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Modal expansion of the scattered field: Causality, nondivergence, and nonresonant contribution
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Modal analysis based on the quasinormal modes (QNMs), also called resonant states, has emerged as a
promising way for modeling the resonant interaction of light with open optical cavities. However, the fields
associated with QNMs in open photonic cavities diverge far away from the scatterer and the possibility of
expanding the scattered field with only resonant contributions has not been established. Here, we address these
two issues while restricting our study to the case of a dispersionless spherical scatterer. First, we derive the
rigorous pole expansion of the T -matrix coefficients that link the scattered to the incident fields associated with
an optical resonator. This expansion evinces the existence of a nonresonant term. Second, in the time domain, the
causality principle allows us to solve the problem of divergence and to derive a modal expansion of the scattered
field that does not diverge far from the scatterer.
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I. INTRODUCTION

Light can resonantly interact with dielectric and metallic
particles that behave as three-dimensional (3D) open cavities
with radiative and possibly absorption losses. The analysis of
the resonance is of the uppermost importance in understand-
ing and optimizing the process. Among the several theories
developed for such an analysis, the quasinormal mode (QNM)
theory, also called resonant-state expansion, has attracted much
attention since it allows for an interpretation of the electromag-
netic response of optical resonators with respect to their eigen-
modes associated with complex eigenfrequencies ωp,n [1–12].
Even though the use of QNM is quite recent in nanophotonics,
it has a long history in quantum scattering theory, electromag-
netism, and nuclear physics [13–17], starting from the Gamow
states [18] and the singularity expansion method [19,20].

The imaginary part of the eigenfrequencies ωp,n reflects
the energy decay experienced by the modes of open and
passive systems. That means that under an exp(−iωt ) time
dependence, the imaginary part of ωp,n must be negative.
This negative imaginary part of the eigenfrequencies in turn
causes a divergence of the associated eigenmodes at large
distances from the scatterer r → ∞ as they verify outgoing
boundary conditions, meaning that their radial dependence
asymptotically tends towards eiknr/r , kn = ωp,n

c
[21]. It is

interesting to note that this problem was raised in a different
context by Lamb as early as 1900 [22–24] who introduced the
terminology “exponential catastrophe” following the pioneer-
ing work of Thomson [23–25]. Because of the divergence of
these resonant states, their normalization has to be redefined
[1,3,4,7,15,16,26–30]. QNM analysis of the scattering problem
of optical resonators has been carried out by expanding the
internal field on the QNM basis in order to study the scatter-
ing problem [4]. The scattered field was then computed by
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means of the Green function [4,5,31]. QNM expansions were
recently used to investigate the temporal dynamics of photonic
resonators [32,33]. However, two major problems still remain
and prevent us from having a clear understanding of the QNM
analysis of the scattering problem:

(1) A fundamental problem remains regarding the diver-
gence of the QNM fields: how is it possible to express the
scattered field as a sum of QNMs whereas QNMs diverge
when r → ∞? We will show that in the time domain, the
causality principle solves the problem of divergence faced by
time-harmonic QNM fields. The modal expansion in the time
domain of the outgoing and scattered fields reveals that a part of
the scattered field keeps the same temporal dependence as the
incident field (mere reflection), while the second part involves
the eigenmodes of the scatterer and modifies the temporal
dependence of the incident field.

(2) The other problem we want to treat is related to the
expansion of the scattered field: can the scattered field of
a resonator be expanded as a sum of resonant contributions
only or should a nonresonant contribution also be taken into
account? This question remains, although it has long been
established that the internal field existing inside a spherical
resonator could be expanded as a sum of QNMs only [1,34].
This result is only valid for spherically symmetric scatterers,
but has been assumed in most of the QNM analysis of
arbitrary-shaped scatterers [4,35] for which the internal field
was recast as a superposition of QNMs. Here, we derive an
expression of the scattered field possessing a nonresonant part
in addition to resonant parts associated with the QNM fields.
The nonresonant contribution is needed to derive convergent
expansion of the scattered field. It is different from the incident
field and is not required for expanding the internal field.

II. MODAL EXPANSION OF THE SCATTERING
OPERATORS

When considering light scattering, an excitation field
Eexc(kr) illuminates a scatterer and gives rise to a scattered field
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Escat(kr) outside the scatterer and an internal field Eint(kr).
The total field outside the scatterer is the superposition of the
excitation and scattered field, Etot(kr) = Eexc(kr) + Escat(kr),
and can also be decomposed as a sum of incoming Ein(kr)
and outgoing Eout(kr) fields. The incoming and outgoing
fields Ein(kr) and Eout(kr) are expanded on a set of incoming
[N(−)

n,m(kr), M(−)
n,m(kr)] and outgoing [N(+)(kr), M(+)(kr)] vec-

tor partial waves (VPWs). Given the definitions of the incoming
and outgoing VPWs (see Supplemental Material [36]), Ein(kr)
and Eout(kr) can be expressed as follows:

Eout(kr) = E0

∞∑
n,m

s (h,+)
n,m (ω)M(+)

n,m(kr) + s (e,+)
n,m (ω)N(+)

n,m(kr),

Ein(kr) = E0

∑
n,m

s (h,−)
n,m (ω)M(−)

n,m(kr) + s (e,−)
n,m (ω)N(−)

n,m(kr),

(1)

where E0 is the amplitude of the field, s (i,−)
n,m (s (i,+)

n,m ) are the
coefficients of expansion of the incoming (outgoing) field
on the incoming (outgoing) VPWs, with i = (e, h), e and h

denoting electric and magnetic modes, and where n and m

denote the multipolar order (see Supplemental Material [36]).
The S-matrix operator provides the outgoing field with respect
to the incoming field: Eout(ω) = S(ω)Ein(ω). For spherically
symmetric scatterers, it takes the form of a diagonal matrix in
a multipolar representation with coefficients defined as S (i)

n =
s (i,+)
n,m /s (i,−)

n,m . The analytic properties of the S (i)
n coefficients are

linked with the energy conservation and causality. In particular,
for passive media, the norm of all the S-matrix elements is
bounded |S (e,h)

n | � 1 (see Supplemental Material [36]) and
|S (e,h)

n | = 1 for lossless scatterers (where | | corresponds to
the norm). The causality principle also has important implica-
tions for the analytic properties of the S-matrix coefficients
[24,30,37]. Causality notably implies that the coefficients
S (e,h)

n (ω) have to be regular, i.e., do not admit poles, in the upper
part of the complex plane. Demonstrations of this analytic
property of the S-matrix coefficients can be found in [24,37].
Poles satisfy the condition S (e,h)

n

−1
(ω(e,h)

p,n,α ) = 0 and can be
identified as the QNM eigenfrequencies of the scatterers. The
poles of the S matrix, ω(e,h)

p,n,α = ω(e,h)′
p,n,α + iω(e,h)′′

p,n,α , consequently

have a negative imaginary part: ω(e,h)′′
p,n,α . Moreover, energy

conservation and time-reversal symmetry yield, for a lossless
scatterer, S (e,h)

n (ω) = 1/S (e,h)∗
n (ω∗) [24,38]. As a consequence,

S (e,h)
n (ω) should also admit zeros in the upper part of the

complex plane that are mirror images of the poles of S (e,h)
n (ω)

with respect to the real axis for a lossless scatterer [24]. These
zeros z(e,h)

n,α satisfy the condition S (e,h)
n (z(e,h)

n,α ) = 0 and are as-
sociated with modes verifying incoming boundary conditions
[38,39]. The reality of the field and the time-reversal symmetry
impose that the mirror images of ω(e,h)

p,n,α and z(e,h)
n,α with respect

to the imaginary axis, −ω(e,h)∗
p,n,α and −z(e,h)∗

n,α , are also poles
and zeros of S (e,h)

n . The S-matrix coefficients can be cast as
a product between a holomorphic function S

(e,h)
R,n (ω) and an

exponential phase factor e−2i ω
c

R: S (e,h)
n (ω) = e−2i ω

c
RS

(e,h)
R,n (ω).

The prefactor exp(−2ikR) expresses the causality requirement
and arises from the ratio of outgoing and incoming zero-order
Hankel functions at the sphere surface. This term will be
necessary to guarantee the convergence of the sum form in

Eq. (3) when M → ∞. These considerations lead to the
following infinite-product form of the S-matrix coefficients
[24,30,37,38,40] (see also Supplemental Material [36]):

S (e)
n (ω) = (−1)n+1e−2ikR

∞∏
α=−∞

ω − z(e)
n,α

ω − ω
(e)
p,n,α

,

S (h)
n (ω) = (−1)ne−2ikR

∞∏
α=−∞

ω − z(h)
n,α

ω − ω
(h)
p,n,α

,

(2)

where k = ω
c

. This infinite product converges because of the
link between the positions of zeros and poles. The poles and
zeros with a positive index α have a positive real part, while
those with a negative index are their mirror images with respect
to the real axis (a pole on the imaginary axis can be designated
α = 0). If we expand S

(e,h)
R,n (ω) into partial fractions, it is

possible to transform the product in Eq. (2) into an infinite
sum [38,40]. In practice, one has to truncate this sum to a finite
number M of terms. This leads to the following expression of
S (e,h)

n (ω) (see Supplemental Material [36]):

S (i)
n (ω) � e−2ikR

(
S (i)

nr,n +
M∑

α=−M

r (i)
n,α

ω − ω
(i)
p,n,α

)
, (3)

where i = (e, h) and r (i)
n,α is the residue of S

(i)
R,n at the poles

ω(i)
p,n,α and the nonresonant term S (i)

nr,n = 1 + ∑M
α=−M

r
(i)
n,α

ω
(i)
p,n,α

.

So far, the use of the S-matrix formalism has proved
very useful for deducing the analytic properties of the scat-
tering matrix coefficients from general properties such as
causality and energy conservation. However, the T-matrix
formalism will be preferred in the following as it provides
a more intuitive description of the scattering problem by
linking the excitation field to the scattered field. The ex-
citation field Eexc will be expanded on the set of regular
VPWs [N(1)

n,m(kr), M(1)
n,m(kr)] with the corresponding coeffi-

cients of expansion [e(e)
n,m(ω), e(h)

n,m(ω)], while coefficients of
expansion of the scattered field Escat on the outgoing VPWs
[N(+)(kr), M(+)(kr)] will be denoted [f (e)

n,m(ω), f (h)
n,m(ω)] (see

Supplemental Material [36]). The T matrix is also diagonal for a
spherically symmetric scatterer and its coefficients are defined
as follows: T (e,h)

n (ω) = f (e,h)
n,m (ω)/e(e,h)

n,m (ω). A pole expansion
of the T-matrix coefficient can also be derived from Eq. (3) by
means of the following relation T = S−I

2 [41], where I is the
identity matrix, leading to:

T (i)
n (ω) � A(i)

n (ω) + B (i)
n (ω)

M∑
α=−M

r (i)
n,α

ω − ω
(i)
p,n,α

, (4)

where i = (e, h), A(i)
n (ω) = e−2ikRS

(i)
nr,n−1

2 , and B (i)
n (ω) = e−2ikR

2 .
This pole expansion of the T-matrix coefficients allows one to
determine the spectral response of a scatterer over a broad range
of frequencies from a discrete set of QNMs. This is illustrated
in Fig. 1(a), where the accuracy of this pole expansion and
the importance of these nonresonant terms are assessed. We
compare in particular the dipolar electric partial scattering
efficiency Q

(e)
1 = 6

z2 |T (e)
1 |2 obtained by exact calculation on

one side and using Eq. (4) with M = 100 for a spherical
scatterer of dielectric permittivity ε = 16 in air, as it is close to
the permittivity of silicon in the visible spectrum [29]. Poles
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FIG. 1. (a) Dipolar electric partial scattering efficiency Q
(e)
1 =

6
z2 |T (e)

1 |2 and (b) averaged square modulus of the internal electric
field with |E0| = 1 for an ε = 16 spherical scatterer in air: exact
calculations (red solid curve); (a) Eq. (4) with M = 100 poles and
(b) Eq. (5) with M = 10 poles (gray dashed line); (a) Eq. (4) with
M = 100 while assuming S (e,h)

nr,n = 0 (blue dashed curve).

were found by using their asymptotic values [30] along with
pole-finding methods (ε = 16 in the whole complex ω plane).
A good agreement between the exact calculations and Eq. (4)
is found. Figure 1(a) also illustrates the importance of the
nonresonant term in Eq. (4) since a poor prediction of the
electric dipolar partial scattering efficiency is obtained when
neglecting it even when a large number of poles is taken into
account. Similar results can be obtained for other multipolar
orders. The link between the pole expansion of the T-matrix
coefficients and the QNM expansion of the scattered field will
be clarified in the second part of this study.

Let us now extend this work to the internal field, i.e., the field
inside the resonator, by introducing the � matrix that relates
the internal field to the incoming field. Let [u(e)

n,m(ω), u(h)
n,m(ω)]

be the coefficients of the internal field on the regular VPWs
[N(1)

n,m(ksr), M(1)
n,m(ksr)] where ks = √

εs
ω
c

. The coefficients

are then simply defined as �(i)
n (ω) = u

(i)
n,m(ω)

s
(i,−)
n,m (ω)

. Similarly, it is

useful to introduce the � matrix that relates the excitation
field to the internal field and whose coefficients are defined as
�(i)

n (ω) = u
(i)
n,m(ω)

e
(i)
n,m(ω)

, with�(i)
n (ω) = �

(i)
n (ω)

2 . A pole expansion can

also be derived for �(i)
n (ω) and �(i)

n (ω). Energy conservation
does not require the coefficients �(i)

n (ω) to be unitary. Con-
sequently, and in contrast to S (i)

n (ω), these coefficients do not
possess zeros that are symmetric to their poles with respect to
the real axis. One can show that �(i)

n (ω) and �(i)
n (ω) admit the

following pole expansion (see Supplemental Material [36]):

�(i)
n (ω) =

∞∑
α=−∞

r
(i)
�,n,α

ω − ω
(i)
p,n,α

≡ 2 �(e,h)
n (ω), (5)

where i = e or h. Unlike the pole expansions of S (e,h)
n (ω) and

T (e,h)
n (ω), there is no nonresonant term in the pole expansion

of �(e,h)
n (ω) and �(e,h)

n (ω). To study the accuracy of this
pole expansion, we calculate the averaged square internal
field of a spherical resonator excited by a plane wave [30]

(see Supplemental Material [36]): 〈|Eint |2〉
|E0|2 = ∑∞

n=1
〈|E(e)

i,n |2〉
|E0|2 +

〈|E(h)
i,n |2〉

|E0|2 . This expression is plotted in Fig. 1(b) with εs = 16

while considering the electric dipole contribution only, i.e.,
〈|E(e)

i,1 |2〉
|E0|2 .

Figure 1(b) shows a good agreement between exact calcu-
lations and the predictions obtained while using Eq. (5) with
20 poles (10 poles with a positive real part along with their
symmetric with respect to the imaginary axis).

III. CAUSALITY AND TIME DOMAIN

Let us now derive the expression of the outgoing and
scattered fields in terms of the QNM fields. We will in particular
show how the divergence of these QNM fields can be dealt with.
That is why here we will focus on the far-field region where
this divergence occurs. The modes of spherically symmetric
scatterers have to belong to one type of VPW. Let us denote
the electric-type [magnetic-type] modes of the nth multipolar
order E(e)

n,m,α (r) [E(h)
n,m,α (r)]. Outside the scatterer, i.e., for r >

R, E(e)
n,m,α (r) ∝ N(+)

n,m( ω
(e)
p,n,α

c
r) and E(h)

n,m,α (r) ∝ M(+)
n,m( ω

(h)
p,n,α

c
r).

Moreover, in the far-field region (i.e., when r → ∞), they
possess the following asymptotic expressions E(e),FF

n,m,α (r) and
E(h),FF

n,m,α (r) (see Supplemental Material [36]):

E(e),FF
n,m,α (r) ∝ ei

ω
(e)
p,n,α

c
rZn,m(θ, φ),

E(h),FF
n,m,α (r) ∝ ei

ω
(h)
p,n,α

c
rXn,m(θ, φ),

(6)

where Xn,m(θ, φ) and Zn,m(θ, φ) are vector spherical harmon-

ics (see Appendix A of [42]). Since ei
ω

(i)
p,n,α

c
r = ei

ω
(i)′
p,n,α r

c e− ω
(i)′′
p,n,α r

c

and as, due to causality, ω(i)′′
p,n,α < 0, E(i)

n,m,α (r) is exponentially
diverging as r → ∞ (i = e, h), one may believe that this
divergence could hinder the derivation of an expression of
the scattered field in terms of (E(e)

n,m,α , E(h)
n,m,α). However, this

divergence can be understood by noting that due to causality,
considering a scattered field at r → ∞ amounts to assuming
that the system was excited at t → −∞ [22,24].

In what follows, we will show that a divergence-free
expansion of the scattered and outgoing fields of 3D open
optical cavities in the time domain can be obtained. It will
require the use of causal incoming and excitation fields, i.e.,
fields with a sharp cutoff in the time domain [24], together
with rigorous calculations based on the theorem of residues.
Causality can be better understood in the framework of the S

matrix while considering incoming and outgoing waves in the
far-field region. The incoming field defined in Eq. (1) takes the
following asymptotic expression in the far-field region that is
denoted EFF

in :

EFF
in (r, ω) = E0

∞∑
n=1

n∑
m=−n

[
s (h,−)
n,m (ω)in+1 e−ikr

kr
Xn,m(θ, φ)

− s (e,−)
n,m (ω)in+2 e−ikr

kr
Zn,m(θ, φ)

]
, (7)
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where s (i,−)
n,m (ω) = s (i,−)

n,m g(ω), with s (i,−)
n,m being the coefficient

of expansion of the incoming field on the VPWs and g(ω)
being the Fourier transform of the temporal dependence of the
incoming field g(t ). Let us take the Fourier transform of one
of the terms in this sum,

E(e),FF
in,n,m(r, t ) = − in+2E0

2π

∫ +∞

−∞
s (e,−)
n,m (ω)

e−ikr

kr

× Zn,m(θ, φ)e−iωtdω. (8)

As shown in the Supplemental Material [36], we choose
the time dependence g(t ) = H (t )e−iω0t for the incoming
field since it corresponds to an incoming causal wave front.
This causal wave front can be built up by choosing the
following frequency dependence for s (e,−)

n,m (ω): s (e,−)
n,m (ω) =

limη→0+ s (e,−)
n,m

ω
ω0

ieiωts

ω−ω0+iη
(with s (e,−)

n,m a constant) as it is the
Fourier transform of g(t ). For the sake of generality, an
additional phase factor eiωts is introduced to yield an ad-
ditional time delay ts . This definition of s (e,−)

n,m (ω) can be

used in the expression of E(e),FF
in,n,m(r, t ) (see Supplemental

Material [36]):

E(e),FF
in,n,m(r0, t ) = −H

(
t − ts + r0

c

)
in+2E0s

(e,−)
n,m

× e−ik0r0

k0r0
Zn,m(θ, φ)e−iω0(t−ts ), (9)

where H is the Heaviside step distribution. The
time-dependent outgoing field in the far-field region
can be calculated with respect to the S-matrix
coefficients of the incoming field: E(e),FF

out,n,m(r, t ) =
(−i)n+2E0

2π

∫ +∞
−∞ S (e)

n (ω)s (e,−)
n,m (ω) eikr

kr
Zn,m(θ, φ)e−iωtdω.

The easiest way to calculate E(e),FF
out,n,m(r, t ) is to use the

convolution theorem associated with the theorem of residues:

E(e),FF
out,n,m(r, t ) = Cn,m(θ, φ)

k0r
g(t ) ∗

[
S (e)

nr,nδ(t − τ )

−iH (t − τ )
M∑

α=−M

r (e)
n,αe−i

ω
(e)
p,n,α

c
(t−τ )

]
, (10)

with Cn,m(θ, φ) = (−i)n+2E0s
(e,−)
n,m Zn,m(θ, φ), g(t ) =

H (t )e−iω0t , and τ = ts + r
c

− 2R
c

. Two contributions can
be identified in Eq. (10): (i) the nonresonant contribution
equal to the convolution between the temporal dependence
of the incoming field g(t ) and the Dirac distribution
δ(t − ts − r

c
+ 2R

c
). This contribution corresponds to a

mere reflection of the incoming field by the surface of the
scatterer. Importantly, it keeps the same temporal dependence
as the incoming field, which means that it does not distort the
incoming field that is simply translated in time by a factor τ ;
(ii) the resonant contributions that correspond to the convolu-
tion between g(t ) and a sum of exponentially decreasing terms
that are characteristic of the response of each mode. This
resonant response strongly distorts the temporal dependence
of the incoming field, which was expected since it results
from a resonant interaction between light and eigenmodes
of the cavity. These two contributions are sketched in
Fig. 2.

FIG. 2. Schematic representation of nonresonant and resonant
terms in Eq. (10).

The scattered field can finally be obtained by removing
the outgoing part of the excitation field from E(e),FF

out,n,m(r, t ) in
Eq. (10),

E(e),FF
scat,n,m(r, t ) = Dn,m(θ, φ)

2k0r
g(t )

∗
[
S (e)

nr,nδ(t − τ ) − δ
(
t − ts − r

c

)

− iH (t − τ )
M∑

α=−M

r (e)
n,αe−iω

(e)
p,n,α (t−τ )

]
, (11)

with Dn,m(θ, φ) = (−i)n+2E0e
(e)
n,mZn,m(θ, φ).

The scattered field in the time domain results from a
convolution between the excitation field g(t ) and the function
characterizing the response of the scatterer, described by
two terms. The first term, S (e)

nr,nδ(t − τ ) − δ(t − ts − r
c
), is

associated with the nonresonant part S (e)
nr,n of the S-matrix

coefficients from which is subtracted the outgoing part of the
excitation field. This evinces the fact that the nonresonant
part does not include the excitation field. The second term
includes the far-field limit of the QNM fields, E(e),FF

n,m,α (r) ∝
ei

ω
(e)
p,n,α

c
rZn,m(θ, φ). The Heaviside step function in front of

the sum prevents the field from diverging when r → ∞.
The Heaviside distribution results from causality and sim-
ply means that given the initial conditions imposed on the
incoming field in Eq. (9), the outgoing field has only been
able to propagate up to a distance r = c(t − ts ) + 2R. Due
to the Heaviside distribution, the outgoing field is different
from zero only when t − ts − r

c
+ 2R

c
� 0. Therefore, the

term eω
(e)′′
p,n,α (t−ts− r

c
+ 2R

c
) < 1 since one has both ω(i)′′

p,n,α < 0 and
t − ts − r

c
+ 2R

c
� 0, and, consequently, this term does not

diverge.

IV. CONCLUSION

To conclude, in addition to the resonant contributions due
to the excitation of QNM of the scatterer by the excitation
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field, a nonresonant contribution must be taken into account
in the expansion of the scattered field. This result has been
demonstrated by deriving pole expansions of the S- and
T-matrix coefficients of a dispersionless 3D scatterer. We
benefited from the symmetry of the spherical scatterers to
provide the explicit expressions of both resonant and non-
resonant contributions of the scattered field expansion. Then,
the expansion of the scattered field in the time domain was
computed by means of an inverse Fourier transform of the
frequency-dependent scattered field obtained from the pole
expansion of the T-matrix coefficients. Rigorous calculations
based on the theorem of residues together with causality
principle lead to QNM expansion terms that do not diverge
far from the scatterer. This result obtained in the framework of
the multipolar theory can, on physical grounds, be generalized

to arbitrarily shaped scatterers. Moreover, QNM theory is
applicable to an extremely broad range of physical studies far
beyond optics.
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