijklW̃ij N̄d ln

(
3

4πN̄dr
3
0

)
, (6a)

where W̃ij = cijklWkl and cijkl is the elastic stiffness tensor.
A detailed derivation of Eq. (6) is listed in Appendix B of
Ref. [17].

For a typical case, α(T ) = αT (T − T ∗
C ), where T ∗

C can be
essentially smaller than room temperature or negative due to
the relaxor component, such as 30% of PZN and disordering
impurities 4% of La. Pure PZT (52/48) has a Curie tem-
perature of about 393 °C. For a solid solution PZT (52/48),
the coefficient αT ≈ 2.66 × 105 C−2 m J K−1, electrostriction
coefficients Q11 = 0.0966 m4/C2, Q12 = −0.0460 m4/C2,
Q44 = 0.08190 m4/C2, and elastic stiffness c11 = 1.696 ×
10+11 Pa, c12 = 0.819 × 10+11 Pa [34,35]. Vegard tensor
is usually diagonal for oxygen vacancies in perovskites,

but anisotropic, e.g., W11 = 16.33 Å
3

and W22 = W33 =
−8.05 Å

3
for SrTiO3 [33]. Note that the average concentration

N̄d should be much smaller than the value 2.25 × 1028 m−3

corresponding to one defect per unit cell with a size 4 Å.

0.5 1 1.5 2

5
10

50
100

500

Te
m

pe
ra

tu
re

 Δ
T C

 (K
)

Average defect concentration Nd (×1025 m-3)

1 − β=2, 2 − β=1 
3 − β=0.5, 

4 − β=0.25, 5 − β=0.1

(a)

1
2

3
4

5

0.5 1 1.5 2

20

50

100

200

500

1 − r0=1 
2 − r0=0.75 
3 − r0=0.5 
4 − r0=0.25 
5 − r0=0.1

5

1

Te
m

pe
ra

tu
re

 Δ
T C

  (
K

)

(b) Average defect concentration Nd (×1025 m-3)

FIG. 2. (a) The shift of the Curie temperature �TC vs the average
concentration N̄d of oxygen vacancies calculated for several values
of the Vegard tensor amplitude β = 2 (curve 1), 0.5 (curve 2), 0.5
(curve 3), 0.25 (curve 4), and 0.1 (curve 5). Vegard strain tensor

wii = βWii , where W11 = 16.33 Å
3

and W22 = W33 = −8.05 Å
3
.

Defect size is r0 = 0.5 Å
3
. (b) The shift of the Curie temperature

�TC vs the average concentration of oxygen vacancies calculated
for several values of the defect size r0 = 1 (curve 1), 0.75 (curve

2), 0.5 (curve 3), 0.25 (curve 4), and 0.1 Å
3

(curve 5). Note that
the dimensionless amplitude “beta” is introduced to demonstrate the
influence of the Vegard stain on the properties.

Thus we obtain from expression (6a) that the renormalized
transition temperature is equal to

T R
C ≈ T ∗

C + 4

3αT

[Q11W̃11 + Q12(W̃22 + W̃33)]

× N̄d ln

(
3

4πN̄dr
3
0

)
. (6b)

Here, T ∗
C is an analog of the Curie temperature for a

PZN relaxor, i.e., it originated from a soft mode, observed at
T = 20 K [21], and so T ∗

C has to be negative and can be es-
timated as T ∗

C ≈ −(5−100) K, similarly to estimations made
from the soft mode observed in PMN [20]. Here, we intro-
duced the Vegard stress tensor components as follows: W̃11 =
c11W11 + c12(W22 + W33), W̃22 = c11W22 + c12(W11 + W33),
and W̃33 = c11W33 + c12(W11 + W22).

It follows from Eq. (6b) that the competition between
contributions of the first and second terms can lead to T R

C > 0
and so ferroelectricity could be observed. The shift of the
Curie temperature �TC versus the average concentration of
oxygen vacancies N̄d calculated for several values of the
Vegard tensor amplitude and defect sizes are shown Figs. 2(a)
and 2(b), respectively. The shift monotonically increases with
increasing N̄d . Also, it increases with increasing Vegard co-
efficient and decreasing defect size. One can see from Fig. 2
that the polar phase is not excluded if the defect concentration

094102-4



FERROELECTRICITY INDUCED BY OXYGEN VACANCIES … PHYSICAL REVIEW B 98, 094102 (2018)

N̄d is high enough. Keeping in mind that the oxygen vacancy
concentration depends on technology [6], the special choice
of N̄d can overcome the correlation threshold necessary for
the existence of a normal switchable ferroelectric phase.

It is noteworthy that the switchable ferroelectric polariza-
tion originates from the renormalization of Curie temperature
given by Eq. (6b), and its two energetically equivalent (at zero
external field) spontaneous values can be estimated as P1,2 =
±

√
αT (T R

C −T )
α11

in accordance with the mean-field approach. The
values are the upper limit as estimated without gradient and
depolarization effects, which decrease the polarization, and
random fields, which can change it locally via disorder, as it
will be analyzed in the next section. Note that it was shown
earlier that Vegard strains and stresses coupled with elec-
trostriction and flexoelectricity indeed can induce a reversible
ferroelectric polarization in nanosized ferroelectrics, which
are paraelectric otherwise [36,37].

It is important to underline that for intermediate concen-
tration of oxygen vacancies the coexistence of a relaxor state
and a ferroelectric phase can take place. It is not excluded that
the result obtained by Deng et al. [6] for NS samples with
p = 1.53 is characterizing neither ferroelectric nor relaxor
phases and speaks in favor of the coexistence of different
states, namely, of ordered ferroelectric and disordered relaxor
states.

VI. LOCAL POLARIZATION AND ELECTRIC FIELD
INDUCED BY FLEXO-CHEMICAL COUPLING

IN A RELAXOR

Let us estimate the polarization and electric fields vari-
ations induced by the joint action of Vegard stresses and
flexoelectric coupling. The equations of state ∂G/∂σij = −uij

give the strains uij as

uij = sijklσkl + WijδNd − Fijkl

∂Pl

∂xk

+ QijklPkPl. (7a)

Since the static equation of mechanical equilibrium,
∂σij /∂xj = 0, should be valid, Eq. (7a) transforms into a
Lame-type equation for elastic displacement Ui :

cijkl

∂2Ul

∂xj ∂xk

= ∂

∂xj

(
σW

ij − fijkl

∂Pl

∂xk

+ qijklPkPl

)
, (7b)

where cijkl are the elastic stiffness, Vegard stress σW
mn =

cijmnWij δNd , qmnkl = cijmnQijkl is the electrostriction stress
tensor, and fmnkl = cijmnFijkl is the flexocoupling stress
tensor.

Minimization of the Gibbs potential (2) with respect to Pj

leads to the Landau-Ginzburg-Devonshire type equations for
ferroelectric polarization components:

(αδij − 2σmnQmnij )Pj + αijklPjPkPl − gijkl

∂2Pk

∂xj∂xl

= Fmnli

∂ σmn

∂xl

+ Ei. (8)

The electric field Ei is the sum of internal (depolarizing and
spatially random) and probing external fields, Ei = δEi +
Eext

i , which should be found self-consistently from Eq. (3).
Further, we put Eext

i = 0 being interested in the random field

only. For this case, Eq. (3) can be rewritten in the form of
Poisson equation for an electric potential φ:

εbε0
∂2φ

∂x2
i

= ∂Pi

∂xi

+ e(δN+
d − δn). (9)

The conventional relation Ei = −∂ φ/∂xi is valid. Here εb

is the background permittivity, which can be high enough
∼(102−103) for relaxor ferroelectrics, for normal ferro-
electrics it is no more than 10. The total electroneutrality con-
dition N̄+

d = n̄ (valid at Eext
i = 0) is already used in Eq. (9).

In Appendix A of Ref. [17], we solved the linearized
system of Eqs. (7b), (8), and (9) using the method outlined in
Ref. [38]. The Fourier k spectrum of the internal electric field
variation (depolarizing by nature and random as it is induced
by random variation of the defect concentration) was found in
the Debye approximation from Eq. (9). It has the form

δẼj (k) ≈ −kmkj δP̃m

εbε0
(
k2 + R−2

d

) , (10a)

where Rd is the screening radius that depends on the temper-
ature and average concentration of defects as Rd =

√
εbε0kBT

2e2N̄d

.
The Fourier k spectrum of the polarization variation induced
by the randomly distributed vacancies due to Vegard stresses
and flexoelectric coupling has the following form:

δP̃j (k) ≈ ifmnliklknkj ′Smi ′ (k)χ̃ij (k)σ̃W
i ′j ′ , (10b)

Random stresses are related with the random vacancies sites
as σW

mn = cijmnWij δNd . The converse tensors of dielectric

susceptibility χ̃−1
ij (k) and elastic matrix S−1

ik (k) have the form

χ̃−1
ij (k) ≈ αδij + gipjlkpkl + kikj

εbε0
(
k2 + R−2

d

) ,

(10c)
S−1

ik (k) = cijklklkj ,

where cijkl are the elastic stiffness coefficients. The second
term, gipjlkpkl , in the expression for χ̃−1

ij (k) originates from

the polarization gradient, and the third term, kikj

εbε0(k2+R−2
d )

,

originates from depolarization effects calculated in the Debye
approximation. Also, it was shown earlier (see, e.g., Ref. [3].
and Refs. [14–16] therein) that the contribution of the gra-
dient term is important for nanosized structures, while for
homogeneous micrometer-sized structures, this contribution
is negligible.

The variations of the random electric field (10a) and local
polarization (10b) are not related with the ferroelectricity
induced by uncharged vacancies with the average concen-
tration N̄d considered in the mean-field approach in Sec. V.
The ferroelectric polarization is proportional to the nonzero
average concentration of vacancies N̄d . The variation δ �P (r)
is, of course, not switchable and its average value is zero,
〈δ �P (r)〉 = 0, since 〈δNd (r)〉 = 0.

That is why it makes sense to calculate standard
(mean square) deviations of local polarization 〈δ �P 2(r)〉
and electric field 〈δ �E2(r)〉, which are proportional
to the dispersion of defect concentration 〈δN2

d (r)〉.
Note that analytical estimates of the values

√
〈δ �P 2(r)〉

and
√

〈δ �E2(r)〉 are possible only for the case of
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the simplest spherically symmetric dilatation center in an isotropic surrounding, while more realistically it is cubic. Analytical

expressions for
√

〈δ �P 2(r)〉 and
√

〈δ �E2(r)〉 are derived in Appendix A of Ref. [17], they are as follows:

√
〈δ �P 2(r)〉 ∼=

|f11Weffkc|
√〈

δN2
d

〉
∣∣∣αT (T − T ∗

C ) + g11k2
c + k2

c R
2
d

εbε0

(
1+k2

c R
2
d

) ∣∣∣ , (11a)

√
〈δ �E2(r)〉 ∼=

k2
cR

2
d |f11Weffkc|

√〈
δN2

d

〉
εbε0

(
1 + k2

cR
2
d

)∣∣∣αT (T − T ∗
C ) + g11k2

c + k2
c R

2
d

εbε0

(
1+k2

c R
2
d

) ∣∣∣ , (11b)

where the effective Vegard coefficient Weff =
W11(1 + 2 c12

c11
) and the wave vector kc

∼= ξ
3
√

1/N̄d

characteristic for the long-range correlations are introduced.
Since kc defines the period of the long-range correlations,
the dimensionless parameter ξ should be order of unity, and
kc � 1

r0
as anticipated.

Let us perform numerical estimates of the gradient term

(g11k
2
c ) and depolarization [ k2

c R
2
d

εbε0(1+k2
c R

2
d )

] contributions in

Eqs. (11) for typical values of parameters: gradient coeffi-
cient g11 = (0.1−5) × 10−10 m3/F, inverse Curie-Weiss con-
stant αT ≈ 2.66 × 105 C−2 m J K−1, virtual Curie temperature
T ∗

C ≈ −(5−100) K, and relative permittivity εb ∼ 102 for re-
laxor ferroelectrics. For chosen parameters, the “dressed” De-
bye screening radius Rd can be smaller than 0.8 nm at 293 K
at N̄d = 1025 m−3 and ξ ∼ 1. For these values, the gradient
and depolarization contributions are g11k

2
c ∼ ×105 C−2 m J
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FIG. 3. Mean square deviations of (a) local polarization√
〈δ �P 2(r)〉 and (b) electric field

√
〈δ �E2(r)〉 vs the dispersion√〈δN 2

d 〉 of vacancy concentration fluctuations are shown in log-log
scale for several values of parameter ξ = 10 (curve 1), 3 (curve 2),
1 (curve 3), 0.3 (curve 4), and 0.1 (curve 5). Vegard strain tensor

strength W = 10 Å
3

and flexocoupling constant f11 = 4 V estimated
from Kogan model [44] and temperature T = 300 K.

and k2
c R

2
d

εbε0(1+k2
c R

2
d )

∼ 0.8 × 107 C−2 m J, respectively. These val-

ues are significantly smaller than the soft mode contribution
|αT (T − T ∗

C )| ∼ (0.81−1.06) × 108 C−2 m J at room temper-
ature. Since it is not excluded that for other parameters (e.g.,
for smaller εb and N̄d ) the depolarization contribution can be
compatible and even higher than the soft mode one, we note
that Eqs. (10)–(11) are applicable for all parameters.

The dependencies of the mean square deviation of the local

polarization,
√

〈δ �P 2(r)〉, and electric field,
√

〈δ �E2(r)〉, on
the dispersion

√
〈δN2

d 〉 of the vacancy concentration fluctu-
ations are shown in Figs. 3(a) and 3(b) for several values
of dimensionless parameter ξ within the range (0.1 −10).

The values
√

〈δ �P 2(r)〉 and
√

〈δ �E2(r)〉 monotonically increase
with increasing

√
〈δN2

d 〉.
To resume the section, the dependence of the mean square

deviation of polarization 〈δP 2(r)〉 and internal electric field
〈δE2(r)〉 on the concentration of oxygen vacancies

√
〈δN2

d 〉
[shown in Fig. 3] demonstrated that flexochemical coupling
essentially contributes to local polarization and the internal
electric field. This speaks in favor of the statement about
existence of a dipole glass state. So that the proposed model
explains and quantifies some features of the dipole glass
and relaxor states coexistence [19], which has been observed
experimentally [39–41].

VII. DISCUSSION AND CONCLUSIONS

The main experimental fact obtained in [6] originated from
measurements of the temperature dependence of PZN-PLZT
relaxor dielectric permittivity for NS and AO samples. The
authors obtained respectively p = 1.53 and 1.91 in Eq. (1).
These data speak in favor of the statement that in NS samples
with large concentration of oxygen vacancies ferroelectricity
is induced, so that we witness its coexistence with a relaxor
state of PZN. The obtained result resembles a PMN1−xPTx

compound for which p = 1.53 can be obtained for x = 0.5
approximately. For this concentration, transition to the fer-
roelectric phase takes place at TC = 250 ◦C > 0 in PMN-PT
(see, e.g., [42]). The main task of our consideration was to
find out the physical mechanism that can be responsible for
the oxygen vacancy induced ferroelectricity in the PZN-PLZT
relaxor. As a matter of fact, (Pb, La)Zr0.52Ti0.48O3 with La
content below 10% is known to be in a ferroelectric phase
[43], which could suppress relaxor disorder of PZN. However,
allowing for the value of parameter p = 1.91 for OA samples
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annealed in oxygen is very close to p = 2, which is a charac-
teristic value for relaxors, we neglected the PLZT contribution
for NS samples, where p = 1.53 and the concentration of
oxygen vacancies is large (see Introduction). Keeping in mind
that oxygen vacancies are elastic dipoles, whose influence
used to be considered as a Vegard mechanism, we performed
the calculations with the help of a defect concentration dis-
tribution function and obtained Eq. (6). The results depicted
in Fig. 2 show that at some average concentration of oxygen
vacancies N̄d their contribution can be larger than the negative
value of temperature T ∗

C of a relaxor and so we obtained a
positive transition temperature, characteristic for a ferroelec-
tric. For a transformation of a relaxor into a ferroelectric,
one needs large enough concentration of oxygen vacancies
and Vegard tensor amplitude. Unfortunately, the exact value
of the negative Curie temperature T ∗

C is not known and we
have to discuss some estimation only. It is obvious that even a
large enough value of T ∗

C can be overcome by special choice
of oxygen vacancy concentrations and other parameters. The
latter is very important because the vacancy concentration has
to be larger than the correlation threshold necessary for the
existence of a normal ferroelectric reversible phase. In such a
case at T < T R

C (ferroelectric phase), all the properties could
be calculated with the conventional way on the basis of free

energy G = αT (T R
C −T )
2 P 2 + α11

4 P 4, so that, e.g., polarization

P 2 = αT (T R
C −T )

α11
, while at T > T R

C , the polarization is zero,
P = 0, and we again have the relaxor. For this case in Sec. VI,
we consider a local polarization and an electric field induced
by the Vegard and flexoelectric effects (flexochemical cou-
pling). The dependence of the mean square deviation of the
polarization, 〈δP 2(r)〉, and internal electric field, 〈δE2(r)〉,
on the concentration of oxygen vacancies

√
〈δN2

d 〉 [shown in
Fig. 3] speaks in favor of the existence of a dipole glass state.
So that the proposed model can explain and quantify some
features of the dipole glass and relaxor states coexistence,
which has been observed experimentally [19,40–42].

Keeping in mind the accumulation of oxygen vacancies
in the vicinity of different inhomogeneities, we came to
the conclusion about oxygen vacancy concentration inho-
mogeneity. In such a case one can expect coexistence of
a relaxor state and ferroelectricity. It is not excluded that
this interesting phenomenon was observed by Deng [6] for
NS samples with p = 1.53. It lays approximately at the
same distance from p = 2 for relaxors and p = 1 for ferro-
electrics. Therefore, at some concentration of oxygen vacan-
cies and T < T R

C , we are faced with a morphotrophic region in
PZN-PLZT.

To resume, we have shown that the transition to a ferro-
electric phase can be induced in a relaxor by the influence
of oxygen vacancies being elastic dipoles due to the joint
action of electrostrictive and Vegard couplings at some large
enough concentration of the vacancies. In the regions where
the concentration of vacancies is low, the local polarization
and electric field could be induced by the flexochemical cou-
pling in dependence on the concentration of oxygen vacan-
cies. Because of the inhomogeneity of vacancy concentration,
the coexistence of ferroelectricity and relaxor state can be
expected.
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