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Interference in spin-orbit coupled transverse magnetic focusing:
Emergent phase due to in-plane magnetic fields
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Spin-orbit (SO) interactions in two dimensional systems split the Fermi surface and allow for the spatial
separation of spin states via transverse magnetic focusing (TMF). In this paper, we consider the case of combined
Rashba and Zeeman interactions, which leads to a Fermi surface without cylindrical symmetry. While the classical
trajectories are effectively unchanged, we predict an additional contribution to the phase, linear in the applied
in-plane magnetic field. We show that this term is unique to TMF and vanishes for magnetic (Shubnikov de Haas)
oscillations. Finally we propose some experimental signatures of this phase.
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I. INTRODUCTION

Transverse magnetic focusing (TMF) has a long history,
being employed in metals and semiconductors, and has been
used to investigate the shape of the Fermi surface [1–5]. A
TMF experiment consists of a source and a detector, separated
by a distance l, with charges focused from the source to
the detector via a weak transverse magnetic field. It is the
direct translation of charge mass spectroscopy to the solid
state. Despite the nearly half century of experimental history,
TMF is still producing novel results, with the most recent
application in systems with nonquadratic dispersion relations,
such as graphene [6] and two-dimensional charge gases with
large spin-orbit (SO) interactions [7]. In SO coupled systems,
the spin-split Fermi surfaces result in a “doubled” focusing
peak, which provides platform investigations of polarization
effects in the source and detector quantum point contacts
[8,9]. The separation of the peaks also allows for the direct
determination of the magnitude of the spin-orbit splitting,
hence TMF can be used in addition to quantum magnetic
oscillations to yield detailed information about SO coupled
electron and hole systems.

Much of the theoretical and experimental work concerning
TMF with large spin-orbit splittings has considered a singular
dominant SO interaction. This leads to a cylindrically symmet-
ric Fermi surface and a double peak structure that is, in essence,
two copies of the single peak structure [10]. This assumption
is well justified for many typical experimental systems grown
along high symmetry crystal axes, as classical trajectories
are not significantly altered except in the case of extremely
large asymmetry [11]. While a sufficiently large secondary SO
interaction can lead to magnetic breakdownlike behavior [12],
the requirement for resolution of the double peak structure
means that the typical regime is characterized by the secondary
SO interaction being weaker than the primary interaction that
yields the double peak structure of spin-split TMF.

Like earlier studies in semiconductors, SO coupled systems
have Fermi wavelengths comparable to the feature size making
interference an important feature of the magnetic focusing
spectrum [5,13]. With the addition of SO coupling, the in-

terference effects are further enriched and yield new methods
of studying SO interactions. In this paper, we focus on the
problem of interference in TMF in systems with a Rashba
SO interaction and an applied in plane magnetic field. This
combination of interactions results in a spin-split Fermi surface
without cylindrical symmetry. Due to the large prefactors,
proportional to the Fermi momentum and focusing length, rela-
tively small in plane fields can lead to large phase contributions.
While the classical trajectories are effectively unchanged, an
additional phase term emerges, linear in the applied magnetic
field. We show that this additional contribution to the phase
can significantly alter the TMF interference spectrum.

Our paper is organized as follows. In Sec. II we present the
classical trajectories for magnetic focusing and introduce the
relevant Hamiltonian. Following on from this, in Sec. III we
develop a theory of interference in the absence of cylindrical
symmetry, building on previous work on interference in TMF
with SO coupling [13]. Finally, in Sec. IV we consider some
relevant examples, with a minimalistic model of the injector
and detector wave functions.

II. SPIN-ORBIT INTERACTIONS AND CLASSICAL
TRAJECTORIES

Semiconductor heterostructures allow for a great diversity
of SO interactions. While the approach we will detail is
general, for specificity we will consider two interactions; the
Rashba interaction resulting from a lack of surface inversion
symmetry in the sample, and the Zeeman interaction due to an
applied in plane magnetic field. These two interactions have
the advantage of being tunable. In electron systems, the Rashba
interaction has the kinematic structure [14],

HR,e = i
γ1

2
p−σ+ + H.c.

σ± = σx ± iσy p± = px + ipy, (1)

where γ1 is material parameter dependent on the electric field
perpendicular to the two-dimensional plane. The Pauli matrices
σ correspond to electron spin s = 1/2, and the selection rule
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for σ± is �sz = ±1. Spin splitting in the magnetic focusing
spectrum was recently observed in InGaAs quantum wells [15].
In GaAs heterostructures, the spin-orbit interaction is typically
not large enough to obtain a spin-split magnetic focusing
spectrum. Heavy hole gases can also be engineered to have
a Rashba spin orbit interaction [16]. Due to the heavy holes
having angular momentum Jz = ±3/2, the Rashba interaction
arises from the combined action of both the Luttinger, (p · J)2,
and Rashba terms, p · (J × z), withHR ∝ ( J · p)2( p · J × z).
Typically, the light holes Jz = ±1/2, have significantly higher
energy, and it is more convenient to work in the subspace
spanned by the Pauli matrices, with J 3

± → σ±. The selection
rule is �Jz = ±3. In this subspace the kinematic structure is
[16]

HR,h = i
γ3

2
p3

−σ+ + H.c., (2)

where γ3 is a material parameter analogous to γ1.
To induce an asymmetry in the spin-split Fermi surface, we

consider an applied in plane magnetic field. For electrons, this
results in the usual Zeeman interaction,

HZ,e = g

2
μBB−σ+ + H.c., (3)

where g is the electron g factor, and B± = Bx ± iBy . There
is no equivalent expression for heavy holes, as Jz = ±3/2
cannot be coupled directly, but requires the combined ac-
tion of Zeeman, J · B, and Luttinger, (p · J)2, with HZ,h ∝
( J · p)2( J · B). The kinematic structure is

HZ,h = g1

2
μBp2

−B−σ+ + H.c., (4)

where we use the aforementioned subspace of heavy holes
[17,18].

We use a dimensionless form of the coefficients γ3 in Eq. (2)
and γ1 in Eq. (1),

γ1 = γ̃1
εF

kF

γ3 = γ̃3
εF

k3
F

kF =
√

2mεF , (5)

where εF is the Fermi energy (chemical potential). The di-
mensionless coefficient γ̃1,3 represents the value of the SO
interaction at p = kF in units of the Fermi energy. This can
be directly related to the splitting of the “double” TMF peaks.
For the heavy holes Rashba interaction, γ̃3 can be as large as
|γ̃3| ∼ 0.1–0.2, in GaAs depending on the z confinement [16].
For the electron Rashba interaction, in InGaAs quantum wells,
γ̃1 ∼ 0.2 [15]. For the Zeeman interaction in holes, we consider
the dimensionless coefficient, g̃1,

g̃1 = g1k
2
F . (6)

For GaAs heavy hole quantum wells, g̃1 ∼ 1 [17,18]. The
electron g factor in InGaAs quantum wells is g ∼ −9 [19].

We can consider the SO interaction as a momentum de-
pendent effective Zeeman magnetic field, B(p). Hence the

sourcel

x

y

x

ϕ

FIG. 1. The focusing setup with focusing length l. We choose axis
x and y such that x is aligned along the axis of injection. We locate
the source at (x, y ) = (0, 0). The in plane magnetic field angle ϕ is
measured from the y axis. The dashed line indicates the magnetic
field orientation.

Hamiltonian is

H = p2

2m
+ B(p) · σ

σ · B(p) = HR + HZ (7)

with the application of a transverse magnetic field, Bz,
p → π = p−eA, with the vector potential chosen in an appro-
priate gauge, A = Bz(0,−x, 0). The semiclassical dynamics
of the charge carriers are characterized by cyclotron orbits
[11], with a cyclotron radius, rc = kF /eBz, and a cyclotron
frequency, ωc = eBz/m. Due to the curvature of the trajec-
tories, the effective magnetic field B evolves in time. Since
TMF experiments are typically performed at relatively small
transverse magnetic fields, Bz � 0.1 T, the spin adiabatically
follows the effective magnetic field,B. Provided |B| � ωc, the
spin states evolve adiabatically, and consequently there is no
tunneling between the spin states. We note that this is also a
condition for a “double” focusing peak.

We are now in a position to explore the semiclassical
dynamics. The Hamiltonian, with an applied magnetic field
B, is (Fig. 1)

H = π2

2m
+ σ · B

B = (B|| cos ϕ,B|| sin ϕ,Bz)

π = p − eA, (8)

where ϕ is the field angle, B|| is the in plane magnetic field,
and Bz is the (weak) transverse focusing field. We stress that
typically Bz ∼ 0.1 T, while B|| can be a few Teslas for heavy
hole quantum well in GaAs [7]. For electrons in InGaAs, B|| ∼
1 T due to the much larger g factor in these systems. If the spin
follows the effective field adiabatically, σ → sB/|B|, where s

is a pseudoscalar and describes the two possible spin states.
The resulting adiabatic Hamiltonian is

Hcl = π2

2m
+ s|B|

π = |π |(cos φ, sin φ, 0), (9)

where φ is the azimuthal angle (see Fig. 2). The semiclassical
dynamics of this Hamiltonian has been found with expansion
in powers of |B|/εF [11]. This is valid in the regime ωc �
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FIG. 2. A cartoon of the trajectories in momentum space with a
Rashba spin orbit interaction, with an applied in plane magnetic field,
B||. Red (blue) surface has s = −1 (s = 1). The azimuthal angle φ of
the momentum, π , is presented, with πx and πy given by Eq. (9).

|B| � εF . The effective magnetic field, B, is

|B| = εF |γ̃3|b(φ)

b(φ) =→
=

√
1 + 2(g̃1μB/γ̃3εF )B|| cos(φ − ϕ) + (g̃1μB/γ̃3εF )2B2

||

(10)

for holes and

|B| = εF |γ̃1|b(φ)

b(φ) =→
=

√
1 + 2(gμB/γ̃1εF )B|| cos(φ − ϕ) + (gμB/γ̃1εF )2B2

||

(11)

for electrons. Evidently, these effective magnetic fields are
identical, and the dynamics of electrons and holes are the same
in this adiabatic semiclassical approach, despite the kinematic
structure of the spin-orbit interactions, Eqs. (2) and (1) being
markedly different. For clarity, in the following calculations,
we will exclusively refer to holes.

The equations of motion of this classical Hamiltonian are

v+ = ∂Hcl

∂π−
= π+

m
− s

|B|
∂B2

∂π−
π̇+ = iωcmv+. (12)

The solution to these classical equations of motion has been
found with expansion in powers of |B|/εF [11]. The particle
trajectories are given by

φ0 = ωct

φ = φ0 − s
3|γ̃3|

2

∫ φ0

φi

a(φ′)
b(φ′)

dφ′

x + iy = kF

mωc

{
i(eiφi − eiφ )

+s
|γ̃3|
2

∫ φ

φi

eiφ′
[
b(φ′) + 3i

c(φ′)
b(φ′)

]
dφ′

}
, (13)

where kF = √
2mεF is the Fermi momentum, and φ is the

azimuthal angle. We have introduced the initial azimuthal angle
φi . The condition of the spin adiabaticity implies that b(φ)

FIG. 3. Trajectories of spin-orbit coupled holes, with s = 1 in
red, and s = −1 in blue. We use γ̃3 = 0.25 and g̃1 = 1 with an in
plane magnetic field, B|| = 4 T. The Fermi energy is εF = 1.9 meV.
The upper panel has a in plane magnetic field orientation ϕ = 0,
while the lower panel has a field orientation ϕ = π/2. We present the
trajectories normalized with the cyclotron radii, with rc ≈ l/2. The
dashed lines in the upper and lower panel have B|| = 0 T. Note that
the change in the trajectory is very small. We note that the injection
with velocity directed fully along x does not correspond to φi = 0.

does not vanish, |γ̃3|b(φ) � ωc/εF . The functions c(φ) and
a(φ) are given by

φ̇ = ωc

[
1 − s

3|γ̃3|
2

a(φ)

b(φ)

]
a(φ) = 1 + (5/3)(g̃1μB |B|||/γ̃3εF ) cos(φ − ϕ)

+ (2/3)(g̃1μB |B|||/γ̃3εF )2

c(φ) = 1

3
(g̃1μB |B|||/γ̃3εF ) sin(φ − ϕ) . (14)

These solve the problem of the classical motion. We have
presented illustrative trajectories in Fig. 3. The classical tra-
jectories are essentially unchanged, even up to several Tesla.

A peculiar feature to note is that φi = 0 does not correspond
to the classical trajectory, since φi = 0 has nonzero vy . We
define the physical injection angle θ such that the classical
trajectories shown in Fig. 3 correspond to injection with
θ = 0, with θ measured from the x axis. To relate this to φi ,
we differentiate Eq. (13) to obtain vy at the source

vy ≈ kF,s

m

(
sin φi + g̃1μBB||

2
sin(2φi + ϕ)

)

kF,s = kF

(
1 + s

γ̃3

2εF

)
. (15)

Setting vy = 0 and solving, we obtain φi ≈
g̃1μBB|| sin ϕ/2εF . In general, θ is related to φi by

φi = θ + g̃1μBB|| sin ϕ

2εF

. (16)
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l

−θθ

FIG. 4. The two trajectories of injection angle θ and −θ , mea-
sured from the x axis at the point of injection.

We stress again that the method used here, and following in
Sec. III, can equally be applied to electron systems with a
Rashba SO interaction and an applied in-plane magnetic field.
Finally, we note that the semiclassical method employed to
determine the trajectories can be easily adapted to include
additional SO interactions [11]. In the case of Dresselhaus
SO interactions arising from crystal anisotropy [16], this will
include an additional angle relating to the lattice orientation
relative to the device.

III. INTERFERENCE

The problem of interference in systems with large SOIs has
been treated in detail for cylindrically symmetric systems [13].
Like any interference problem, there are two trajectories (see
Fig. 4) connecting the source located at the origin, (0, 0), to
a detector located at (0, l). These two paths are defined by
injection angles ±θ , with (Fig. 4)

cos θ = l

2rc,s

rc,s = kF,s/eBz. (17)

Interference arises from the difference between the phases
of the two trajectories, with the semiclassical propagator
defined as the sum over the two classically allowed paths,

K (θ ) ∼ eiS(θ ) + eiS(−θ ) (18)

with the phase S ∝ ∫
p · d l , where d l is integrated along the

path of the trajectories. In a typical TMF setup, the source and
detector are of some finite aperture, with the Huygens kernel
Eq. (18) averaged over this aperture [13].

Evaluation of the phase is treated analogously to the
cylindrically symmetric case. The canonical is related to the
kinematic momentum and the vector potential by p = mv +
eA, and the action is

S (θ ) =
∫

δS

(mv + eA) · d l, (19)

where v, A, d l , and the path, δS, are dependent on g̃1μBB||.
Using the previously determined equations of motion, Eqs. (13)
and (14), the phase integral, Eq. (19), can be converted into an
integral over the azimuthal angle, φ′,

S (θ ) = eBz

∫ φ

φi

((
dx

dφ′

)2

+
(

dy

dφ′

)2

− x
dy

dφ′

)
dφ′. (20)

The relationship between the physical injection angle θ and φi

is presented in Eq. (16). We must also determine φ in terms
of θ .

The trajectory from the source to the detector is, in terms
of the azimuthal angle, from φi to φ. This corresponds to the
spatial positions (0, 0) and (0, l), respectively. From Eq. (13)
we have

x = 0 = ks

ωcm

{
(sin φi + sin φ) + s

g̃1μBB||
4

[sin(2φ − ϕ)

− sin(2φi − ϕ)]

}
. (21)

We have restricted ourselves to a first order expansion in
g̃1μBB|| when performing the integration of Eq. (13). The
trajectory deviates only minimally from the arc of a circle
(see Fig. 3), and we can reasonably employ the approxima-
tion φ ≈ π − φi for the g̃1μBB|| dependent terms. With this
approximation, solving Eq. (22) we obtain

φ ≈ π − φi − sg̃1μBB|| sin φi cos ϕ. (22)

Finally, this can be expressed in terms of the injection angle, θ
using Eq. (16), to obtain the integration limits for Eq. (20) in
terms of θ .

Using these integration limits, integration of Eq. (20) yields

S(θ ) = k2
s

2eB
{π − 2θ + sin 2θ + ζ

−sg̃1μBB|| sin θ (1 − cos 2θ ) cos ϕ}

ζ = g̃1μBB||

{
sin ϕ − cos 2θ sin ϕ + sin ϕ

(
cos θ

+1

3
cos3 θ

)
cos ϕ

(
cos θ + 1

3
cos3 θ

)}
. (23)

For −θ injection angles, we take θ → −θ . We have introduced
here ζ which contains the phase terms that do not contribute
any net phase difference, that are symmetric for θ → −θ .
According to Eq. (18), we then have

K (θ ) ∼ eiS(θ ) + eiS(−θ )

∼ sin

[
k2
s

2eB
(2θ − sin 2θ

+ sg̃1μBB|| sin θ (1 − cos 2θ ) cos ϕ) + π

4

]
. (24)

The additional factor of π/4 arises due to the caustic for the −θ

path [13]. The third line of Eq. (24), which is linear in g̃1μBB||,
represents the “emergent phase contribution,” and is the first
major result of this work. This term is particularly remarkable,
since the classical trajectories have no first order dependence
on g̃1μBB||. For quantum (Shubnikov de Haas) oscillations, the
integral is over the entire Fermi surface, and this term vanishes.
Thus it is peculiar to the particular geometry of TMF, which
defines the angle ϕ between the in plane magnetic field and the
injector.

It is instructive to examine the variation in the interference
fringe separation due to the application of the in magnetic plane
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FIG. 5. Interference pattern calculated for pointlike source
and detector from Eq. (28). We use l = 1500 nm, kF = 0.107 ×
10−1 nm−1 with a Rashba splitting γ̃3 = 0.3εF , and g̃1μBB|| =
0.15εF , corresponding to B|| ∼ 4–5 T for g̃1 = 1 and εF ≈ 2 meV.
For clarity we present only a single spin state. The interference
spectrum is calculated from Eq. (28), with a black vertical line
indicating the location of the classical cutoff. Red plots in-plane field
with ϕ = π ; black has ϕ = 0.

field, expanding for small θ . For small θ , according to Eq. (18),

θ ≈
√

2rc,s − l

rc,s

=
√

y

rc,s

; (25)

here y = 2rc,s − l is the detuning from the focusing length, l,
which marks the boundary of the classically forbidden region.
For small θ , Eq. (24) becomes

K (y) ≈ sin

(
2

3
νs

(
y

rc

) 3
2
(

1 + s
3

2
g̃1μBB|| cos ϕ

)
+ π

4

)

(26)

and from Eq. (26), we find a characteristic spacing of the
interference fringes to be

δB

B
≈ 2.2

2ν
2
3

(1 − sg̃1μBB|| cos ϕ), (27)

where δB is the fringe spacing. This provides a method
of determining the strength of the in plane g factor. For
other alternative SO interaction combinations, for instance,
Dresselhaus and Rashba SO interactions, we anticipate a
similar dependence. As can be seen in Fig. 5, even for the first
interference fringe, there is a measurable shift. While there
is no direct enhancement, g̃1μBB|| ∼ 0.1εF at fields of a few
Tesla in hole systems. Recent TMF experiments have resolved
a single interference fringe for the low field peak [7,15], which
would be sufficient for the determination of g̃1μBB||.

The remaining elements of the Huygen’s kernel are un-
changed in the cyclindrically symmetric case. As was detailed
in Ref. [13], the asymptotic form of the Huygen’s kernel can
be related to the Airy function. Employing the same reasoning,
from Eqs. (24) and (26), we obtain

Ks = ei
π (νs−1−n)

2
ν

2/3
s

2
√

2rcs

[
(σz − isσx )Ai(ys )

+ n

ν
1/3
s

Ai ′(ys )

]
. (28)

Here y = yν
2/3
s (1 + sg̃1μBB|| cos ϕ)/rc. We present plots of

the resulting interference spectrum in Fig. 5 with pointlike
sources and detectors, for both the classical form of the
Huygen’s kernel and Eq. (28). We stress that this semiclas-
sical approach employed is only valid if νs � 1. For typical
experimental systems, νs > 30.

IV. DISCUSSION

In real systems, the source and detector have finite size
and can influence the observed interference pattern. Typically
experimental devices use quantum point contacts, which con-
sist of a narrow channel connecting a reservoir to the 2DHG.
These have some characteristic width, w, and can be modeled
by standing waves in the y direction,

ψs ∝ χs sin
(πy

w

)
0 < y < w

ψd ∝ χd sin

(
π (y − L)

w

)
L < y < L + w, (29)

where w is the width of the channel, and χs and χd are the
eigenspinors at the source and detector, respectively [13]. The
exit width, w, is imposed by the lithographic geometry of the
QPC [20], however can vary depending on the conductance. We
consider a hole gas with a density, n = 1.85 1011 cm−2, and
corresponding Fermi momentum, kF = 0.107 nm−1. With a
Rashba splitting of γ̃3 = 0.2εF , the smaller spin-split Fermi
momentum will be k− = 0.096 nm−1 (λ ≈ 66 nm) and the
larger Fermi momentum k+ = 0.118 nm−1 (λ ≈ 53 nm). The
distance between the source and the detector is L = 1500 nm.
The corresponding magnetic field at the classical edge of the
bright region for k− is B− = 77mT , while for k+, B+ = 94mT .
We will start by considering a QPC of width w = 150 nm,
which we note corresponds to the lithographic width of the
device of Ref. [7]. The resulting focusing spectrum is presented
in Fig. 6. While interference fringes are still visible, they are
suppressed, and the additional phase contribution manifests
as a suppression or enhancement of the spin-split focusing
peaks. We note that this experimental signature is similar to
that typically attributed to polarization in the QPCs [12].

In summary, we have employed Huygen’s principle to de-
termine quantum interference for systems with asymmetrical

FIG. 6. Interference patterns versus g̃1μBB||, with range −0.1 <

g̃1μBB|| < 0.1, with ϕ = 0. Here l = 2000 nm, w = 150 nm. Posi-
tive g̃1μBBx is presented in red, while negative g̃1μBBx are in blue.
The Bx = 0 TMF spectrum is a solid black curve. Vertical black lines
indicate the location of the classical maximum, Bfocusing = 2h̄ks/el.
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Fermi surfaces. While in this work we focus on a specific case
of an in-plane magnetic field in combination with a Rashba
spin-orbit interaction, the method employed is general. We
have predicted an emergent phase contribution, linear in the
applied in plane magnetic field, despite there being no first
order changes to the classical trajectories. This emergent phase
term significantly alters the interference spectrum of TMF. We
propose that this could be used to measure the in plane g factor.
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