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Near-field dynamics at a metallic transmission grating
with femtosecond illumination: A theoretical study
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This paper reports on the temporal and spectral light field evolution for two different types of metallic gratings
after illumination with a near-infrared TM-polarized femtosecond pulse: a freestanding grating in air and a grating
on a dielectric substrate. The electromagnetic field components are calculated numerically at various transverse
locations of the gratings by use of a finite-difference time-domain model. The spectral dynamics are explained by
the dynamics of surface plasmon polaritons (SPPs). Fano-like profiles are observed close to an SPP resonance in
the calculated spectral curves, indicating a connection between the Rayleigh anomaly and a nearby SPP resonance.
For the freestanding grating, only a single Fano-like profile close to the air/metal SPP resonance and, with the
dielectric support, two Fano-type profiles are observed, one in the proximity of the air/metal SPP resonance, the
other in the proximity of the substrate/metal resonance. Investigating the changes in the spectra for an increasing
distance to the grating, it is found that with increasing distance, the spectral curves related to different transverse
locations coincide almost completely, providing evidence that the near-field contributions disappeared.
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I. INTRODUCTION

Optical properties of metallic nanostructures have been
intensively studied during the last four decades. One important
finding is that the light/metal interaction can, in many cases,
be explained with the presence of surface plasmon polaritons
(SPPs) [1–4]. Novel optical effects have been discovered at the
light-metal interaction on metallic films perforated by two-
dimensional nanohole arrays [5–11] or on one-dimensional
subwavelength slit apertures [12–18]. The work of Ebbesen
et al. provides evidence for extraordinary optical transmission
(EOT) through subwavelength hole arrays in opaque gold or
silver thin films at particular wavelengths [5]. EOT refers to
enhanced light transmission compared to the light transmission
through hole arrays in a perfectly conducting thin-film. How-
ever, experimental and theoretical studies revealed that SPPs
play an essential role, but not the sole role in the EOT effect.

It has been demonstrated that quasicylindrical waves to-
gether with SPPs are generated by slit or hole scattering of light
on an interface of a metallic grating [19,20]. SPPs contribute
dominantly to surface wave intensity for wavelengths smaller
than 1 μm for noble metals [20], also cross conversion between
the two surface waves has been observed [21].

Besides their wide applications in experimental nano optics
and optics technology, metallic gratings are also frequently
used to study the Wood’s anomaly. This phenomenon was
discovered by Wood [22] more than 100 years ago and refers
to an abrupt change in intensity of diffraction orders at certain
wavelengths for a metallic grating. A first theoretical explana-
tion of Wood’s anomalies was given by Rayleigh [23], making
the conjecture that an anomaly occurs when a diffraction order
grazes the surface of the grating and, in consequence, is passing
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off in the far field, while it still exists as an evanescent wave
in the grating near field. The wavelength corresponding to a
passing off of a grating order is called a Rayleigh wavelength
and follows from the well-known grating formula. Later on,
Fano [24] described Wood’s anomaly to be comprised of
two coupled phenomena: first, an edge or Rayleigh anomaly
showing as a sharp edge in the spectral intensity at the Rayleigh
wavelength and, second, a diffuse anomaly also first observed
by Wood, including a minimum and, in close spectral proximity
to it, a maximum of spectral intensity [25].

It is accepted that Wood’s anomaly causes the EOT
phenomenon [18]. Mostly the steady-state interaction under
continuous-wave excitation has been studied. In this paper,
an ultrashort illumination of a 1D grating and the temporal
and spectral near-field features are presented. To obtain the
presented numerical results, the Maxwell’s equations are
solved based on the grating geometry and the Drude model
for electron dynamics in the grating material. The numerical
results show that whether or not the grating is formed on a
substrate is important to the features of Wood’s anomaly in
the near field. The carrier wavelength of the incident pulse
is selected to be at a typical Ti:sapphire wavelength. A finite
difference time domain (FDTD) code is used for the numerical
calculations [26].

II. THE THEORETICAL MODEL

With reference to Figs. 1(a) and 1(b), a freestanding grating
in air and a grating on a dielectric substrate with a refractive
index ns are studied. The former case resembles a setup
frequently used in theoretical models explaining the under-
lying optical principles while the latter represents a typical
experimental setup. A comparison of both reveals how the
light transmission is influenced by the dielectric support. In the
model, the electric field of the exciting light pulse oscillates
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FIG. 1. (a) A freestanding grating, i.e., the index of refraction
above and below na = 1. (b) A grating supported by a dielectric
substrate ns = 1.1 with air on the top. In both setups, the pitch
length of the grating is ag = 750 nm, the thickness of the gold film is
h = 120 nm, and the width of a grating slit is wg = 60 nm.

parallel to the x axis and its wave vector is directed in the
z direction, normal to the bottom of the grating, i.e., TM
polarization is used. The incident field is simulated by a plane
wave at λ0 = 810 nm, i.e., ν0 ≈ 0.37/fs, modulated with a
Gaussian temporal shape.

Frequency-dependent values for the real and imaginary
parts of the metal permittivity εm of the gold surface close to ν0

are calculated based on Ref. [27], i.e., εm,re ≈ −25 and εm,im ≈
1.6. The upper and lower interface each have a SPP resonance.
With an increasing difference in the refractive index on said
interfaces, the frequency spacing of said resonances will also
increase. To simultaneously excite both SPP resonances at
a comparable level of field intensity, a sufficiently broad
excitation bandwidth is needed.

The first-order SPP resonances at the air/metal and
the substrate/metal interfaces are given by νSP,a ≈ νR,a (1 +
[2εm,re]−1) and νSP,s ≈ νR,s (1 + [2εm,re]−1) where νR,a =
c/ag and νR,s = νR,a/ns denote the first-order Rayleigh fre-
quencies with ag = 0.75 μm being the grating period or pitch
length. The above SPP resonances are derived from the SPP
dispersion relation of light on a smooth metallic surface [6].
Since εm,re is a large negative number, the first-order SPP
resonances are near to the first-order Rayleigh anomalies.

In the present paper, a refractive index for the substrate of
ns = 1.1 is used. For some glass types, the refractive index can
be as low as n = 1.35. However, a simultaneous excitation of
both SPP resonances would require a Gaussian pulse duration
smaller than δtp = 0.44/(νR,a − νR,s ) ≈ 4.2 fs. Since δtp is
antiproportional to νR,a − νR,s for a silica substrate with
ns = 1.5, even shorter pulses would be required. Such short
pulses are rather difficult to use experimentally, furthermore,
numerical calculations become increasingly computationally
demanding for shorter pulses when a FDTD method is used.

A refractive index ns = 1.1 for the substrate corresponds
to a pulse duration of δtp ≈ 12 fs. To sufficiently excite both
resonances in this paper, the exciting pulse width (FWHM
of pulse intensity) is set to tp = 10 fs. A refractive index
difference of 0.1 is experimentally relevant, e.g., when on
one interface of the grating an additional coating or liquid
is deposited [28,29]. To measure the respective output fields

and their power spectra, near-field scanning optical microscopy
would be a suitable experimental tool [7].

The numerical calculations of the pulse propagation were
performed with a FDTD code applied to Maxwell’s equations
for the only nonvanishing magnetic component, Hy and the
two electric field components Ex , Ez. The code is described in
Refs. [9,30]. To calculate the transmission, the incident pulse
is numerically propagated through the grating by solving the
Maxwell’s equations. To account for electron dynamics in the
metal of the grating, the Maxwell’s equations are combined
with Drude’s equations. The mathematical description for the
freestanding grating can be found, e.g., in Ref. [31]. Including
the description of the grating deposited on a substrate, we arrive
at the following set of equations:

−∂Hy

∂z
= ε0ε

∂Ex

∂t
+ Jx, (1)

∂Hy

∂x
= ε0ε

∂Ez

∂t
+ Jz, (2)

μ0
∂Hy

∂t
= ∂Ez

∂x
− ∂Ex

∂z
, (3)

∂ �J
∂t

+ γD
�J = ε0ω

2
D

�E. (4)

The above equation system consists of the Maxwell’s equa-
tions, Eqs. (1)–(3), coupled to the auxiliary equation, Eq. (4),
related to the motion of the quasifree charged particles in the
metal. ε0 and μ0 are the free-space permittivity and magnetic
permeability, respectively. ε is the relative permittivity, i.e.,
ε = 1 for the freestanding grating. For the electromagnetic
field in the substrate ε = n2

s = 1.21 is calculated. The metal
polarization �Pm is represented by its time derivative �J =
∂ �Pm/∂t . The values Jx,z follow from the Drude model and are
correlated to the above-mentioned complex metal permittivity
εm, via the parameters ωD and γD of Eq. (4) according to the
expression εm(ω) = 1 − ω2

D/(ω2 + iγDω). The incorporation
of Eq. (4) into the fundamental Yee’s leap-frog algorithm
scheme of our theoretical model follows instructions given in
Ref. [30].

The wave-vector components in the x-z plane are given
by kx,q = qGx and kz,q =

√
k2 − k2

x,q , where k = ω
c

is the
free-space wave number, q = 0,±1, ... denotes the diffraction
order of the grating modes, and Gx = 2π/ag is the reciprocal
lattice vector. We relate the zero-order mode, q = 0, to a
propagating wave directed along the z axis (kx = 0), frequently
described as specular transmission mode. On the other hand,
the first-order modes, q = +1 and q = −1, are associated with
SPP waves in view of the z axis while propagating along the
positive and negative x axis. These SPP waves appear if the
condition k2 − G2

x < 0 is met, that is, for ν < νR,a .

III. THE TEMPORAL EVOLUTION
OF THE GRATING NEAR FIELD

It is of interest how the light field evolves with time at a
few nanometers above the grating (z = h + 8 nm) at various
transverse locations, namely, x = 0, x = ag/4, and x = ag/2,
with x = 0 corresponding to the center of a slit. In Fig. 2,
magnetic fields are shown on a delay axis for the freestanding
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FIG. 2. Amplitude of the magnetic field for (a) the freestanding
grating and (b) the grating supported by the dielectric, both at x =
ag/2 and at z = h + 8 nm, excited with a 10 fs light pulse. Also a
fitted exponential decay (red curve) is shown connecting the amplitude
peaks.

grating in Fig. 2(a) and with dielectric support in Fig. 2(b)
at the center of the metallic section, i.e., at x = ag/2. In
Fig. 2 and all subsequent figures, zero delay refers to the
arrival of the pulse center, i.e., of the maximum intensity, of
the incident pulse on the grating surface. Damped magnetic
field oscillations are observed for both gratings, starting with
a distinct sharp peak originated from the short incident pulse.
The response of the excited grating following the initial peak
appears in the form of a high-frequency oscillation with a
superimposed slow amplitude. Comparing Figs. 2(a) and 2(b)
differences for the decay time of the oscillation td and the
modulation period tm are found, wherein the modulation period
refers to a time interval between subsequent modulation peaks.
The peaks of the amplitude are connected by the red curve,
which is best described by an exponential decay. With an
exponential decay parameter td ≈ 123 fs for the freestanding
grating and td ≈ 36 fs on the dielectric support. In other words,
the transmitted field amplitude of the grating on the dielectric
support drops three to four times faster. The increased detuning
of the two SPP oscillators gives rise to a faster decay of the
transmitted field amplitude. The loss of field energy is due to
higher radiation into the outside and absorption in the metal.

Moreover, the modulation period of the grating on a dielec-
tric substrate tm ≈ 25 fs is smaller than that of a freestanding
grating tm ≈ 48 fs. This can be explained with a larger spectral
width in the former case being available due to the stronger
damping.

The amplitude modulation in Fig. 2 can be described in
terms of a modulation index m. In radio frequency, engineering
m is used to measure amplitude variations caused by an audio
signal impressed onto a high-frequency carrier. An algebraic
expression of m can be found in Ref. [32] and Fig. 3 shows m

for different modulation periods p. m approaches a maximum
value of m = 1 when the interfering waves have a similar
amplitude and phase. Thus, m is an indicator for the relative
amplitude dynamics.

For the freestanding grating, a continuous increase of m

is observed. The peak value of m ≈ 0.95 is reached at about
t = 500 fs, i.e., after nine modulation periods. The amplitude
modulation at the beginning of the modulation process is

FIG. 3. The degree of modulation m of the amplitude for different
modulation periods p.

characterized by a low value of m corresponding to different
amplitudes of the interfering modes. This difference becomes
smaller with increasing p and the wave tends to become fully
modulated.

In contrast for the grating on a substrate, the m curve has a
short deterioration at the beginning showing a first increase to a
peak value of m ≈ 0.8 at about t = 150 fs. Afterward, m shows
a steep decrease followed by a moderate increase up to about
m = 0.6, followed by a slow decrease, and finally arriving at
m = 0.8. The variations of the magnetic field in Fig. 2 are due
to a self-modulation of the field amplitude following the impact
of a short pulse. It is noted that the amplitude modulation of Hy

is a linear process connected with radiation out of the grating.
Figure 4 shows the envelopes of the magnetic field at

x = 0, x = ag/4, and x = ag/2, respectively. The envelopes
are derived via Fourier filtering of Hy . At location x = ag/4,
the magnetic field amplitude is at all times smaller than at
x = 0 and x = ag/2. According to the model of Ref. [31], the
zero-order mode (q = 0) is a propagating wave directed in the
z direction and the two other modes (q = 1 and q = −1) are
evanescent SPP waves decaying with z and, simultaneously,
propagate along x. This gives rise to an interference between

FIG. 4. Envelopes of the magnetic field for the two grating types
at z = h + 8 nm and at different transverse locations on the upper
grating air/metal interface: x = 0 (black line), x = ag/4 (red), and
x = ag/2 (blue), cf. Fig. 1. The red curves have been enlarged
by a factor of 5. The modulation period in (a) tm ≈ 48 fs and in
(b) tm ≈ 25 fs.
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FIG. 5. Envelopes of the electric fields Ex (top line) and Ez

(bottom line) at z = h + 8 nm, at different transverse locations: x = 0
(black line), x = ag/4 (red), and x = ag/2 (blue), cf. Fig. 1.

the counterpropagating waves, e.g., a node at x = ag/4 ap-
pears. At this location, as a result of the interference, the strong
first order waves disappear, while the weak zeroth-order mode,
i.e., the red curve, becomes visible. Comparing Figs. 4(a) and
4(b), a shorter decay time td ≈ 36 fs and a shorter modulation
period tm ≈ 25 fs is observed for the grating on a dielectric
substrate.

Figure 5 shows the electric field envelopes of the two electric
components Ex (top) and Ez (bottom).

Figures 5(a) and 5(b) show that the amplitudes of the Ex

component at x = 0 (black line) is at all times larger than the
respective amplitude at x = ag/4 and x = ag/2. Figures 5(c)
and 5(d) show that the amplitudes of the Ez component at
x = ag/4 (red line) is at all times larger than the respective
amplitude at x = 0 and x = ag/2. The relative difference in

the amplitudes between Ex and Ez at different x positions
can be explained by the different boundary conditions on the
metal and in the opening. The relative Ex amplitudes at the
respective x positions correspond with those of the respective
Hy components as shown in Figs. 4(a) and 4(b).

IV. TIME-RESOLVED SPECTRA
OF THE MAGNETIC NEAR FIELD

In the following, spectral dynamics over time of Hy are
discussed based on a wavelet transform [33]. The wavelet
transformation is a well-established method for analyzing a
complex temporal and spectral evolution of an electromagnetic
field. For the wavelet transform W (u, s), a Gabor wavelet ψ

is used. Hereinafter, the analysis is restricted to an analysis of
the moduli AW = |W (u, s)| as introduced in Ref. [31]. The
wavelet transform is given by

W (u, s) = 1√
s

∫ ∞

−∞
Hy (t )ψ∗[(t − u)/s]dt, (5)

with the Gabor wavelet from Refs. [31,33]:

ψ (t ) = 1

(σ 2π )1/4
e−t2/2σ 2+iηt , (6)

with W being a complex function of the two variables u and s,
which are referred to as the translation and scaling parameters.

Figure 6 shows two spectrograms of the moduli AW in the
u/s plane for the magnetic field of the freestanding grating,
Fig. 6(a), and on a substrate, Fig. 6(b). Note that s is inverse to
the frequency ν, thus an aditional frequency axis is shown to
improve the intelligibility of the transformation s = νSP,a/ν.
To simplify the comparison between the spectrograms, some
prominent frequencies are identified.

Due to the time and frequency spread of the Gabor
wavelet ψ , the time and frequency coordinates in the above

FIG. 6. Contour plots of the modulus AW = |W (u, s )| of a Gabor wavelet-transform of the Hy field component in the u/s plane for
a freestanding grating (a) and a grating on a dielectric substrate (b). The white rectangles illustrate local Heisenberg boxes indicating the
minimum spectral and temporal spread in the time-frequency plane.
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FIG. 7. The two graphs display the modulus AW vs. the scaling
factor s (bottom) and the frequency (top) based on the contour plots
Figs. 6(a) and 6(b) for (a) the freestanding grating and (b) the grating
on the substrate. Curves relate to different translation parameters u
(time delay):u = 50 fs (black),u = 75 fs (orange),u = 100 fs (blue),
u = 150 fs (green), and u = 200 fs (red). The vertical broken lines
highlight the spectral locations of the Rayleigh frequencies (νR,a, νR,s)
and SPP resonances (νSP,a , νSP,s).

spectrograms cannot be specified to an accuracy better than
σt = sσ/

√
2 and σω = 1/(

√
2sσ ), with σ = 30 fs being the

full temporal width of the Gaussian window function used in
the wavelet transform.

In Fig. 6(a), i.e., for the freestanding grating, a peak of
AW is observed followed by a long decrease. In contrast, in
Fig. 6(b), the initial peak is followed by a much faster decrease,
which corresponds to the faster decrease of the field amplitude
observed for the grating on a dielectric support in Fig. 2(b).

Furthermore, in Fig. 6(a) between νR,a and νmax, a com-
plex evolution of the amplitudes is observed. For a more
detailed analysis, Figs. 7(a) and 7(b) show cuts, perpendicular
to the u axis, of the spectrograms of Figs. 6(a) and 6(b),
respectively.

One recognizes that AW between νR,a and νmax in Fig. 7(a),
i.e., for the freestanding grating, exhibits a Fano-type profile.
The sharp anomaly at νR,a is followed by an antiresonance
transmission dip, with a respective minimum close to νSP,a ,
followed by a respective peak. This indicates a narrow coupling
between the SPPs and the Rayleigh anomaly. In contrast, for
the grating on a dielectic support, i.e., in Fig. 7(b), no such
profiles are observed. Instead, more complex spectra are found,
which are explained by two different SPP resonances νSP,a and
νSP,s . The second SPP resonance at νSP,s leads to a significantly
extended transmission frequency range.

V. POWER SPECTRA OF THE MAGNETIC
AND ELECTRIC NEAR FIELDS

This chapter presents the spectral intensities (power spec-
tra) |hy (ν)|2, |ex (ν)|2, and |ez(ν)|2 of the magnetic near
field and its two corresponding electric components ob-
tained via respective Fourier transforms, e.g., |hy (ν)|2 =
| ∫ ∞

−∞ Hy (t )exp(−i2πνt )dt |2.
Figure 8(a) shows the numerically calculated near-field

power spectrum of |hy (ν)|2 for the freestanding grating and
Figs. 8(b), 8(c) and 8(d) show the respective spectra for each
of the above field components for the grating on the dielectric
substrate. Each spectrum exhibits a plurality of resonance

FIG. 8. Numerically calculated spectral intensities of the near
field at z = h + 8 nm at x = 0 (black), x = ag/4 (red), and x = ag/2
(blue). In (a), |hy |2 for the freestanding grating and in (b), (c), and (d)
|hy |2, |ex |2, and |ez|2 for the grating on a support are shown. The red
curves in (a), (b), and (c) are enhanced by a factor of 100.

peaks and antiresonance dips. Among them are pairs of dips
and peaks that constitute characteristic Fano-type profiles.

In Fig. 8(a), one observes two peaks, one at νmax = 0.38/fs,
another at νR,a = 0.40/fs, and a region of low intensity therein
betweeen. The minimum of the gap is close to νSP,a . In other
words, this compound resonance system comprises a sharp
anomaly at νR,a , a dip around νSP,a , and a peak at νmax, which
constitute a Fano profile as described above. Moreover, one
notes a slightly faster increase at the high-frequency side of
the peak (beyond νmax), indicating an asymmetric resonance
curve, which is in a qualitative accordance with experimental
and theoretical results, e.g., Ref. [7].

In contrast, for the grating on a dielectric, two SPP reso-
nances must be considered and two Fano-type profiles may
occur. In Fig. 8(c), starting from the high-frequency side, the
black line exhibits an edge at νR,a , i.e., a sharp anomaly,
followed by an antiresonance dip at νSP,a and then grows onto a
peak. A second edge at νR,s indicates a second sharp anomaly,
followed by an antiresonance dip at νSP,s and a resonance peak
further away. In other words, two sharp anomalies are followed
by a diffuse anomaly, respectively, which confirms the presence
of two Fano-type profiles, one at νSP,a and the other one at
νSP,s . While the diffuse anomaly close to νSP,s has a distinctive
antiresonance and a resonance pattern, the diffuse anomaly at
νSP,a is either an antiresonance dip [black curve in Fig. 8(c)]
followed by a peak or a resonance peak followed by a dip [red
curve in Fig. 8(d)].

In conclusion, in all spectral curves the edge, i.e., the sharp
resonance, is followed by a diffuse anomaly. The difference
in the appearance of the diffuse anomaly is associated with
different Fano line-shape parameters [34].

VI. A LOOK TOWARD THE FAR FIELD TRANSMISSION

Figure 9 shows the electric transmission spectrum |ex (ν)|2
taken at a distance to the grating of 3.5 μm, that is at about 4.3
times the carrier wavelength. Note that the same parameters
have been employed as in Fig. 8(c) except for the distance
to the grating. In contrast to near-field curves of Fig. 8(c)
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FIG. 9. Spectral power of the electric field vs frequency at z =
h + 3.5 μm for the grating on the dielectric substrate. The frequencies
of the Rayleigh anomalies and the SPP resonances are marked as
vertical lines. The green curve relates to the normalized power
spectrum of the incident light pulse.

at a distance of about 8 nm to the grating, in Fig. 9 a
distinguishing between the spectra is not possible since all
spectra are identical, therefore Fig. 9 shows only the |ex (ν)|2
component. In particular, a strict correspondence in respect
to the spectral position of the minima and maxima of the
curves can be verified. Therefore, it follows that near-field
contributions of the SPP dynamics to transmission spectra have
almost disappeared at 3.5 μm. Thus, the spectrum at 3.5 μm
already has the features of a far-field spectrum. Said spectrum
is consistent with the far-field spectrum of Ref. [16], which has
minima close to the SPP resonances and maxima close to the
Rayleigh anomalies.

VII. CONCLUSIONS

Based on a numerical solution of Maxwell’s equations, the
light field dynamics in two different metallic grating setups
with one-dimensional subwavelength slit apertures, namely,
a freestanding grating in air and a grating on a dielectric
substrate have been studied. In a subwavelength distance and
at a timescale in the same order of the pulse duration, the
grating transmission is found to be influenced by the presence
of a substrate.

In the time domain, the main difference is found to be a faster
decay and a lower degree of modulation of the amplitude for
the grating on the substrate. A wavelet transform has been used
to calculate the corresponding temporal-spectral features.

In the spectral domain, for the freestanding grating a single
Fano-type profile corresponding to a single Rayleigh anomaly
at the air/metal interface is observed. For the grating on the sub-
strate two Fano-type profiles are observed, one at the air/metal
SPP resonance and the other at the substrate/metal SPP reso-
nance. On one hand, the diffuse anomaly at the substrate/metal
SPP resonance is formed by a distinctive antiresonance and a
resonance pattern. On the other hand, the diffuse anomaly at the
air/metal SPP resonance is found to be either an antiresonance
dip followed by a peak or a resonance peak followed by a dip,
depending on the respective transverse location.

Furthermore, it is found that for larger distances and longer
delays, the contributions of the surface dynamics vanish, which
eventually leads to the well-known transmission spectra of the
classical grating theory.
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