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Unconventional topological superconductivity and phase diagram for an effective
two-orbital model as applied to twisted bilayer graphene
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We consider the superconducting and Mott-insulating states for twisted bilayer graphene, modeled as a two-
narrow-band system of electrons with appreciable intra-atomic Coulomb interactions. The interaction induces
kinetic exchange which leads to real space, either triplet- or singlet-spin pairing, in direct analogy to heavy fermions
and high-temperature superconductors. By employing the statistically consistent Gutzwiller method, we construct
explicitly the phase diagram as a function of electron concentration for the spin-triplet dx2−y2 + idxy paired case,
as well as determine the topological edge states. The model reproduces principal features observed experimentally
in a semiquantitative manner. The essential role of electronic correlations in driving both the Mott-insulating and
superconducting transitions is emphasized. The transformation of the spin-triplet state into its spin-singlet analog
is also analyzed, as well as the appearance of the phase-separated superconducting+Mott-insulating state close
to the half-filling.
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I. INTRODUCTION

The nature of electronic states and, in particular, the micro-
scopic mechanism of unconventional pairing in strongly corre-
lated matter, is one of the fundamental problems in condensed
matter physics. This is because in the systems such as heavy
fermions [1], high-temperature superconductors (SC) [2], or
selected atomic systems in optical lattice [3], the interparticle
interaction energy can exceed by far the single-particle (kinetic,
band) energy. In that situation, specific phenomena induced by
the interelectronic correlations occur, such as the Mott or the
Mott-Hubbard localization [4], unconventional superconduc-
tivity (SC) associated with real-space pairing [5], as well as
specific magnetic behavior, such as metamagnetic transition
to localized state, spin-dependent masses of quasiparticles [6],
and quantum critical behavior [7].

In this context, the recent discovery of SC and the concomi-
tant Mott-insulating (MI) behavior [8–10] of twisted bilayer
graphene (TBG) provides a model situation for studying
phenomena ascribed to high-temperature SC. This is because
TBG represents a truly two-dimensional system and the ratio
of interaction amplitude to the Fermi energy can be varied
experimentally in a controlled manner by applying gate voltage
to the sample substrate. What is particularly important here is
that the behavior close to the SC-MI boundary can be studied
systematically by changing the carrier concentration, without
introducing the ubiquitous atomic disorder, as is the case
in the high-temperature SC. Also, the whole concentration-
dependent phase diagram can be sampled by changing the
gate voltage and, hence, the data represent intrinsic system
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properties. However, there are also differences with respect to
the high-Tc SC. The main difference is that TBG is an inher-
ently multiorbital system [11], whereas the high-Tc SC may
be mapped onto single-orbital models [12]. This circumstance
constitutes a basis for an extension of our single-band version
of statistically consistent Gutzwiller method (SGA) [13–15] to
the present situation.

Here, we start from an effective two-band Hubbard model
with substantial intraband and interband interactions, placed
on triangular lattice of moiré type and solve it explicitly
within SGA. Initially, we assume full SU(4) symmetry in
the spin-orbital space and subsequently extend the model by
incorporating the effects of the symmetry-breaking Hund’s
rule coupling. The resulting second-order kinetic exchange
interaction may lead to either spin-triplet or spin-singlet pairing
with the increasing electron concentration. On this basis, we
compose the phase diagram encompassing the SC and MI
phases, as well as a phase-separation regime in-between SC
and MI states. Technical details of the discussion, as well as
the extended analysis of the diagrammatic extension of the
SGA treatment, are deferred to Appendices A–C.

II. MODEL AND REAL-SPACE PAIRING: SU(4) SCENARIO

We consider a two-orbital model (l = 1, 2) on a triangular
lattice for which a single site represents one moiré unit cell.
The two orbitals correspond to the two original valleys at
the Brillouin zone corners. The starting SU(4) symmetric
Hamiltonian is [16]
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where t , U , and U ′ denote the hopping, and intraorbital and
interorbital Coulomb interactions, respectively. The operator
c

(l)†
iσ creates an electron with spin σ on orbital l at site i and

n̂
(l)
i ≡ ∑

σ c
(l)†
iσ c

(l)
iσ is the orbital particle-number operator (we

use the notation l̄ = 2, 1 for l = 1, 2, respectively). Hereafter,
we assume approximate SU(4) spin-orbital symmetry by
taking U = U ′. This means that the Hund’s rule coupling
is disregarded at this point (see below). Also, the interlayer
hopping t12 is neglected since it can be shown that with such
an orbitally independent form of hybridization ∼t12 term can
be incorporated into an effective canonical structure without
it [17].

The dominant pairing channels can be identified by referring
to canonical perturbation expansion [17,18] in the manner
analogous to that for the one-band Hubbard model. In the
simplest case of U = U ′, the interaction takes the form Hint =
U/2 × ∑

i n̂i (n̂i − 1), where n̂i ≡ n̂
(1)
i + n̂

(2)
i is the total par-

ticle number operator for lattice site i. The configurations
with large local density of electrons are thus disfavored by
the interaction, and hopping processes generating such states
should be eliminated by means of the canonical transformation.
This procedure (cf. Appendix A), after employing standard
approximations, leads to the kinetic exchange taking a general
functional form

Hex ∼ −Jex
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where σα and τα are Pauli matrices acting on the spin and
orbital indices, respectively (the summation is performed over
α = 0, . . . , 3, with σ 0 = τ 0 ≡ 1). We have used the compact
notation c† ≡ (c(1)†

↑ , c
(1)†
↓ , c

(2)†
↑ , c

(2)†
↓ ), T denotes transposition,

and Jex sets the effective kinetic exchange scale O(t2/U ).
The primed symbol

∑′ means that summation is performed
over nearest neighbors. Note now that, for (σα )T (τβ )T =
−σατβ , an additional minus sign is generated from the
c
†
j (σα )T (τβ )T (c†i )T term by performing the transposition, ren-

dering the interaction attractive in some pairing channels. This
occurs for spin-singlet, orbital-triplet (α = 2, and β = 0, 1, 3),
and for spin-triplet, orbital-singlet (α = 0, 1, 3, and β = 2)
cases. All other pairing symmetries are disfavored. Hereafter,
we adopt the point of view that an additional Hund’s rule
interorbital interaction that breaks full SU(4) symmetry, which
is not explicitly included in the original Hamiltonian (1), would
tip the balance towards the spin-triplet, orbital-singlet coun-
terpart, in broad doping range 0 � n � 2 (cf. Appendix A).
An analogous conclusion was previously drawn in Ref. [16].
The approximate SU(4) symmetry implies, however, that those
states should be energetically close to each other.

An important remark is in place here. In general, the spin-
singlet pairing should appear as the system approaches half-

filling since then the intraorbital antiferromagnetic kinetic ex-
change becomes dominant (cf. Appendix A and Refs. [18,19]).
However, it can be shown that upon changing the sign on J ,
the formalism for the spin-triplet case formally coincides with
that for the spin-singlet situation. Specifically, whereas here we
explicitly consider here solely the spin-triplet case, the reported
results are also equally valid to the spin-singlet scenario by
an appropriate unitary transformation (cf. Appendix B and
Ref. [20]). In either case, the parity of the SC order parameter
is even. Previous studies of the triangular-lattice Hubbard
model [21] suggest that, in this geometry, unconventional
d + id symmetry might be realized in order to optimize the
condensation energy. This is due to the fact that, contrary to
the usual d-wave pairing, entire Fermi surface becomes then
gapped upon the SC transition. We thus consider first the case
of the A-type, i.e., spin-triplet, orbital-singlet, d + id pairing,
defined by the following relations between SC amplitudes:

〈
c

(1)
iσ c

(2)
jσ

〉 = −〈
c

(2)
iσ c

(1)
jσ

〉
(orbital singlet), (3)〈

c
(1)
iσ c

(2)
jσ

〉 = 〈
c

(1)
iσ̄ c

(2)
j σ̄

〉
(A phase), (4)〈

c
(1)
iσ c

(2)
(Ri (θ )j )σ

〉 = exp (2iθ )
〈
c

(1)
iσ c

(2)
jσ

〉
(d + id), (5)

where Ri (θ ) is the rotation by the angle θ around the axis
perpendicular to the lattice plane, and going through the
site i. The even-parity property follows from the condi-
tion (5) for θ = π and translational symmetry. It should be
noted that an alternative approach of purely real extended
s-wave pairing in TBG has been presented very recently [22],
where the Eliashberg formalism has been used within which
the pairing is induced due to the many-body spin and charge
fluctuations. That paper represents a complementary weak-
correlation perspective.

To investigate this scenario, instead of employing the
original model (1) with the general kinetic exchange (2), we
resort to a simpler effective Hamiltonian favoring spin-triplet
pairing, defined as

Heff = t
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where Ŝi is the total-spin operator on lattice site i. The effective
pairing coupling J has been introduced. The Hamiltonian (6)
reproduces correctly attractive interaction in the spin-triplet
channel and thus is applicable as long as solely paramag-
netic and superconducting states of symmetry defined by
Eqs. (3)–(5) are considered. The effective model is illustrated
in Fig. 1. A more detailed analysis of kinetic-exchange integral
in the two-band situation in discussed in Appendix A.

III. SOLUTION AND PHASE DIAGRAM

We employ now the SGA which has proven to be effective
for various classes of correlated electron systems, including
the high-Tc cuprates [13] and spin-triplet ferromagnetic SC
[14,23]. At zero temperature, SGA reduces to optimiza-
tion of the ground-state energy EG ≡ 〈�G|H|�G〉/〈�G|�G〉
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FIG. 1. Illustration of the effective two-band model of twisted
bilayer graphene. The green arrows mark intraorbital repulsion U ,
interorbital repulsion U ′, intersite exchange interaction J , as well as
the single-particle hopping integral t .

within the class of trial wave functions |�G〉 ≡ PG|�0〉.
Here, |�0〉 denotes a Slater determinant (describing
uncorrelated electrons) and PG ≡ ∏

i PGi is a product of lo-
cal correlators PGi ≡ λ0|0〉i i〈0| + λ↑| ↑〉i i〈↑ | + λ↓| ↓〉i i〈↓ |
+ λ↑↓| ↑↓〉i i〈↑↓ | that modify the local many-particle elec-
tronic configurations by means of variational coefficients λγ .
This allows to include the effect of strong correlations on top
of the renormalized quasiparticle picture. Additional details
concerning specific features of SGA and the estimates of
higher-order contributions obtained within the related dia-
grammatic approach [12,14,15] are provided in Appendix C.

Since the width of the narrow bands arising in the magic-
angle graphene is W ∼ 10 meV [8,9], the role of the local
correlations is expected to be crucial. To consider this scenario
in detail, we fix the parameters as t = −3 – 5 meV, U = U ′ =
18|t |, and J = −|t |. The calculations are performed at small
nonzero temperature T = 10−4|t |/kB for numerical purposes.
This value maps onto absolute temperature scale of less than
6 mK.

The calculated phase diagram for the model (6) as a
function of electron concentration n per superlattice site is
shown in Fig. 2. In Fig. 2(a) we display the correlated SC
amplitude component 〈c(1)

iσ c
(2)
jσ 〉G which is one of the principal

results of the present contribution. Around the half-filling
(n = 2), we obtain two asymmetric SC domes, with stronger
SC correlations on the lower-concentration side of the phase
diagram. Such an asymmetry is expected as triangular lattice
is not bipartite and the electron-hole symmetry is explicitly
broken. We point out a small, barely visible hump in SC
amplitude, emerging near the integer filling n = 3, where
the correlations are again enhanced. This feature is fairly
weak for the present choice of parameters and is obscured
by the larger dome closer to n = 2. The obtained two-dome
structure exhibits a remarkable agreement with the recent
experimental data for the magic-angle bilayer graphene [8].
We emphasize that the agreement is semiquantitative as when
the dimensionless SC amplitude is scaled by the charac-
teristic energy |t | ∼ 3 – 5 meV, the maximal gap parameter
�/kB ∼ |t |〈c(1)

iσ c
(2)
jσ 〉G/kB = 0.7–1.2 K matches well the mea-

sured critical temperatures. The shaded area in the phase
diagram marks the phase-separation region, where the SC state
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FIG. 2. Phase diagram for t < 0, U = U ′ = 18|t |, J = −|t |, and
temperature T = 10−4|t |/kB , obtained for 512 × 512 lattice. (a) Dop-
ing dependence of the dimensionless superconducting gap amplitude
component 〈c(1)

i↑ c
(2)
j↑ 〉G. The shaded area marks the phase-separation

region, where the superconducting state appears separated spatially
from the Mott-insulating phase emerging near the half-filling. (b)
Hopping probability 〈c(l)†

iσ c
(l)
jσ 〉G which represents the electron itiner-

acy. (c) Probability d2 of the double-site occupancy, normalized to its
Hartree-Fock value d2

HF. (d) The ratio of kinetic energies calculated
within the SGA and Hartree-Fock approximations. (e) Chemical
potential μ as a function of electron density. Note that μ is constant in
the phase-separation region and its value is determined by Maxwell
construction. The closeups of the phase-separation regions below
and above the half-filling are displayed in the insets. The squares
are computational data points and the red solid lines mark unstable
spatially homogeneous solutions.

coexists with an increasing fraction of the Mott-insulating
phase as the half-filling is approached. We point out that,
even though the maximum of SC correlations for n < 2 lies
within the phase-separation regime, the sample-averaged SC
amplitude still exhibits a two-dome structure with a proper
particle-hole asymmetry. Figure 2(b) details doping evolution
of the hopping probability, measured by the nearest-neighbor
correlation function 〈c(l)†

iσ c
(l)
jσ 〉G ≈ q2〈�0|c(l)†

iσ c
(l)
jσ |�0〉, where

q is the renormalization factor. For kinematic reasons, these
correlations drop to zero for an empty and completely filled
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FIG. 3. Same as in Fig. 2 except for smaller value of U = 5|t |.
The superconducting gap appears only on the overdoped side [panel
(a)], and both the double occupancy (b) and the chemical potential (c)
evolve in a continuous manner.

system (n = 0 and 4, respectively). Due to strong correlations,
this happens also close to the half-filling, where the Mott tran-
sition is approached. As is shown in Fig. 2(c), the probability of
double occupancies d2 ≡ 〈n̂(l)

i↑ n̂
(l)
i↓〉G normalized to its uncorre-

lated (Hartree-Fock) value d2
HF = 〈n(l)

i↑〉G × 〈n(l)
i↓〉G is reduced

accordingly. To complete the discussion of the electronic
correlations, in Fig. 2(d) we plot the ratio of renormalized
to uncorrelated kinetic energy which roughly describes the
mass enhancement m/m∗. As expected, the kinetic energy
is suppressed as the Mott transition is approached. Note that
the triangular-lattice model, considered here, is magnetically
frustrated and thus the long-range antiferromagnetic state may
not be favored close to the Mott state. This justifies disregarding
the magnetic ordering at the present stage of analysis.

Next, we discuss the phase separation occurring in our
model. Figure 2(e) shows the doping dependence of the
chemical potential. As the half-filling is approached from either
above or below, the chemical potential eventually levels off
as a function of electron concentration, to become extremely
steep in close vicinity of n = 2. This behavior is reminiscent of
that observed for the one-band Hubbard model [24–28], where
phase separation occurs as well. The value of the chemical
potential in this regime is determined by Maxwell construction,
which is illustrated in the insets. The squares are computational
data points and red color marks unstable solutions. At present,
we are unable to numerically approach part of the curve
sufficiently close to n = 2 to observe the full S-shaped function
μ(n). The jump in μ for n = 2 is a signature of the opening of
the Hubbard gap [28].

For completeness, we plot in Fig. 3 the principal character-
istics for U = 5|t |, i.e., in the weak-correlation limit. There is
no sign of the Mott-insulating behavior, so indeed appreciable

correlations are required to reproduce an experimental-data
trend. With the increasing U , a second dome appears and
becomes predominant at large U (cf. Fig. 2).

IV. TOPOLOGICAL PROPERTIES

It is established that d + id pairing symmetry might render
the system a topological SC [29]. For the model (6) we
have explicitly computed the Chern number by the efficient
method of Brillouin-zone triangulation [30] with the result
±4, depending on the direction of phase winding of the d + id

order parameter. In this situation, a distinct set of topologically
protected edge states is expected for finite-size sample. To
investigate the latter, we have considered the lattice slab of
dimensions 40 × 256 sites with open- and periodic-boundary
conditions along the shorter and longer ends, respectively.
This results in the 80-band, one-dimensional system. The
parameters were set to the same values as in previous section
and the electron concentration was fixed at n = 2.4 to stay
away from the phase-separation regime that would hinder the
analysis (cf. Fig. 2).

In Fig. 4(a) we plot the band structure of the effective
quasiparticles, calculated within the SGA approach. Most of
the bands are gapped due the d + id superconductivity, but
gapless modes crossing the Fermi level appear as well. To
elucidate the nature of those states, we calculate the zero-
temperature spectral functions

A(l)
jσ (k, ω)

2π
=

∑
n

δ(ω − En + E0) × ∣∣〈n∣∣c(l)†
kjσ

∣∣0〉∣∣2

+
∑

n

δ(ω + En − E0) × ∣∣〈0∣∣c(l)†
kjσ

∣∣n〉∣∣2
, (7)

where the index j = 1, . . . , 40 enumerates the sites along the
shorter edge of the system (j = 1 and 40 correspond to the two
opposite sides of the sample). The operator c

(l)†
kjσ creates a spin-

σ electron in the lth orbital at the site j . The one-dimensional
wave vector k results from periodic boundary conditions in
the longer direction. Moreover, En denote eigenvalues of the
renormalized one-particle Hamiltonian emerging within the
SGA calculations. In Figs. 4(b) and 4(c) we plot the spectral
function for the l = 1, spin-up electrons at two opposite ends
of the sample, A(1)

1↑ (k, ω) and A(1)
40↑(k, ω), respectively. It is

apparent that the edges of the system contribute substantially
to the states crossing the Fermi energy, with the opposite signs
of the Fermi velocities. The nature of these modes is finally
settled in Fig. 4(d), where we display the bulk contribution to
the spectral weight A(1)

20↑(k, ω). The latter exhibits no intensity
close to Fermi energy.

Finally, we address the evolution of the electronic correla-
tions as one moves from the edge to the sample bulk region.
In Fig. 5 we plot the probability of site double occupancy d2

normalized to its Hartree-Fock value as a function of the site
index j = 1, . . . , 40. In the central part of the system, d2/d2

HF
remains practically constant. At the edges, where the topo-
logically protected states are located, d2/d2

HF is substantially
reduced. This implies that, even though the edge states are
robust, it is energetically beneficial to suppress their weight by
strongly correlating orbitals near the boundary of the system.
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FIG. 4. Band structure and spectral properties of a 40 × 256
lattice slab with periodic and open boundary conditions along the
longer and shorter edges, respectively. The model parameters are
U = U ′ = 18|t |, J = −|t |, and temperature T = 10−4|t |/kB (t < 0).
(a) Band structure presented in the one-dimensional Brillouin zone.
The bulk gap arises due to d + id SC, whereas the levels crossing the
Fermi energy originate from the topologically protected edge states.
(b), (c) Spectral functions calculated for the orbitals on two opposite
shorter ends of the sample. Note that they contribute substantially to
the levels crossing the Fermi energy. (d) The same as in (b) and (c), but
for the bulk states at the system center. The varying intensity reflects
the difference in the spectral density values.

V. CONCLUSIONS

We have provided a semiquantitative analysis of the two-
orbital model of bilayer graphene in the limit of extremely
narrow bands. The onset of the Mott-insulating state at the
half-filling requires the presence of relatively strong corre-
lations, here U = 18|t |. The absence of the electron-hole
symmetry for the triangular lattice assumed here leads to the
asymmetric SC domes on the electron and hole sides, with
more prominent character on the low-band-filling side. This
feature differs from that in the case of two-dimensional model
of high-temperature SC [12,15]. The topological states appear
naturally in the gapful d + id state of the superconductor.
Further studies would require explicit inclusion of electron-
concentration dependence (and sign reversal) of the effective

0.4

0.5

0.6

1 10 20 30 40

d
2
/d

2 H
F

Site intex

FIG. 5. Probability of the double occupancy of the lattice site
d2, normalized to its Hartree-Fock value d2

HF across the transverse
cross section of the 40 × 256 lattice slab (the sites are enumerated
from 1 to 40). The model parameters are U = U ′ = 18|t |, J = −|t |,
temperature T = 10−4|t |/kB , and t < 0.

intersite exchange integral, which should lead to spin-singlet
pairing with essentially the same type of behavior. Also, several
recent studies, based on the group-theoretic arguments and
explicit construction of the Wannier functions [31–33], suggest
that the appropriate effective models for the narrow bands
should be placed on honeycomb rather than triangular lattice
in order to account for symmetry-related band features close to
charge neutrality. Moreover, for such a lattice, it is justifiable to
neglect the presence of antiferromagnetic either spin or orbital
ordering. Simply put, the model considered here is intended to
account for the physics of the lower narrow bands and thus it
does not rely on the details of band structure close to charge
neutrality point. Keeping that in mind, we have included the
effects of strong correlations in the flat bands, as well as second-
order kinetic exchange processes that turn out to be essential
to the emergence of the SC state. In this sense, the obtained
results concerning SC are expected to exhibit a degree of
universality and be robust to model refinement (parenthetically,
this is supported by apparent similarities between TBG and
the high-Tc cuprates). An essential extension of the present
analysis would be to employ the treatment discussed here to a
microscopically derived effective model of the TBG.
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APPENDIX A: ESTIMATE OF THE KINETIC
EXCHANGE INTEGRALS

It is well established that two-band systems in the strong-
correlation limit exhibit exhibit antiferromgnetic order at quar-
ter filling (n = 1) and antiferromagnetic ordering at the half-
filling, reflecting the canonical Mott-insulating state [18,19].
Here, we address this effect for the SU(4) model (1) with
U = U ′, extended by the symmetry-breaking Hund’s-type

085436-5



M. FIDRYSIAK, M. ZEGRODNIK, AND J. SPAŁEK PHYSICAL REVIEW B 98, 085436 (2018)

interaction HH ∝ −JH

∑
i S(1)

i S(2)
i with JH � U . We show

explicitly that in the doping range n ∼ 1, ferromagnetic in-
tersite correlations are preferred in this situation. As one
approaches half-filling (n → 2), intersite spin singlets become
supported as a nontrivial consequence of ferromagnetic intr-
asite interactions. This effect might be relevant to TBG by
inducing the change of pairing symmetry from triplet to singlet
at the critical doping 1 � nc � 2.

First, note that the local charging of the site sets the
dominant energy scale for the system ∼U/2 · ni (ni − 1).
Specifically, the cost due to U of moving an electron from site
i to j reads as U/2 · (nj + 1)nj + U/2 · (ni − 1)(ni − 2) −
U/2 · nj (nj − 1) − U/2 · ni (ni − 1) = U (1 + nj − ni ), i.e.,
it can be considered a low-energy process only if nj = ni − 1.
Those low-energy charge transfesr give rise to the residual
hopping. On the other hand, the high-energy direct hopping
with nj � ni can be eliminated by a canonical transformation
that we sketch below. Explicitly, the “raising” operator moving
the electron from the low- to the high-energy sectors takes the
form

H+ =
∑
ijn

′
H+

ij,n =
∑
ijn

′ ∑
lσ

c
†(l)
iσ c

(l)
jσ Pni�nPnj =n, (A1)

where Pnj =n and Pni�n are projection operators onto the states
with occupancies nj = n and ni � n, respectively. The prime
symbol indicates summation over nearest neighbors. The
related “lowering” operator H−

ji,n = H+†
ij,n is also introduced.

In the following, we will retain only the processes proportional
to Pni=nPnj =n out of the operator (A1). This is well justified as
the remaining ones require substantially larger energies (by at
least U ) and thus will contribute less to the kinetic exchange.
Nonetheless, in principle, it is straightforward yet tedious to
include the latter as well.

The second-order two-site kinetic exchange processes are
then evaluated in a standard manner [18,19], yielding the
Hamiltonian

Hex = − 1

2

∑
ijn

′
H−

ji,n

∑
αβγρ

P
(α)
i P

(β )
j H+

ij,nP
(γ )
i P

(ρ)
j

εα + εβ − εγ − ερ

− 1

2

∑
ijn

′
H+

ji,n

∑
αβγρ

P
(α)
i P

(β )
j H−

ij,nP
(γ )
i P

(ρ)
j

εα + εβ − εγ − ερ
+ H.c.,

(A2)

where P
(α)
i are projectors onto the αth local many-body

configuration on site i (for a two-orbital model α = 1, . . . , 16,
giving 256 final and initial states for a two-site interaction) and
εα denote local energies due to site-charging contribution and
Hund’s rule coupling.

We first consider the special case of JH = 0 and demon-
strate that the interaction, given by Eq. (2), is reproduced. In
this case, the nonzero contributions to Eq. (A2) always read as
εα + εβ − εγ − ερ = U for the first line and εα + εβ − εγ −
ερ = −U for the second (if one takes only the leading contribu-
tion form the raising operator ∝∑

ijn
′ ∑

lσ c
†(l)
iσ c

(l)
jσ Pni=nPnj =n

as assumed above). Since there is no dependence on the final
and initial state indices, one can make use of the property of

projection operators
∑

α P
(α)
i = 1i and write

Hex = − 1

U

∑
ijn

′
H−

ji,nH+
ij,n + 1

U

∑
ijn

′
H+

ji,nH−
ij,n. (A3)

At first glance, it might seem that those two terms cancel
out due to opposite overall signs. This is, however, not
the case as the first process is proportional to Pni=nPnj =n,
whereas the other to Pni=n−1Pnj =n+1. Close to integer fillings,
where charge is nearly quenched by correlations, the first
term dominates the second. If those projection operators are
handled by mean-field-type decoupling (which is a rough
yet reasonable approximation), one reproduces Eq. (2) with
doping-dependent effective exchange Jex ∼ t2/U .

An important methodological remark is in place here.
Whereas the functional form of Eq. (2) is robust to the model
details, the precise numerical value of the effective exchange
integral cannot be reliably obtained within the canonical per-
turbation expansion applied to the effective model alone. This
situation is analogous to that for high-Tc superconductivity,
where the one-band Hubbard models are often used to describe
essential physics. Specifically, by taking the reasonable values
of the Hubbard U and the hopping parameter t , one arrives at
substantially underestimated exchange integral, and extended
models of the t-J -U form [34] need to be used to capture both
the correct U and magnetic exchange J . This is caused by
sensitivity of J to the details of the underlying full microscopic
Hamiltonian (such as p-d hybridization for the case of the
cuprates).

At this point, we can discuss the effects of the Hund’s rule
coupling JH . We resort to qualitative analysis due to large
number of initial and final states that cannot be handled in
a straightforward manner due to lowered symmetry (256 ×
256 configurations in total). First, we make a simplification
by disregarding the term in the second line of Eq. (A2). This
is, once again, justified close to integer filling due to charge
quench. Second, since HH annihilates states with n � 3, JH

will possibly show up only in the contributions containingH+
ij,n

with n = 1 and 2. Below we consider two cases: the vicinity
of quarter-filling (n ≈ 1) and half-filling (n ≈ 2).

1. Quarter-filling

Close to quarter-filling (n ≈ 1), the most likely initial
configuration is ni = 1 and nj = 1. Then, the Hund’s rule
coupling contributes differently, depending on whether the
final doubly occupied site is in singlet or triplet configuration.
The denominator of the expression in the first line of Eq. (A2)
forn = 1 can be then written as εα + εβ − εγ − ερ = U + εα

H ,
where εα

H = −1/4JH and 3/4JH for α corresponding spin
triplet and singlet, respectively. The denominator takes then
the smallest value for spin-triplet configuration, resulting in
the largest exchange integral. This supports intersite triplet
pairing. The qualitative picture behind this is simple: Hund’s
rule leads to splitting of the energy levels corresponding to the
final local electronic configurations, reducing the energy cost
of hopping to triplet configuration relative to the singlet case.
This situation is illustrated schematically in Fig. 6(a).
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FIG. 6. Exemplary processes involving triplet states, contributing
to the second-order kinetic exchange close to the quarter-filling (a)
and half-filling (b). The left panels show the initial configurations
of two involved sites, i and i, whereas the right panels represent
the situation after hopping takes place. In the quarter-filling case,
the Hund’s rule exchange reduces the energy cost of the hopping
process favoring triplet configurations. On the contrary, close to the
half-filling, breaking of the initial spin triplets by hopping increases
the energy cost of such a process, disfavoring the triplet formation.
Green arrows illustrate action of the hopping term.

An estimate for the correction to the effective Hamiltonian
due to JH is

δHeff ≈ 1

2

∑
ijα

′
(

1

U
− 1

U + εα
H

)
H−

ji,1P
(α)
i H+

ij,1 + H.c.

(A4)

and the corresponding singlet-triplet splitting is of the order of
t2JH /U 2 with triplet having lower energy.

i j

l1

l2

FIG. 7. Exemplary diagram resulting from the Wicks decom-
position of 〈�0|c†iσ n̂HF

iσ̄ cjσ n̂HF
j σ̄ d̂HF

l1
d̂HF

l2
|�0〉, which is one of the four

second-order expansion terms from (C2), when ôi = c
†
iσ and ô′

j = cjσ

(i.e., when calculating the hopping contribution in the correlated state
〈�G|c†iσ cjσ |�G〉). The black lines connecting the vertices correspond
to Pmn expectation values. During the summation procedure in real
space, the so-called internal vertices l1 and l2 are attached to all
possible lattice sites within the region determined by the real-space
cutoff Rmax (|Rl − Ri | � Rmax and |Rl − Rj | � Rmax).

2. Half-filling

For n ≈ 2, the most likely initial situation is ni = 2 and
nj = 2. This means that, in this case, initial rather than final
states are split by the Hund’s coupling (that acts nontrivially
only on doubly occupied sites). The denominators therefore
read as εα + εβ − εγ − ερ = U − εα

H − ε
β

H with the defini-
tions the same as for the quarter-filling. Note the sign change
of ε

α,β

H that implies that the largest coupling constant is now
obtained for the spin-singlet configurations in the initial state.
This is illustrated in Fig. 6(b).

An estimate for the correction for n ≈ 2 is

δHeff ≈ 1

2

∑
ijαβ

′
(

1

U
− 1

U − εα
H − ε

β

H

)
H−

ji,2H+
ij,2P

(α)
i P

(β )
j

+ H.c. (A5)

The change of sign occurs at n = nc, where the ferromag-
netic and antiferromagnetic contributions become comparable.
For the band filling 2 > n > nc > 1 the pairing symmetry
changes thus from that of spin triplet to the singlet. It is
interesting to note that there is a dip in the superconducting
ordering temperature [8] which, as we speculate, may be
related to the sign change of the exchange integral. Such
a change of pairing symmetry would vindicate the present
real-space pairing concepts.

APPENDIX B: SINGLET-TRIPLET TRANSFORMATION

Here, we demonstrate that by making use of the sym-
metry of the original model (1), the triplet order parameter,
defined by Eqs. (3)–(5), can be transformed into a singlet.
This equivalence means, first of all, that the dependence
for the singlet and triplet cases of the superconducting gap
versus band filling will be qualitatively the same. Such a
transformation may be relevant close to half-filling (n = 2),
where (in the presence of Hund’s coupling term) the intraorbital
kinetic antiferromagnetic exchange dominates interorbital one.
Thus, this ability to map one situation onto another sug-
gests general character of the obtained SC phase diagram.
Nonetheless, quantitative analysis of the triplet to singlet tran-
sition with the band filling would require precise knowledge
of the kinetic exchange integral scaling with the electron
concentration.

We introduce a unitary matrix

U =

⎛
⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞
⎟⎠ (B1)

that defines a new set of annihilation operators c̃ ≡ Uc

with c† ≡ (c(1)†
↑ , c

(1)†
↓ , c

(2)†
↑ , c

(2)†
↓ ). The latter operation is

essentially a spin flip assisted by the orbital exchange.
Now, the pairing operator for the the A-type triplet SC
can be written as �̂

triplet
ij ≡ c

(1)†
i↑ c

(2)†
j↑ − c

(2)†
i↑ c

(1)†
j↑ + c

(1)†
i↓ c

(2)†
j↓ −

c
(2)†
i↓ c

(1)†
j↓ . By making use of the transformation (B1),

one can show explicitly that �̂
triplet
ij → �̂

singlet
ij ≡ c

(1)†
i↑ c

(1)†
j↓ −

c
(1)†
i↓ c

(1)†
j↑ + c

(2)†
i↑ c

(2)†
j↓ − c

(2)†
i↓ c

(1)†
j↑ . The triplet pairing operator

thus turns into the sum of two decoupled singlet operators
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in each orbital channel. In the direct vicinity of the half-
filling, antiferromagnetic intraorbital antiferromagnetic ex-
change is expected to dominate its interorbital counterpart (cf.
Appendix A), providing the attractive coupling interaction in
the singlet channel ∝−�̂

singlet†
ij · �̂

singlet
ij . Since the transfor-

mation of this pairing potential into the ∝−�̂
triplet†
ij · �̂

triplet
ij ,

considered in this paper, is simply a matter of unitary transfor-
mation U that does not modify the zeroth-order Hamiltonian
(1) (but turns triplet pairing into singlet one), the solutions
described here are relevant to both scenarios.

APPENDIX C: DIAGRAMMATIC EXTENSIONS

The SGA approximation, employed in this work, represents
simple, but essential amendment to the original Gutzwiller
approximation (GA), known under the acronym the renormal-
ized mean field theory in the context of physics of strongly
correlated systems and, in particular, of high-temperature
SC (see, e.g., [35]), was required. The revision is neces-
sary since, within GA, the self-consistent (Bogoliubov–de
Gennes) equations for the order parameter do not coincide
with the variational optimization of the system free energy
with respect to it [36]. In this sense, the GA approximation
violates the Bogoliubov theorem of statistical consistency.
To improve the situation, additional constraints must be im-
posed to fulfill the theorem [13]. The subsequently developed
diagrammatic expansion is the Gutzwiller wave function

0

3
(a)

0

0.04

0.08
(b)

−10

0

10

20

0 0.5 1 1.5

(c)

E
G

(|t
|) GWF (U= U ′=11.5)

SGA (U= U ′=11.5)

d
2 /

d
2 H

F
μ

(|t
|)

Density, n

FIG. 8. Ground-state energy (a), double occupancies (b), and
chemical potential (c), all as a function of band filling for the case
of two-band Hubbard model with U = U ′ = 11.5|t | [cf. Eq. (1)] and
J = 0, calculated within the SGA (red squares and black triangles)
and DE-GWF methods (blue dots and green diamonds, respectively).
Only the paramagnetic phase has been included (no SC phase
considered here). The DE-GWF calculation has been carried out up
to the third diagrammatic order.

(DE-GWF) [14,37]. Here, we briefly describe this diagram-
matic extension, which allows us to go beyond the SGA limit
and obtain the full Gutzwiller wave function solution to a
desired accuracy (without imposing the formal limit of infinite
spatial dimensionality).

First, to improve the efficiency of the DE-GWF calculation
scheme, the constraint

P̂ 2
i ≡ 1 + xd̂HF

i (C1)

is applied with respect to the correlation operator P̂G [38].
Here, x is a variational parameter and d̂HF

i ≡ n̂HF
i↑ n̂HF

i↓ , n̂HF
iσ ≡

n̂iσ − n0, with n0 ≡ 〈�0|n̂iσ |�0〉. Since all the λγ coefficients
from P̂G can be expressed by the use of x, we are left with only
one variational parameter. The expectation value of the system
energy in the correlated state |�G〉 can be expressed as

〈�G|ôi ô
′
j |�G〉 =

∞∑
k=0

xk

k!

′∑
l1...lk

〈�0|õi õ
′
j d̂HF

l1...lk
|�0〉, (C2)

where õi ≡ P̂i ôi P̂i , õ′
j ≡ P̂j ô

′
j P̂j , d̂HF

l1...lk
≡ d̂HF

l1
. . . d̂HF

lk
, d̂HF

∅
≡

1, and ôi , ôj are any two local operators from our Hamiltonian
(1). The primed summation has the restrictions lp �= lp′ , lp �=
i, j for all p and p′.

Note that the expectation values on the right-hand side of
Eq. (C2) are calculated in the noncorrelated state |�0〉. This
allows to apply the Wick’s theorem and express the energy of
the system in the correlated state in terms of the noncorrelated
expectation values Pij = 〈�0|c†iσ cjσ |�0〉 (here we limit to the
paramagnetic state, no anomalous SC averages are included)
and the variational parameter x. The expressions which result
from the Wick’s decomposition can be interpreted as diagrams
for which the atomic sites have the interpretation of vertices,
while the averages Pij play the role of lines connecting those

0

3

6
(a)

0

0.02

0.04

0.06 (b)

0

20

0 0.5 1 1.5

(c)

E
G

GW F ( U= U ′=15.5)

SG A ( U= U ′=15.5)

d
2
/d

2 H
F

μ
(|t

|)
(|t

|)

Density, n

FIG. 9. The same as in Fig. 8, but for U = U ′ = 15.5|t |.
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vertices. When carrying out the calculations, the diagrams
have to be summed over the lattice in real space by attaching
their inner vertices [indexed by l1 . . . lk in Eq. (C2)] to the
lattice sites in all possible configurations determining the cor-
responding contributions to the system energy. This procedure
corresponds to the summation over l1 . . . lk in Eq. (C2). An
alternative approach of k-space summation has also been
introduced recently [37]. In practice, a real-space cutoff, Rmax,
is introduced, limiting the range within which the diagrams
are summed on the lattice, as well as determining the number
of different lines that have to be included in the calculations.
Here, we take Rmax = 3a, which requires including the lines
〈�0|c†iσ cjσ |�0〉 up to the fifth nearest neighbor. Also, it is not
possible for obvious reasons to carry out the summation for
k → ∞. However, in most cases the first 4–5 terms of the
expansion in x allow to reach the convergence [15], whereas
the zeroth-order expansion is equivalent to the SGA approach.
In Fig. 7 we show an exemplary second-order diagram, which
results from calculating the hopping term expectation value
〈�G|c†iσ cjσ |�G〉. The expression for the ground-state energy

in the state |�G〉 obtained in the described manner can further
be applied to the statistically consistent calculation scheme
analogous to that described in Sec. III.

In Figs. 8 and 9 we show the comparison between the SGA
results with those corresponding to the third-order DE-GWF
calculations for the case of the two-band Hubbard model given
by Eq. (1) with two selected values of U = U ′. As one can
see, the global quantities such as ground-state energy and
chemical potential [panels (a) and (c)] are almost identical for
both methods. Differences can be seen for the case of double
occupancies especially close to n ≈ 1. We show the results for
the band fillings up to n ≈ 1.85 since for the region close to the
half-filled situation problems with the convergence appeared
when carrying out the DE-GWF calculations. Nevertheless, it
can be seen that in the most interesting for us regime which
is above n ≈ 1.5 the double occupancies calculated within
SGA and DE-GWF converge, which justifies the choice of the
simpler approach (SGA) in the extended analysis carried out
in Secs. II–V. Detailed discussion of the higher-order effects
will be provided separately.
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