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A remarkable feature of the band structure of bilayer graphene at small twist angle is the appearance of
isolated bands near neutrality, whose bandwidth can be reduced at certain magic angles (e.g., & ~ 1.05°). In this
regime, correlated insulating states and superconductivity have been experimentally observed. A microscopic
description of these phenomena requires an understanding of universal aspects of the band structure, which we
discuss here. First, we point out the importance of emergent symmetries, such as valley conservation, which are
excellent symmetries in the limit of small twist angles and dictate qualitative features of the band structure. These
have sometimes been overlooked when discussing commensurate approximants to the band structure, which
we also review here, and solidify their connection with the continuum theory which incorporates all emergent
symmetries. Finally, we discuss obstructions to writing tight-binding models of just the isolated bands, and in
particular a symmetry-based diagnostic of these obstructions, as well as relations to band topology and strategies
for resolving the obstruction. Especially, we construct a four-band model where the two lower isolated bands
realize all identified Wannier obstructions of the single-valley nearly flat bands of twisted bilayer graphene.
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I. INTRODUCTION

Following the recent discovery of correlated insulating
and superconducting states in “magic angle” twisted bilayer
graphene (TBG) [1,2], there has been considerable theoretical
activity seeking to define an appropriate low-energy model
[3-31]. In our previous work [6], we argued in favor of a
honeycomb lattice description despite the concentration of
charge density at the sites of a triangular lattice. Similar
conclusions were also reached in Refs. [5,18,21]. Further, we
argued that the system has a number of excellent symmetries
(even if all of them are not exact) which together present an
obstruction to constructing well-localized Wannier functions.
Specifically, any such Wannier functions, even centered on
honeycomb sites, will not transform into themselves at each site
under the symmetry operations, i.e., some symmetry actions
become unnatural. By sacrificing onsite action for a valley U(1)
symmetry, we showed explicitly that Wannier functions can
indeed be constructed, and showed how to correctly identify
the “nonlocal” valley charge operator.

In this paper we discuss several aspects of this obstruction.
In Ref. [6] we identified two seemingly distinct obstructions,
one tied to the same chirality of the two Dirac nodes in the
spectrum at each valley, and the other tied to the representations
of a “mirror”! symmetry if present. Here, we show that these
two obstructions are, in fact, the same. The mirror symmetry,
when present, along with the Dirac points implies the same
chirality Dirac nodes in the band structure. This result leads to
a powerfully simple way to identify the chirality obstruction

IThis actually is a 180° degree rotation in 3d about an axis that lies
parallel to the two graphene layers.
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by simply examining the mirror eigenvalues at the I" point
of the moiré Brillouin zone (mBZ). We also give a physical
discussion of the chirality obstruction by considering the
effects of breaking a C, [180° degree rotation in the two-
dimensional (2D) plane] symmetry. Along the way, we clarify
many other confusing aspects of the band aspects of TBG, and
in particular the nature and role of its global symmetries.

Ata generic incommensurate twist angle, the twisted bilayer
structure has very little symmetry. The only exact symmetries
are U(1) charge conservation, time reversal 7, and SU(2) spin
rotation (ignoring the weak spin-orbit coupling). In particular,
it is not even translation invariant. It is natural then to wonder
if there are well-defined bands at all in the first place. This has
led some authors to restrict attention to special commensurate
structures with large periods as a clear theoretical system to
discuss the band structure. Experimentally well-defined band
gaps induced by the moiré superlattice are seen. In near magic
angle samples the gaps are estimated to be ~35 meV which
are much bigger than the expected bandwidth of the nearly flat
low-energy bands.

Theoretically at small twist angles, there is a well-known
“continuum theory” description which yields well-defined
band structures for all twist angles including incommensurate
ones [32,33]. The continuum theory reveals many universal
features of the band structure, such as the existence of Dirac
crossings between valence and conduction bands within each
valley of the underlying graphene layers. These features have
been benchmarked against tight-binding calculations on com-
mensurate structures [34-37]. They are also nicely consistent
with experiments at twist angles larger than the magic angles
(where correlation effects are expected to be weaker, and
band theory predictions can be reasonably compared with
experiment). In particular, Cao et al. showed that at a twist
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angle of about 1.8° the Landau fan structure near charge
neutrality is exactly what is expected from the Dirac points
predicted by the continuum theory [38]. Despite its success
for qualitative universal aspects, quantitatively the continuum
theory yields a very small value compared to experiments for
the gap separating the nearly flat bands from other bands. This
discrepancy is believed to be reduced once effects of lattice
relaxation and electron interactions are included. Formally,
these additional effects can be included phenomenologically in
the continuum model by modifying its parameters away from
those estimated microscopically [6,21].

Apart from translational symmetry, the approximations
involved in the continuum theory build in a number of other
point-group symmetries which are not fully present in any com-
mensurate structure. These include a Cg rotation symmetry,
and a valley U, (1) associated with separate conservation of
electrons associated with each valley. This symmetry structure
of the continuum theory is essential in protecting the Dirac
points of valley filtered bands. Specifically, on top of the valley
U, (1) (needed to define separate bands within each valley) a
C,T = CZT symmetry is able to protect the Dirac points from
acquiring a gap. Even restricting to commensurate structures
with translation symmetry, U, (1), and maybe even C,7, are
not both exact microscopic symmetries.

In the older literature it was appreciated that at small
twist angles the extra symmetries of the continuum theory
are excellent approximations [34-36,39]. Furthermore, it was
understood that there is essentially no difference between
incommensurate and commensurate structures, or between dis-
tinct commensurate structures with different exact microscopic
symmetries. These issues have reemerged in recent discussions
of TBG, and have led to some confusion. We therefore carefully
review and collect together some pertinent facts about different
commensurate structures, their relationship to the continuum
theory, and the implications for a description of small-angle
(possibly incommensurate) TBG.

The most fundamental aspect of our previous discussion
of the band structure is the existence of an obstruction to
constructing well-localized Wannier functions transforming
naturally under all symmetry operations. The obstruction relies
strongly on the presence of symmetries that are not exact
microscopic symmetries. Why then should we worry about it?
Let us therefore review the tight logic that forces us to confront
it. As reviewed above, it is a robust feature of both theory and
experiment that to excellent accuracy there is a good valley
U, (1) symmetry and that within each valley there are Dirac
band crossings (down to energy scales currently accessible in
experiments). The robustness of the Dirac crossings within
each valley suggests that it is a symmetry-protected feature
of the band structure. The natural protecting symmetry then
is C,T as is seen explicitly in the continuum theory. For a
general small-angle, incommensurate TBG structure, the C;
symmetry, like translations itself, is not an exact symmetry,
but it must be excellent enough to give the Dirac cones.
This then forces us to study systems which have translations,
valley U,(1), and Cg as good symmetries. However, the
implementation of all these symmetries in the band structure
leads to a Wannier obstruction.

Suppose we took the opposite logic, and study a commen-
surate structure with, say, an exact superlattice translation, and

an exact D3 symmetry, and ignored all emergent approximate
symmetries. This is done by Ref. [18]. It is then indeed possible
to follow the usual procedure and construct Wannier functions
for the low-energy nearly flat bands that respect the assumed
exact symmetries. The resulting tight-binding model is then
shown to have Dirac points [18]. This procedure is certainly
not mathematically wrong. How then should we reconcile it
with our claims on Wannier obstructions? The point is that
the assumed exact symmetries in Ref. [18] are not enough to
protect the Dirac points which must therefore be viewed as
fine-tuned features of the constructed tight-binding model. A
generic perturbation allowed by the assumed exact symmetries
will gap out the Dirac points. The robustness of the Dirac
points observed in experiments and band structure then forces
us to include extra symmetries which must be emergent in
the limit of small twist angles. We should then ask how these
extra symmetries are implemented on the Wannier functions,
and we are again led to the obstruction with implementing
them as “onsite” symmetries. Similar remarks apply also to
treatments that start with the continuum model and build
Wannier functions by ignoring one or other of the symmetries
of the model [21]. It is then important to know how the
ignored symmetry is actually implemented in the resulting
tight-binding model. We described this for the valley U, (1)
in Ref. [6]. In contrast, Ref. [21] ignored the C, symmetry. It
remains to be seen exactly how the C, present in the continuum
model is then represented nonlocally in their tight-binding
model.

We also clarify an apparent discrepancy between our work
[6] and Refs. [5,18,21] which is less subtle, concerning the
realization of C; rotation symmetry. Specifically, we show that
this difference can be traced to a difference in the definition of
the rotation center for the C3 operation.

In the recent theoretical literature, some authors have
proposed describing the system by a triangular lattice tight-
binding model with two spins and two orbitals (presumably
corresponding to the two valleys) per lattice site [4,8,12,29].
This is motivated by the known concentration of the charge
density at the sites of a triangular lattice. However, this trian-
gular description is inconsistent with the existence of Dirac
points together with the known symmetry representations at
high-symmetry points in the band structure.

We begin the rest of the paper by carefully reviewing distinct
commensurate structures and their symmetries in Secs. II
and III. Next, we review the continuum model and show
how it captures universal aspects of the band structure, and
further agrees with the results of existing calculations on
commensurate structures in Sec. [V. Along the way, in Sec. V
we will make some remarks on the notion of magic angle. We
then describe our results on the obstruction in Sec. VI, and
discuss how to resolve the obstruction in Sec. VII. Finally, we
summarize the results in Sec. VIII.

II. COMMENSURATE STRUCTURES: TYPES I AND II
STRUCTURES WITH D3 OR D6 SYMMETRY

We start by reviewing some purely geometric aspects of
commensurate TBG. The content of this section has all been
discussed in existing literature [34,39,40]; here, we simply
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review these results in an attempt to clarify some potential
confusions which arose in light of the recent interest of TBG.

Imagine constructing a TBG system as follows: first, we
stack the two monolayers on top of each other in a site-by-site
manner (i.e., an “AA-stacked” bilayer); second, we rotate the
top layer counterclockwise by a twist angle 8 about a chosen
point in space. For generic 6, the resulting crystal structure
exhibits moiré pattern but does not have exact lattice translation
symmetries. We say the structure is commensurate when
the twist angle is special such that some (moir¢) translation
symmetries are retained. This happens when the twist angle
takes the following form:

3m? + 3mr + r2/2
3m2 +3mr +r2

where m and r are coprime positive integers (we follow the
notations in Ref. [39] here). Here, we restrict the twist angle
to be in (0, 7 /3), which is sufficient for our discussion as any
other twist angle can be related to one in this range using the
symmetries of the system. The twist angles in Eq. (1) are called
commensurate angles.

One important aspect that deserves immediate clarification
is that the commensuration condition of the bilayer depends
only on the twist angle, but not the twisting center (which is
not specified above). That is, as long as the twist angle has the
form in Eq. (1), the bilayer has exact translation symmetries
even when the twisting center is chosen to be a generic point
such that nowhere in the lattice are two carbon atoms perfectly
aligned. It is worth emphasizing that the moiré lattice vectors
of a commensurate structure are determined solely by the twist
angle 6. Consequently, the moiré lattice constant L(m, r), as
well as the mapping of momenta between the microscopic
Brillouin zone (BZ) and the moiré BZ, have no bearing on
the choice of the twisting center. Rather, the twisting center
determines the exact symmetries of the commensurate lattice,
as we will review later.

Let us now consider such properties. To fix conventions, let
a; =a(l,0)anda; = a(—1/2, «/§/2) be the primitive lattice
vectors of the unrotated layer, and ¢, ¢, be the moiré¢ lattice
vectors. The commensurate angles are further divided into two
types according to how ¢, » and a , are related to each other?:

ey

cosO(m,r) =

Type I: if gcd(r, 3) = 1, then
Ly m 2m +r\ [ a;
<t2) - <—(m +r) m )(az)‘ )
Type II: if gcd(r, 3) = 3, then
) _ (m+ 5 m+ %’ a 3)
t —% m + % a )’

where gcd(m, n) denotes the greatest common divisor of
integers m and n. It follows that the moiré lattice constant is

2 2
Lin.r)=q [ F3mr 4 @
ged(r, 3)

2The following expressions are slightly different from those in
Ref. [39] due to our different choice of a;.

Monolayer Moiré
Kp& K’
Typel
, / K &Ky
K Ky
K’y ¢ ><K
Kpa K
Typelll
K’ & K/g

FIG. 1. Pattern of momentum mapping for the two different types
of twist angles. Here, K, Ky, and K, respectively, denote the K point
of the unrotated, rotated, and moiré Brillouin zones. K’, K, and K|
denote their respective time-reversal partners.

Note that this formula applies to both types I and II structures.

The described relations between £, and a; > fix the cor-
responding relations between the moiré and monolayer recip-
rocal lattice vectors. In particular, this establishes a folding
from the monolayer BZ to the moiré BZ. The different forms
in Egs. (2) and (3) naturally lead to different folding patterns
for type I and II structures. Let K be the momentum of the
K point of the unrotated layer, K’ = —K be that of the K’
point, and Ky = Ry K be the corresponding momentum in the
rotated layer (Ry being the counterclockwise rotation matrix
by angle 8). One can then verify that, for both types I and
II structures, each of the momenta ==K and +K, is folded
to a moiré K point. From time-reversal (TR) symmetry, we
must have K and —K mapping to different moiré K points,
and similarly for Ky and — K. So, to determine the pairing
pattern, one simply checks if K & Ky is a moiré lattice vector.
The resulting pattern is shown in Fig. 1.

We now specialize to small twist angles, say 6 ~ 1°,
relevant for the recent experiments [1,2]. A first observation is
that |K — Ky| < |K' — Ky| for 0 < 6 « 1, with the former
of O(B/a) and the latter of O(1/a). Such separation of
scales has important physical consequences. As the moiré
potential is slowly varying in space with a typical length scale
set by ~a/6, the coupling between Bloch states with large
momentum difference is ineffective even if it is symmetry
allowed. Therefore, for type I structures, although Ky and K’
are folded to the same moiré momentum, a direct coupling
between the corresponding Dirac points is suppressed in the
small-angle limit. We refer to such effective decoupling of
degrees of freedom as a “valley charge conservation,” where
the states in the vicinity of the microscopic K and Kj points
are grouped into a valley, and their TR partners into the other.

The case for type II, however, is apparently different. As
can be seen from Fig. 1, Ky and K, which belong to the
same valley, are now folded to the same moiré K point. In
principle, there is neither a symmetry nor energetics reason
to forbid the direct coupling between their associated Dirac
points. This conclusion, however, is drawn using only the
exact symmetries of the commensurate lattice, and ignores
the presence of approximate symmetries in the problem. As
we will see, such small-angle type-II structures will feature
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approximate translation symmetries that suppress the direct
coupling between the Dirac points in the same valley.

To this end, let us first introduce another length scale
L'(6) = a/(2sin §), which is known to determine the ex-
perimentally observed moiré lattice constant from scanning
tunneling microscopy [41-44]. Generally, L and L’ do not
coincide:

L(m,r) r 51
L'(m,r)  Jgcd(r,3) ~

and so L = L’ if and only if r = 1. It is, therefore, tempting
to conclude that only the r = 1 type-I commensurate approx-
imants are relevant for these experiments. However, this is a
misconception.

First, while Eq. (4) gives the lattice constant corresponding
to exact translation symmetries of the commensurate lattice,
in practice the small-angle structures are known to have
approximate translation symmetries with the pitch L'(6), even
if 6 does not belong to the r =1 type-I series [39]. On
the electronic states, such approximate symmetries lead to
a suppression of certain coupling between the Bloch states
[39]. In other words, to infer the exact lattice constant from
experiments, one must achieve energy resolution smaller than
these suppressed coupling strengths. Absent such resolution,
the experimental lattice constant at small twist angles would
be L', even if the device was (magically) an exact type-1I
commensurate lattice with, say, r = 3. To properly account
for the physics observed at the experimental energy scale,
one should incorporate such approximate symmetries into the
analysis. The continuum theory [32,33] provides a powerful
avenue to do this, as we will discuss in Sec. IV.

Second, even if one chooses to focus exclusively on the
exact geometrical properties of commensurate TBG with the
lattice constant L/, it is still wrong to focus only on the r = 1
structures. Recall that 8(m,r) € (0,7/3) in Eq. (1). As a
graphene monolayer is invariant under a 7 /3 rotation, 6§ =
/3 — ¢ for some 0 < ¢ <K 1 also corresponds to a system
with a small physical twist angle in the opposite sense.> For
such systems, the physically relevant length scale is L'(¢),
and indeed one can find structures where L’(¢) is identical
to the exact lattice constant L(7/3 — ¢), i.e., such structures
are equally good candidates as commensurate approximants to
the experimental systems, although they do not belong to the
r = 1 series. We warn that, for these “conjugate” structures
the assignment of microscopic Dirac points into different
valleys does not conform with the preceding discussion, which
assumed 0 < 1 (rather, we have ¢ = n7/3 — 0 < 1 here).
More details and clarification on these “conjugate” structures
are provided in Appendix A. For simplicity, in the following
we will ignore such conjugate structures, and always assume
0 L 1.

Having clarified the relationship between the physical
moiré pitch and the microscopic exact lattice constant of
the commensurate approximants, we now move on to the

(&)

3Clearly, a —¢ rotation of the top layer is the same as a ¢ rotation
of the bottom layer. Also, we reiterate that, for the current discussion,
we do not fix the twisting center; to reconcile a —¢ structure with one
with 7 /3 — ¢, one might need to choose different twisting centers.

point-group symmetries of the commensurate lattices. As we
have emphasized, in the discussion so far we have made no
assumption on the choice of the twisting center. In particular,
one could have chosen the twisting center to be a generic
point in space, such that only translations remain as exact
spatial symmetries of the resulting commensurate structure.
Alternatively, if we choose the twisting center to be a hexagon
center, the resulting TBG structure will inherent the sixfold
rotation symmetry C¢ of the underlying monolayers. In other
words, the choice of twisting center determines the exact
point-group symmetries of the TBG.

Starting with an AA-stacked bilayer, there are two main
choices of twisting center that lead to a high-symmetry struc-
tures: one either twists about a common hexagon center, or
about a common honeycomb site (i.e., about a carbon site).*
Let us first consider twisting about a hexagon center. Aside
from the mentioned Cg rotation, there is an additional twofold
rotation about an axis running parallel to the 2D planes, i.e.,
one which exchanges the two layers of graphene [6]. Note
that this twofold rotation is distinct from szCg, with the
latter leaving the monolayers individually invariant. To avoid
confusion, we will refer to the layer-exchanging rotation as a
“mirror” symmetry M, which is appropriate when one views
the system as strictly two dimensional. C¢ and M, together
generate the point group Dg, i.e., all commensurate structures
with a hexagon center chosen as the twisting center will have
exact spatial symmetries described by the wallpaper group 17
(pbmm) [45].

On the other hand, if the twisting center is a common
honeycomb site, the system is only invariant under a Cz but
not a Cg rotation about the twisting center. Correspondingly,
the point group of the twisting center is reduced to D3, which
differs from Dg only by the absence of Cg. While one might
be led to conclude that the resulting system is described by
wallpaper group 15 (p31m) [45], this is only true for type I
structures. As was pointed out in Ref. [40], with this choice
of twisting center the type II structures have a higher degree
of symmetries, and one can show that there will always be
one aligned hexagon center, with a Dg symmetry, in each unit
cell. Because of that, the correct wallpaper group becomes 17
(pbmm).

We note in passing that, in Ref. [40], types I and II structures
generated by twisting about a common honeycomb site are,
respectively, called “SE-odd” and “SE-even,” where SE stands
for “sublattice exchange.” Reference [40] further pointed out
that SE-odd and -even structures are expected to display
different generic low-energy behavior at charge neutrality, but
the analysis there is relevant for large twist angles close to
/6, and does not apply to the small-angle regime where the
effective valley charge conservation comes into play.

In closing, we make a small remark on terminology. For
small physical twist angle 6, the resulting moiré pattern is
known to exhibit regions that are locally close to AA- or
AB/BA-stacked bilayer graphene. Intuitively, the point-group
origin of the lattice coincides with the highest-symmetry point
inthe AA region. As we considered a small twistd < 1 starting

*In fact, as discussed in Appendix A, for a certain class of angles
the two choices are equivalent.
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FIG. 2. Examples of commensurate lattices. Here, we twist the
top layer counterclockwise by 6/2 and the bottom by —6/2. The
radius of the disk in each panel is chosen to be 3a /(2 sin(6/2)). Two
relatively large twist angles 8 = 6(5, 1) ~ 6.0° and 6 = 6(16, 3) =~
5.7° are considered. If smaller twist angles were used, the differences
between the lattices would be even harder to discern. As indicated by
the subscripts, they are respectively of types I and II, which lead to
different primitive lattice vectors (black arrows). The twisting centers
are chosen to be either an aligned hexagon center or an aligned
carbon site, and we consider both a normal twist by 6, as well as
a “conjugated” twist by /3 — 6. Note that conjugation changes the
angle type (Appendix A), so panels (a), (¢), (f), and (h) are type I
lattices whereas (b), (d), (e), and (g) are of type II. Although the exact
lattice constant for lattices (e)—(h) is larger, one can see visually that
their approximate lattice constant is the same as that of lattices (a)—(d),
which is given by L'(0) = a/(2 sin(6/2)). Except for lattices (c) and
(h), the exact point group of all the lattices shown is Dg.

from an AA-stacked bilayer, one might assume the point-group
origin always coincides with the twisting center. This is not
generally true. More specifically, of the four distinct cases of
lattices we considered (type I vs IT angles 8 <« 1 and twisting
about a common hexagon center vs a carbon site), it is true
only for three of the four cases. The exceptions are type II
structures generated by twisting about a common carbon site.
As discussed above, the twisting center in this case has only
D5 symmetry, but the point group of the lattice has to be D¢
due to the existence of additional, aligned hexagon centers.
This implies there must be a “better” AA region elsewhere
centered at the aligned hexagon centers. We are thus forced to
conclude that there are multiple AA regions in one primitive
unit cell (Fig. 2). This is, in fact, nothing but a manifestation of
the described approximate translation symmetries with pitch
L' < L. For an example, see Fig. 2(g).

III. SYMMETRY REPRESENTATIONS OF DIRAC POINTS
IN COMMENSURATE STRUCTURES

Having discussed the geometrical aspects of commensurate
TBGs, we now focus on the symmetry representations at the
moiré K points. Understanding the symmetry representations
serves as preliminaries for the construction of tight-binding
models, which requires the identification of the correct real-
space orbitals (i.e., Wannier functions).

As a warmup, let us first consider a monolayer graphene
with the same lattice vectors a; » described before. In addi-
tion, we place the carbon atoms at %(al +ay) F %(al —ay).

Among the many spatial symmetries, the monolayer is, in
particular, symmetric under a C1' rotation about the origin
(i.e., a hexagon center), as well as the lattice translations Ty, ,.
Consider the Dirac-point Bloch states |1/ ) at the momentum
K = (b, + b,)/3, where b, are the monolayer reciprocal
lattice vectors. Here, 0 = %1 denotes the sublattice degrees
of freedom. One can verify that

C3llvk) = [vi)e, (6)
where we let = ¢/*/3. Similarly, we also have C}|y§,) =
[Yg o™,

Aside from the hexagon centers, the monolayer is also C;
symmetric about the carbon sites. These rotations, denoted
as CY, are simply the product of lattice translations and

CE. For instance, check that CS = T, T,,C}! leaves the site
(a1 + 2ay)/3 invariant. As T, T, |V g) = | )w*, we have

CS|Wg) = Tu, T, C |g) = W )" . )

The case for K’ is fixed by TR symmetry, which commutes
with rotations: C$|¥%,) = |¥g)w~ =Y. Curiously, this sim-
ple relation between Egs. (6) and (7) will be a recurrent motif
in this section.

We are now ready to consider the TBG case. The analysis
only requires two additional pieces of data: (i) the momentum
mapping tabulated in Fig. 1, and (ii) that the Bloch states
near charge neutrality are essentially dressed version of the
monolayer Dirac points. More concretely, consider a type [
structure, then

Yk, L= +) o [Yg, )+
[V = =)o [¥g)+---, (8)

where I, = %1 denotes the two effectively decoupled valleys.
Note that only states with the same symmetry properties as
the leading term can enter into the ellipsis. The case for
type II structures is essentially identical, but with K’ > K
in |yg,. —)-

To proceed with the analysis, however, we must first specify
our twisting center, as the choice would determine the exact
point-group symmetries of the lattice. If we choose the twisting
center to be an aligned hexagon center, we can reconcile the C3
rotation about the AA region as C ?A =C ;I (here, interpreted
as the direct sum of the single-particle symmetry matrix of the
two layers).> From Egs. (6) and (8), we have

CMyg ) =Yg, +o”;
CiM g, =) = V&, =0~ )

i.e., the representation of C4* at K, is (o, 0*) U (w, ®*)
for the four states near charge neutrality. Here, and in the
following, we use U to indicate how the representations are
distributed across the two valleys. The same representation
content can be found for K/ , and the same conclusion holds
for type II structures.

5 As we discussed in Sec. II, for certain commensurate lattices there
can be multiple AA regions within each primitive unit cell. In such
cases, we define C3 AA to be a threefold rotation about the highest-
symmetry point.
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TABLE I. Possible commensurate structures for a given angle
0 parametrized by coprime positive integers m, r. Structures with
ged(r, 3) = 1 are dubbed “type 1,” and those with ged(r, 3) = 3 are
called “type I1.” We let L(0) be the exact moiré lattice constant, and
L'(0) = a/(2sin(0/2)) be the effective lattice constant when 6 <
1. Center refers to the twisting center, and PG the point group of
the lattice. “Sym. rep.” denotes the representations of C3 (about the
point-group origin) furnished by the Dirac points sitting at the moiré
K points, and the symbol U indicates how they are distributed across
the two decoupled valleys when 0 < 1. The case of “conjugated”
structures, with twist angles 7 /3 — 6, is discussed in Appendix A.

Type L®)/L'(0) Center PG Sym. rep.

1 r Site Ds (1, w) U (1, »*)
Hexagon Dy (w, 0*) U (v, ®*)

I r/V3 Site Ds (@, o) U (0, %)

Hexagon Dg (0, ") U (0, 0*)

Alternatively, consider placing the twisting center at an
aligned carbon site. As we have reviewed in Sec. II, in this
setting we should treat types I and II structures separately.
First, consider a type I lattice, for which C{* = C¥. The same
analysis, but now combining Egs. (7) and (8) leads to

CRMyg  +) =
Mg, —) =

R Gl
Vg, —Jo ", (10)

i.e., we now have the representations (1, ) U (1, @*). The case
for conjugate type II structures is a bit more intriguing, and is
covered in Appendix A.

The conclusions from the analysis above can be summarized
as follows (Table I): if the point group of the commensurate
structure is Ds, the representation of Cf* at Ky is (@, ©*) U
(w, w™); alternatively, if the point group is D3, then it becomes
(1, w) U (1, w*). Although simple to derive, these results con-
strain the possible form of the tight-binding models. Indeed, as
is pointed out in Refs. [5,6,18], by taking the representations
at the other high-symmetry momenta into account, one finds
that the only possible tight-binding models for the four nearly
flat bands near charge neutrality must have orbitals centered
at the moiré honeycomb sites (corresponding to the AB/BA
regions). However, the symmetry characters of the orbitals are
necessarily different for D3 vs Dg, for otherwise one cannot
reproduce the representations at K.,. Indeed, for the D¢ case
it was found in Ref. [6] that the Wannier orbitals transform
trivially under a threefold rotation about their charge centers,
whereas for the D5 case the orbitals should transform under
the (w, »*) representation [5,18].

Taken at face value, these results are individually self-
consistent and there is no contradiction between them, but they
appear different. How do we understand such discrepancy?
There are two possibilities: (i) The D3 and Dg structures are
physically distinct, and their different symmetry properties
lead to distinct electronic behavior. (ii) The two classes of
commensurate structures are ultimately described by the same
effective theory, and therefore the apparent distinction in sym-
metry representations is simply an artifact of the commensurate
approximants and has little physical implication.

Curiously, for TBG both possibilities are applicable, but
they are operative in different parameter regimes. As is pointed
out in Ref. [40], for large twist angles case (i) applies,
and the system is generically gapped or gapless at charge
neutrality depending on the symmetry setting; for small twist
angles, however, multiple studies have pointed out that the key
electronic properties of the system at the meV energy scale
are universal and become independent of the exact geometric
details of the system [32,33,37,39], i.e., case (ii) applies. In
particular, this implies the distinction between D3 and Dg
structures cannot matter in a proper treatment of the electronic
properties of the system, unless one is interested in quantities
resolved to the ueV scale. In other words, the symmetries of
the effective theory must contain at least those of both Dj
and Dg. But since Dj is a strict subgroup of Dy, it suffices
to consider D¢ commensurate lattices if one is interested in a
more microscopic treatment of the problem.

We remark that, if one desires, one can also instead study D3
commensurate, small-angle TBG structures [5,18,21]. How-
ever, in such a setup, C¢, an exact symmetry in the D¢ case and
a good symmetry of the effective theory, would become an
approximate symmetry. If one incorporates this approximate
symmetry in the analysis, the problem will be enhanced to the
Dy case; alternatively, if Cg is completely ignored, the Dirac
points at charge neutrality would lose symmetry protection
(even in the limit of exact valley charge conservation), i.e.,
in such strictly Dj; treatments the Dirac points are not robust
features of the models, but rather appear as accidental energetic
features which require fine tuning of model parameters, say,
by forcing certain symmetry-allowed terms to vanish [21].

IV. ON THE CONTINUUM THEORY

In Secs. II and III, we have reviewed the known classes of
commensurate TBG structures, as well as how the symmetries
are represented by the electronic states on such lattices. A
key lesson learned in the past decade of studies on TBG is
that, in the limit of small twist angle, the precise form of the
lattice realization becomes irrelevant and the system is well
described by a continuum theory with two decoupled, TR-
related sectors corresponding to the two microscopic valleys.
Specifically, the Hamiltonian for a single valley takes the
form HCOnt = HDlralc + HT, where HDlrac encodes the Dirac
dispersion originating from the monolayer K points, and the
coupling between the two layers is given by

A
Ay = / Pkl Ty, Viiksrq, +Hee
0
+ symmetry-related terms, 1D

where t and b, respectively, denote the top and bottom
layers, and A is a high-momentum cutoff. The momentum
q, = R_9oK — Ry, K characterizes the momentum transfer
between the electronic degrees of freedom of the two layers
[33]. Here, we rotate the top layer by 6/2 and the bottom by
—0/2 to construct a system with a total twist angle of 6. The
resulting moiré pattern with this setup is shown in Fig. 2.

In Ref. [33], the coupling matrix is given by T, = w(op +
o1), but more generally one can take T, = wooop + w10]
without breaking any symmetries [6,21,25,40]. In fact, as in
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any effective theory, one can free oneself from the microscopic
problem and instead allow for the presence of any physical
terms, unless they are symmetry forbidden® or involve high-
order processes and are therefore energetically suppressed.
Therefore, it is important to understand the symmetries of
the theory. As we have alluded to, aside from TR and valley
charge conservation, the continuum theory will have the spatial
symmetries of a Dg commensurate realization, described by the
wallpaper group 17. The concrete representations for valley-
preserving symmetries, as listed in Ref. [6], are reproduced
below:

(CeD) B CT ™ = 0] (—Cek) (e F7Eay);

M) GOMT =] (Mo, (12)

where u = t, b, and I, = =+ denotes the two valleys. Note that
M,, which as mentioned is in fact a twofold rotation in 3D, is
the only symmetry which flips the two layers, i.e., M,[t] = b
and vice versa. In particular, note that while C¢ and TR T
individually flip the valleys, CA‘(,IAZCA‘g = '7AdIAZT’1 = —1I_, their
product is a symmetry of the single-valley problem. One can
check explicitly that I-AICOm is invariant under these symmetries.
In particular, this implies Hcont is Co symmetric when the other
valley is taken into account.

As (6'67)2 = (5, the representation of G5 is also fixed by

Eq. (12). Let U(CeT) = e~ 5L, then

i

U(C3) =UCSTHUN(C6T) = &' 5%k 13)

Therefore, at the moiré K point one finds that the symmetry
eigenvalues of C; are (w, ™) U (w, w™*) for the four states near
charge neutrality, which corresponds to the Dy case analyzed
in Sec. IIL.7

As the Dg and D3 commensurate structures have the same
effective theory, one may wonder how to recover the other
set of symmetry representations derived from the Dj; lattices
[5,18,21]. To this end, let us first restrict our attention to the
spatial symmetries that are exact on a D3 lattice, C3, M, =
Mng . Recall 7 and M, anticommute with I, whereas C;
commutes, and note the following group relations involving
C3Z

GLCy' =1; TCT '=Cy
M,CsM' =C3; C5=1. (14)

Let C; = ¢ %”:C}. One can check that Eq. (14) is equally sat-
isfied by C3 > C3. However, in a single valley, say I; = +1,
we have eig(U/(C3)) = w x eig(Ud(C3)). This toggles between

6If the symmetry is emergent/approximate, as for the spatial symme-
tries in the present context, symmetry-breaking terms are in principle
allowed, but their associated energy scale is suppressed below the one
of interest.

"For simplicity, we drop the superscript “AA” here, with the
rotation centers understood to be taken about the point-group origin.
Also, we have implicitly used the fact that the states near charge
neutrality descend from the microscopic Dirac points; for states away
from neutrality, other representations become possible, as the spatial
symmetry also permutes the momenta which are not exactly at the
microscopic K point.

the two set of C3 representations found in Sec. III for D3 and
D¢ cases.

Physically, the redefinition of C3 — C3 amounts to a redef-
inition of the rotation center at the microscopic lattice scale. To
see why, we simply note that the emergent U, (1) symmetry can
be reconciled with the microscopic lattice translation 7, which
becomes an effective U(1) when acting on the slowly varying
degrees of freedom in the effective theory. Therefore, attaching
the valley-dependent phase e’ Tk to C 3 can be physically
interpreted as multiplying by a small translation 7.

If Cg symmetry is truly absent in the theory (i.e., not even
an approximate symmetry), the choice between C; and C;
above is completely arbitrary, and, so long as U, (1) is a good
symmetry, physical observables should not depend on this
choice. For instance, in the discussions on Wannier functions
in Refs. [5,18,21], the orbital character of (w, w*) under C;
rotation can equally be changed into the trivial one as long
as one admits that U, (1) is a good emergent symmetry (e.g.,
on the tight-binding model). That said, the commensurate
calculations in Refs. [5,18] are performed on microscopically
well-defined tight-binding models, and because of that one
loses the exact U,(1) symmetry. In such calculation, one
has to make a choice between the two sets of possible Cj
representations discussed in Sec. III, depending on whether
the point-group origin is placed at a common carbon site
(D3) or a common hexagon center (Dg). The choice of lattice
realization and the reported symmetry representations are
therefore internally consistent in Refs. [5,18]. In contrast, in
the calculation in Ref. [21], which starts from the effective
theory instead of a commensurate calculation, the choice of
C3 vs C; representation is arbitrary.

Importantly, in the preceding paragraph on C3 vs C3, as well
as in Refs. [5,18,21], the valley-preserving symmetry Ce7T is
ignored. C¢7 is an exact symmetry of the continuum theory,
and is also an excellent approximate (if not exact) symmetry
of any small-angle commensurate realizations. No matter
which microscopic regularization one prefers, it is desirable
to identify its representation in the theory (even if not an exact
symmetry). As we argue below, this requirement picks out a
preferred choice for Cs vs C5: recall, as symmetries, we have
(C¢T)? = Cs. Naturally, we demand their single-valley repre-
sentations to follow U (C3) = U (CsT UL (CsT ), where +
denotes the I. = + valley. As det(U;.(CeTHUI(C6T)) = 1,
this forces the two eigenvalues of U/, (C3) to form a conjugate
pair, i.e., one should arrive at eig(U(C3)) = (v, ™). Con-
sequentially, we conclude that, in a microscopic calculation,
one should place the point-group origin at an aligned hexagon
center in order to define the representations for all the relevant
spatial symmetries of the system. For a Dy lattice, this choice is
automatic, and all the mentioned spatial symmetries are exact;
for a Dj lattice, however, this choice does not coincide with
the point-group origin defined using exact symmetries, but the
system would still be approximately invariant under the Dg
symmetries about the aligned hexagon center.

To summarize, the continuum theory, well known to capture
all the salient features of the electronic band structures of
small-angle TBG, has a Cg rotation symmetry. To incorporate
this symmetry, one naturally arrives at the set of symmetry
representations realized as in a microscopic lattice with Dg
point-group symmetries. This suggests that the most natural
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commensurate lattices to study would be type I structures with
the twisting center chosen to be an aligned hexagon center,
which has all the exact spatial symmetries (point group and
translation) of the continuum theory. If a different class of
microscopic lattice is picked, say those chosen in Refs. [5,18],
then the excellent emergent symmetry of C¢ is masked, and it
becomes difficult to justify, for instance, the robustness of the
Dirac points at charge neutrality. We remark that this problem
is particularly severe in the presence of perturbations which
break the layer-exchanging symmetries (say, M,), say when
one applies a perpendicular electric field: while it is known
that the Dirac points remain stable against such perturbation
[32], in the microscopic D3 setup there is no exact symmetry
reason to expect any band degeneracy at charge neutrality.

V. REMARKS ON MAGIC ANGLES

In this section we make further remarks on the notion of
the magic angle, which in the theoretical literature is defined
as the angle where the Dirac speeds at K and K’ vanish.

Generically, symmetries constrain the single-valley band
structure, say, near the K point, to be described by [1,6]

B 0 ke —ik
H(k)_vD<kx+lky 0 >

L 0 (ky + ik )?
2m (kx - iky )2 O

Close to the magic angle, mvp is smaller than the size of mBZ,
so the above Hamiltonian gives one Dirac point right at the K
point, as well as three satellite Dirac points away from the
K point. Right at the magic angle, these satellite Dirac nodes
all come to K and K’, so that these two points show chiral
quadratic band touching. This is similar to the phenomenon of
trigonal warping as in AB-stacked bilayer graphene.

One may wonder where these satellite Dirac points come
from because they are absent from the band structure calcula-
tions at larger twist angles. There are two possible scenarios.
First, it is possible that new Dirac nodes emerge from other
points (such as the I' point) in mBZ as the magic angle is
approached, while the nearly flat bands remain isolated from
other bands by a gap. Upon further approaching the magic
angle, some of these new Dirac nodes move towards the K and
K’ points and become the satellite Dirac nodes. In this scenario,
the net chirality of the nearly flat bands does not change upon
approaching the magic angle. The other possibility is that the
energy gap between these nearly flat bands and other bands
closes and reopens when the magic angle is approached. When
this happens, some new Dirac nodes can appear in mBZ and
move to K and K’ as the magic angle is approached. In this
scenario, the net chirality of the nearly flat bands may change
upon approaching the magic angle.

Depending on the parameters in the model, either scenario
can be realized in a band structure calculation based on the
continuum model. However, experimentally there appears to
be an energy gap that is much larger than the resulting gap from
the continuum model [1,2,38], which can be a consequence
of interaction effects and/or lattice relaxation that are ignored.
This also indicates that in the real experiments the gap between
the nearly flat bands and other bands never closes, so if the

)+OW}G$

magic angle defined above can be arrived, the first of the above
scenarios should be realized. However, we would like to point
out that operationally the magic angle may be defined in other
ways, which is, a priori, unrelated to whether the Dirac speeds
at K and K’ vanish. For example, the magic angle can be
defined to be where the ratio to the band gap and the bandwidth
of the nearly flat bands is maximized, or simply to be where
the gap is the largest.

VI. MORE ON WANNIER OBSTRUCTION

A. Mirror and chirality

In the Introduction we have pointed out the existence of two
obstructions to constructing exponentially localized Wannier
functions for the two nearly flat bands of a single valley and
spin in TBG [6]:

(1) Mirror-eigenvalue obstruction: The mirror M, eigen-
values at M (or I') are £1.

(2) Chirality obstruction: The entire Brillouin zone for a
single valley has a nonzero net chirality. More precisely, the
two Dirac points of the single-valley band structure have the
same chirality.

In this section, we will elaborate on the relation between
these two Wannier obstructions. It turns out that these two
obstructions are equivalent in the context of TBG, as long as the
system preserves the M, symmetry. When these obstructions
are initially realized on a setting that has the M, symmetry,
the chirality obstruction remains even if the M, symmetry
is broken later because the chirality is a discrete object that
should not change upon breaking the mirror symmetry (at least
weakly).

This observation is significant not only conceptually, but
also practically. This is because there is always an intrinsic
phase ambiguity associated with the Bloch wave function of
a band structure, and it requires a smooth choice of the Bloch
wave functions across the mBZ to determine the chirality.
However, it takes some efforts to obtain such a smooth basis
of Bloch wave functions. The above observation then greatly
simplifies the problem of checking the chirality obstruction in
TBG since now one only has to check the mirror eigenvalues at
high-symmetry points in an M, symmetric setting, which does
not require choosing a smooth basis across the entire mBZ.

Below we only sketch the logic to show the above statement,
and leave the details in Appendix B. The chirality is only
contributed by the gapless points in mBZ, so we can focus
on an open region of the mBZ that covers the gapless points.
Unless very close to the magic angle, the only gapless points
are the K and K’ points. Upon approaching the magic angle,
assuming the first scenario of generating satellite Dirac nodes
discussed in Sec. V is realized, the net chirality will not change
compared to the case before these satellite Dirac nodes appear,
so we can always obtain the net chirality by looking at the
Dirac nodes at K and K'.

In Appendix B, we will show that there exists a smooth
basis of Bloch wave functions so that the action of C,7T is

Y (k) — 0. Ky (k), (16)

where (k) is a two-component operator that annihilates
an electron at momentum k in the two nearly flat bands,
and K stands for complex conjugation. In this basis, the
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first-quantized Hamiltonian can be written as
H(k) = no(k) + ny(k)ox + na(k)oy. 17

The chirality is given by the winding of (n;(k), n,(k))” .
Furthermore, it is shown that in this basis the action of M,
can be chosen as

v (k) — oy (k) (18)
if the mirror eigenvalues at M are opposite, and as
v (k) — nup (k) 19)

if the mirror eigenvalues at M are both 7,,. For two momenta
related by My, say, k and k', M, requires

ni(k) = ni(k'), na(k) = —na(k') (20)

if the mirror eigenvalues at M are opposite, and

ni(k) = ni(k"), na(k) = ny(k') @

if the mirror eigenvalues at M are identical.

To check the net chirality, now one can consider a small
closed loop around each of K and K'. It is straightforward to
see that the windings around these two loops are the same if
(20) holds, and they are opposite if (21) holds. This implies
that having opposite (identical) mirror eigenvalues at M is
equivalent to having nonzero (zero) net chirality in mBZ.

The above claim stating that the mirror-eigenvalue obstruc-
tion and chirality obstruction are equivalent applies to any
two-band system that has an odd number of mirror-related pairs
of Dirac nodes. If there are an even number of mirror-related
pairs of Dirac nodes, a nonzero net chirality still implies the
mirror-eigenvalue obstruction. However, the converse is not
true: the existence of the mirror-eigenvalue obstruction does
not immediately imply a nonzero net chirality. To settle down
the net chirality in this case, one can divide the entire Brillouin
zone into two halves that are mirror related, and then check the
total chirality of one of the two halves.

B. An alternate viewpoint: Flipped Haldane model

Let us now provide a more physical argument for the
obstruction to realizing a tight-binding model for a single
valley of the nearly flat band. Crucial to this argument is that we
do not augment the model with additional bands. Let us begin
by assuming the opposite, that there is a tight-binding model
with a single orbital on the honeycomb lattice that indeed
realizes the valley filtered band structure as given by (17)
(where the two component wave functions now refer to fixed
sublattices in a tight-binding model), including the two Dirac
points at the mini BZ K,,, K| points, with the same chirality.
Recall, the conventional situation, as realized in graphene, is
to have Dirac points with opposite chiralities. With this setup,
consider adding a staggered potential £m, opposite on the two
honeycomb sublattices. This will induce a gap at the Dirac
points since C, symmetry is broken. In particular, the term
has no momentum dependence since it comes from an onsite
term. In addition, if both Dirac points have the same chirality,
then the contributions to the Chern number of the disconnected
bands will add to C = %1 (the opposite valley has C = F1).

Note, if we had the conventional case of opposite chiralities,
the contributions cancel as in graphene with a staggered onsite
potential. One can view this as a “flipped” Haldane model,
where the staggered potential produces the Chern band and
the trivial inversion breaking insulator is obtained by the
second-neighbor Haldane hopping term [46].

This produces the following contradiction: At strong onsite
potential on the honeycomb lattice, an atomic insulator is
obtained, which is not compatible with a finite Chern number
band, and which cannot be reduced to localized Wannier
functions.

Note, if we allowed for additional sites in the tight-binding
model, the staggered potential is no longer a purely onsite
term, and the previous contradiction does not hold. Obtaining
such an augmented model which resolves the anomaly is an
important future goal.

VII. RESOLVING THE OBSTRUCTION

We have argued that, in the presence of U, (1) valley charge
conservation and the sixfold rotation Cg (which combines
with TR to generate the C,7 symmetry required in defining
chirality), there is an obstruction to construct symmetric, well-
localized Wannier functions for the four nearly flat bands near
charge neutrality (spin degeneracy ignored in the counting).
Such Wannier obstructions are reminiscent of that in topologi-
cal insulators [47], and are an integral part in the understanding
of the physical properties of the system.

Similar to the parallel discussions for topological insulators,
to construct well-localized Wannier functions one has to forgo
some of the symmetries in the problem. In Ref. [6], we
describe a construction which first forgoes U, (1) but retains
Ce; in contrast, in Refs. [5,18,21], C¢ is completely ignored
and U, (1) is kept.® At this level, both approaches may seem
imperfect, in that the Dirac points at charge neutrality are not
symmetry-protected robust features. However, in Ref. [6] we
make one extra step and identify the concrete representation of
the missing symmetry, generated by the valley charge operator
I.. This allows us to consistently restore U,(1) symmetry
within the tight-binding Hilbert space, such that a// symmetries
become manifest in the final model.

Interestingly, the Wannier obstruction we identify here
is tied to the C,7 symmetry, which is nonlocal. Unlike
the corresponding discussion for topological band structures
protected by internal symmetries, say topological insulators
[47], spatial symmetries are known to lead to new types of
Wannier obstructions [48] which are less stable, but at the
same time more intricate, than the conventional topological
indices like Chern numbers. The obstructions we identify
here are connected to the notion of “fragile topology” [48].
This can provide an unconventional avenue for resolving the
obstruction, wherein the obstruction can be resolved by the
addition of trivial bands. We will leave the full exploration of
this connection to a future work.

8More accurately, there exists an identification of the valley-charge
operator /, such that one can demand U, (1) symmetry in the resulting
tight-binding model.
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FIG. 3. (a) Tight-binding model of valley-resolved isolated moiré
bands from a two-orbital model on the honeycomb lattice. (b)
Schematic band structure of this model. Two connected sets of bands
separated by a band-gap result. The lower one, for example, captures
the band structure of the nearly flat bands of twisted bilayer graphene,
in a single valley while preserving all symmetry (Dg point group).
(c) Upon adding further symmetry-allowed perturbations, one can at-
tempt to reproduce the band structure of twisted bilayer graphene. Dis-
persion shown is for parameters 7, = 0.4 + 0.64,, £ = 0.1i ;.

A. A four-band model for the nearly flat bands

Let us now discuss one simple way of resolving the
obstructions. We can write a tight-binding model that produces
two sets of bands, each of which has the topology characteristic
of the nearly flat bands of a single valley of TBG. These bands
will be split so energetics will single out the lower band which
has the desired character, and preserves all symmetries of the
continuum theory, including valley conservation symmetry.
This is loosely analogous to tight-binding models of Chern in-
sulators that produce a pair of opposite Chern bands, although
individual bands cannot be captured within in a tight-binding
model.

An example of such a tight-binding model that retains all
symmetries is given below. Of course, the price paid to the
obstruction is an increase in the total number of bands. More
specifically, we present a model with four bands per valley,
where the two lower-energy bands are the relevant ones. Let us
write the Hamiltonian in two parts: H (k) = H, (k) + H_(k),
where H_(k) = H.(—k) will give us the two valleys with &
denoting the valley. To begin with, focus on the model for one
valley H,(k), as shown in Fig. 3. The Hilbert space consists
of two orbitals per site of the honeycomb lattice that transform
trivially under C3 rotations:

ci(r) — ci(Csr) (22)

with i = 1,2 denoting the two orbitals. Under C,7 they
transform as

ci(r) = Kci(—r), (23)
and under M, they transform as

c(r) — ci(Myr), c(r) — —c(Myr). (24)

Denoting Pauli operators in this onsite orbital space as
e with a =0, 1,2, 3, where p is the identity operator in
this space, we consider a simple Hamiltonian that involves
nearest- and next-nearest-neighbor couplings: 7| = 0.4 +
0.644;, ,# = 0.1iu,. This four-band model (two orbitals per
site and two sites in the unit cell) leads to the (schematic) band
structure shown in Fig. 3, where nearly flat bands are split

by an energy of order unity. The lower bands, for example,
have the required topology of Dirac points with identical
chirality, that we wish to capture for TBG. Also, the mirror
eigenvalues at I are opposite for these two bands. Given that
this model preserves all symmetries, one can perturb it with any
symmetry-allowed term, and the topological properties of the
individual bands will be preserved as long as the gap between
the two sets of bands remains open. Potentially, one can tune
parameters to obtain agreement of the band structure with other
calculations, and further to obtain relatively narrow bands and
a large energy gap between the pairs of bands, which we leave
to future work. The main point we emphasize here is that we
have accurately captured the universal topological properties.

Now that we have a tight-binding model that captures
all salient features of the band structure of TBG, we can
in principle systematically incorporate interactions into the
model. This is analogous to using a model of a Chern insulator
to study the lowest Landau level problem, where the role of
the model of a Chern insulator is played by this model, and
the role of the lowest Landau level is played by the nearly
flat bands of TBG. Ideally, we would like to achieve narrow
bandwidths and a large band gap between pairs of bands, that
can be achieved by tuning the microscopic parameters, which
we leave to future work.

Before closing, let us note the following points. First, this
Hamiltonian is essentially the I, projector discussed in Ref. [6].
Second, we would like to stress that all symmetries are pre-
served in this model, so that one can systematically incorporate
interactions into the model while maintaining all universal
topological aspects of the single-valley nearly flat bands of
TBG. This is in sharp contrast to Refs. [5,18,21], where salient
features of the band structures, such as the existence of Dirac
nodes, require fine tuning the Hamiltonian. Lastly, although the
four bands taken together suffer no obstruction because they
result from a well-defined tight-binding model, both the two
upper bands and the two lower bands individually suffer from
the obstructions discussed earlier. In this sense, this model does
not resolve the obstructions in the sense of fragile topology
discussed in Ref. [48]. We leave such a resolution for future
work.

VIII. DISCUSSION

In this paper, we first collected and reviewed aspects of
the band structure of TBG, based on which we clarified
some confusing issues about different types of commensurate
structures of TBG and their symmetries. In particular, there are
two different types of commensurate structures according to
the twist angle, and the exact point-group symmetry for these
commensurate structures can either be Dg or D3;. However, we
emphasize that in the context of small-twist-angle TBG, the
various excellent approximate symmetries that are responsible
for the salient features of the band structure are more important
than the exact symmetries, regardless whether the bilayer is
commensurate or incommensurate, unless one is interested in
ultralow energy scales that are inaccessible to the experiments
to date.

In particular, we analyze the symmetry representations of
the Dirac points in different commensurate structures of TBG,
and we demonstrate how a Dg point-group symmetry can
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protect the Dirac points in a single valley, while a D3 point-
group symmetry cannot. This is essentially the reason that
forces us to consider a formulation of the problem that has
manifest Dg point-group symmetry [among other symmetries,
including U, (1) and 7] since both theoretically and exper-
imentally gapless Dirac points are observed in small-twist-
angle TBG.

A powerful formulation that incorporates all these symme-
tries is the continuum model. We review this model and its sym-
metry properties. Along the way, we point out that an apparent
disagreement on the C3 representations of the Dirac points
in our eariler paper [6] and that in Refs. [5,18,21] is actually
artificial: the difference is purely due to a different choice of
the point-group center, and these results are consistent after
converting to the same convention.

Next, we make some remarks on the notion of the magic
angle, which in the theoretical literature is commonly defined
as the angle at which the Dirac speeds vanish. We discuss the
two scenarios in which this can be realized, and their difference
is whether the nearly flat bands of TBG touch other bands
upon approaching the magic angle. Based on the experimental
results, we point out that the nearly flat bands are likely to
remain isolated from other bands when the magic angle is
approached.

One important result from our approach is the existence
of two obstructions to constructing well-localized Wannier
functions with natural symmetry representations. One of the
obstructions is related to the mirror eigenvalues at high-
symmetry points, and the other is related to the net chirality
of the entire mBZ. We discuss the relation between these two
obstructions in the context of TBG, and we point out that they
are actually equivalent. Because the mirror-eigenvalue obstruc-
tion is much easier to check than the chirality obstruction, this
observation provides a neat simplifying tool to check the latter
by examining the former.

Finally, at the price of doubling the number of bands, we
present a tight-binding model that can reproduce all essential
features of the band structure of the nearly flat bands of TBG.
This model has two sets of bands that are well separated from
each other, and each set presents all important topological
aspects of the nearly flat bands of TBG. In particular, they
preserve all symmetries. Starting from this model, one can
systematically incorporate symmetry-allowed interactions to
the model. In this model, both sets of the bands suffer from the
Wannier obstructions, so one can view this model as one that
removes the obstruction of the nearly flat bands of TBG by
adding it to another copy that carries the opposite obstruction.
It is more desirable to develop a model that resolves the
obstruction by adding some bands that carry no obstruction at
all, which can show these obstructions are fragile obstructions.
We leave this for future work.
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APPENDIX A: CONJUGATE SMALL ANGLES

In this appendix, we discuss the “conjugate” structures
defined by angles characterized by 6(m,r) =mn/3 — ¢ in
Eq. (1) for some 0 < ¢ <« 1. As discussed in the main text,
physically these structures are also small-angle TBG, and so
are as relevant as the other cases of 8 <« 1 typically discussed
in the literature.

First, we note that the conjugate pair of angles 0 (m, r) and
w/3 —60(m,r) have the same lattice constant. To this end,
check that, for coprime positive integers m, r, we have

0(r,3m) = g —0(m,r);

) = L(m,r). (A1)

L r 3m
<gcd(r, 3)" ged(r, 3)
Therefore, when one says that the physical twist angle is
a commensurate angle 6(m, 1) for some m, and that the
exact lattice constant is L'(0), a priori one does not know
if it corresponds to the case of 6(m, 1) or (1, 3m) in the
parametrization of Eq. (1).

The astute readers might have noticed a conundrum: while
we have argued that 6 (m, 1) and 6(1, 3m) are conjugate angles
that can correspond to the same physical system, in Fig. 1
they belong respectively to types I and II structures and have
different BZ folding patterns. For small twist angles, this
conundrum can be readily resolved by focusing on the type
Il case of 8 = /3 — ¢, where ¢ < 1is a type I angle. While
Fig. 1 suggests that K and Ky are now folded to the same
moiré K point, caution must be used when the angle is really
0 =m/3 — ¢ with ¢ < 1. For such structures, |Ky — K| ~
|K~;3 — K| ~O(1/a),but |[Kg — K'| ~ O(¢/a). Therefore,
the correct assignment in this case is to group the K’ and
Ky points into one valley, and again the symmetry-allowed
coupling between K and Ky is suppressed by the approximate
valley charge conservation. This leads to the same physical
definition of valleys as in the type I case with twist angle ¢.

Finally, let us clarify the symmetry representations for the
conjugate type II structures. If one chooses the twisting center
to be an aligned hexagon center, the point-group origin will
again coincide with the twisting center and the analysis follows
that discussed in the main text. The more nontrivial case is
when one chooses to twist about a common carbon site, as is
done in many existing works, say Refs. [5,18,40]. In this case, a
conjugate type I twist of 8 = /3 — ¢ with ¢ <« 1 will place
the twisting center into a locally AB region. Furthermore, as
there will be an aligned hexagon center elsewhere, the proper
choice of point-group origin will always be different from the
twisting center.

Physically, such a lattice is essentially identical to one built
from twisting about an aligned hexagon center, and therefore
we would seek to reconcile the analysis with that in Eq. (9)
of the main text. There are two main changes compared to the
type I analysis there. First, the momentum mapping becomes
different, with Ky and K landing on K, (Fig. 1); second, the
rotation symmetry about the twisting center becomes C48 =
C3C. Again, by combining Egs. (7) and (8) in the main text, we
readily conclude that the representations for C5® are (1, w) U
(1, w). To reconcile with Eq. (9), it remains to notice that
CyB = T,TIC?A (Fig. 2). As TtT] Wk, +) =¥k o, we

085435-11



Z0U, PO, VISHWANATH, AND SENTHIL

PHYSICAL REVIEW B 98, 085435 (2018)

find that the representation for C{* isw x ((1, @) U (1, ®)) =
(w, w*) U (w, ®*), as one expects.

APPENDIX B: MIRROR-EIGENVALUE OBSTRUCTION
AND CHIRALITY OBSTRUCTION

In this appendix we present the detailed arguments that
relate the mirror-eigenvalue obstruction and the chirality ob-
struction, as stated in Sec. VI.

To start, let us first record the symmetry algebra:

M} =1, (CT)Y =1, M(CT)=(C;T)M,. (BI)

In the following, we will show that having mirror eigenvalues
+1 at the M point is equivalent to having the same chirality
for the two Dirac points at K and K'. To show this, we take
three steps:

(1) On an open region of the mBZ that covers the K, K’,
and M points, the action of C,7 can always be chosen to be

Y (k) — 0 Ky (k) (B2)

for all & in this region, where K denotes complex conjugation.
This choice can be made while having a smooth basis.

(2) When the above choice of the C,7T action is made, if
the mirror eigenvalues at M are &1, we can choose the action
of M, to be

v (k) — oy (k') (B3)

for all k in this region, where &’ is the M, partner of k. If the
mirror eigenvalues at M are the same, then we can choose the
action of M, to be

Y (k) — nuy (k) (B4)

with 1y, = =£1. For either case, the above choice can be made
while having the basis smooth.

(3) The above two symmetry actions guarantee that the
chiralities of the two Dirac points at K and K’ are the same
(opposite) if the mirror eigenvalues at M are opposite (same).

Below, we prove these statements one by one.

1. Action of C, T

First, assume a generic action of C,7 under a smooth basis:

v (k) — Uk)y (k), (BS)

where U (k) is a 2 x 2 unitary matrix that satisfies U*U = 1
because (C,7)> = 1. The generic form of such U (k) is

Uk) = ¢ ®lag(k) + ia,(k)oy + iaz(k)o.].  (B6)

The meaning of a smooth basis is that a2 3(k) and 6y (k) are
smooth functions of k in this open region. Notice due to the lack
of aterm proportional to o, in U (k), U (k) can be diagonalized
by an orthogonal transformation. Furthermore, the orthogonal
matrix corresponding to this transformation can be chosen to
be a smooth function of k because U (k) is smooth.

In order to find a basis in which the action of C,7T is given
by (B2), we need to find a unitary V (k) such that

V)Y (k) — 0. KV (k)y (k) (B7)

under C, 7. If this unitary can be found, then the action of C, T
is given by (B2) on the basis V (k)y (k). It is not hard to see

that this is equivalent to finding a unitary V (k), such that under
C,T

Vk)yy (k) — KV (k) (k). (B8)

So, below we will show that this latter V (k) exists.
Combining (BS5) and (B8) yields

Uk) =V k) V (k). (B9)

Because U (k) can be diagonalized by an orthogonal transfor-
mation, there must be a solution of V (k) to the above equation,
and the solution can be made smooth as a function of k because
U (k) is a smooth function of k itself.

This means that, within this open region, the action of C, T
can always be chosen as

Y (k) — oKy (k)

while preserving the smoothness of the basis. This concludes
the first step listed above.

(B10)

2. Action of M,

Now, we go to the smooth basis under which the action of
C,T is given by (B2), and assume a generic M, action under
this basis

Y (k) — M)y (k')
with a unitary M (k). The symmetry algebra (B1) implies that
MEYME ) = MK YMKk) =1,

(B11)

M) = o, M(k)o,. (B12)
This means there are two possible types of M (k):
M(k) = n(k)e'”®, (B13)
where n(k) = +1, or
M (k) = cosO(k)o, + sin6(k)o,. (B14)

Furthermore, the type of the mirror actions at k and k" must be
the same. If both are at k and k' the mirror action is of the first
type, then

n(e)e ™ ®y (ke *) = 1. (BI5)

If both are at k and k" the mirror action is of the second type,
then 6(k) = 0(k").

Now, we consider the case where the mirror eigenvalue at
M is +1. Then, the mirror action at M must be of the second
type because the first type will not give rise to two different
eigenvalues at M. Without loss of generality, we can take the
action of M, at M to be

Yk=M)— ok =M). (B16)
Next, we look for a unitary W (k) such that under M,,
W)y (k) — o, Wk )y (k). (B17)

If such a W (k) can be found, the action of M, can be chosen

to be (B3). This requires that
Wk)M (k) = o, W(K'). (B18)

Notice this requirement automatically implies W (k' )M (k') =
o, W (k) by noting that M (k)M (k') = 1. We need to choose
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W (k) such that the C,7T action is still given by (B2), which
requires

W(k)* = o, W (K)o, (B19)

The smoothness of the basis means that in this region M (k)
is always of the second type, given by (B14). Then, to satisfy
the requirements (B18) and (B19), we can choose

Wk)=Wk')=e 700, (B20)

This is indeed a smooth transformation given that 6 (k) = (k')
in this case, as discussed earlier. This tells us that as long as
the mirror eigenvalues at M are +1, we can always choose
the mirror action in this region to be given by (B3), while
preserving the smoothness of the basis.

In contrast, if both mirror eigenvalues at M are the same,
the mirror action at M must be of the first type. That is, we can
write the action of M, at M as

Yk =M)—> nuy(k=M),

where 1), = =1 is the mirror eigenvalue at M. The smoothness
of the basis implies that M (k) in the entire open region is of the
first type, given by (B13). In addition, in this entire open region
n(k) = ny. Then, we can find a unitary W (k) transformation,
such that

(B21)

W (k)M (k) = nuW (k') (B22)

so that the mirror action is given by (B4) in the entire open
region, and the basis is still smooth while the action of C,T is
still given by (B2). More explicitly, we can choose

Wk) =Wk ) =e 500, (B23)

This concludes the second step listed above.

3. Relative chiralities

Now, we go to a basis where the action of C,7 is given
by (B2), and the action of M, is given by either (B3) or (B4),
depending on whether the mirror eigenvalues at M are different
or identical. This C,7 action constrains the first-quantized
Hamiltonian to be

H (k) = no(k) + ni(k)o, + na(k)oy,

and the winding of (n,(k), n,(k))" along a closed path defines
the chirality along this closed path. From this definition, we see
that only gapless points in the Brillouin zone contribute to the
net chirality.

If the mirror eigenvalues are opposite at M, that is, the
action of M, is given by (B3), thenn, (k) = ny (k') andn, (k) =
—ny(k"), where k' is the M, partner of k. Now, consider a
pair of gapless points in the Brillouin zone that are related
by M,, and draw a small closed loop around each of them. It
is straightforward to see that the windings around these two
loops are the same. In contrast, if the mirror eigenvalues are
identical at M, that is, the action of M, is given by (B4), then
n12(k) = ny (k). Itis straightforward to see that the windings
around a pair of gapless points related by M, are opposite. This
concludes the third step listed above.

In short, when M, is preserved, having opposite (same)
mirror eigenvalues at M is equivalent to having same (opposite)
chiralities at a pair of gapless points related by M,. Given that
both K and K’ are host Dirac points and they are related by
M,, the net chirality of the entire Brillouin zone is nonzero
(zero) if the mirror eigenvalues at M are opposite (identical).
Upon breaking M, the net chirality cannot change due to its
discrete nature. This enables us to check the net chirality by
simply looking at the eigenvalues of M, at its high-symmetry
points.
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