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Non-Markovian quantum thermodynamics: Laws and fluctuation theorems
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This work brings together thermodynamics and nonequilibrium quantum theory, by showing that a real-time
diagrammatic technique on the Keldysh contour is an equivalent of stochastic thermodynamics for non-Markovian
quantum machines (heat engines, refrigerators, etc.). Symmetries are found between quantum trajectories and
their time reverses on the Keldysh contour, for any interacting quantum system coupled to ideal reservoirs of
electrons, phonons, or photons. These lead to quantum fluctuation theorems the same as the well-known classical
ones (Jarzynski and Crooks equalities, integral fluctuation theorem, etc.), whether the system’s dynamics are
Markovian or not. Some of these are also shown to hold for nonfactorizable initial states. The sequential tunneling
approximation and the cotunneling approximation are both shown to respect the symmetries that ensure the
fluctuation theorems. For all initial states, energy conservation ensures that the first law of thermodynamics holds
on average, while the above symmetries ensure that the second law of thermodynamics holds on average, even if
fluctuations violate it.
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I. INTRODUCTION

The laws of thermodynamics were derived for macroscopic
machines, where entropy-reducing fluctuations (e.g., a gas
spontaneously drifting into one corner of its container) are
so rare that they have been referred to as thermodynamic
miracles [1]. In microscopic systems on short timescales, these
“miracles” are rather common, and we now know they obey
fluctuation theorems [2–6]. There is a unifying theory of such
theorems in classical systems called stochastic thermodynam-
ics [7,8], reviewed in Refs. [9–12]. It gives the Jarzynski
[13], Evans-Searles [14] and Crooks [15,16] equalities in the
relevant limits. It was used to show [7,8] that any classical
system with Markovian dynamics obeys

〈e−�Stot 〉 = 1, (1)

where �Stot is the total entropy change of the system and
reservoirs [17] and the average is over all possible thermal
fluctuations [18]. This has become known as the integral
fluctuation theorem [7–10], even if a similar identity had
appeared under the name nonequilibrium partition identity
earlier [19–21]. Equation (1) tells us that the second law of
thermodynamics is obeyed on average, 〈�Stot〉 � 0. Yet Eq. (1)
also tells us that fluctuations with �Stot < 0 must occur (even
if rarely); otherwise 〈e−�Stot 〉 would be less than one.

At the same time, there is great interest in the thermo-
dynamics of nanoscale machines, particularly those which
convert heat into electricity, or use electricity to perform
refrigeration. Such machines are definitely not macroscopic,
so we can expect them to exhibit fluctuations similar to
those described above. However most of them also exhibit
quantum effects that are not captured by classical theory of
stochastic thermodynamics. Many operate in the steady state,
such as the quantum-dot heat engines experimentally realized
in Refs. [22–24], or other mesoscopic systems which exhibit

thermoelectric effects [11,25], while others involve pumping
cycles [26]. The general case of such a machine is sketched in
Fig. 1(a).

This work shows that a diagrammatic technique on
the Keldysh contour—real-time transport theory [27–30]—
provides an equivalent of stochastic thermodynamics for any
quantum system coupled to reservoirs [Fig. 1(a)] whether
that system’s dynamics are Markovian or not. It makes the
connection between the contribution of a double trajectory, γ ,
on the Keldysh contour and the contribution of its time reverse,
γ [Fig. 5(a)]. This is enough to show that such systems respect
the same fluctuation theorems as classical Markovian systems,
and so obey the second law of thermodynamics on average. For
the second law, our proof goes beyond those for Markovian
quantum systems [31], those for systems with mean-field
interactions [32,33], and Keldysh treatments for noninteracting
systems (quadratic Hamiltonians) [34–36] or adiabatic driving
[37] based on the Keldysh techniques reviewed in Ref. [38].
This connection between fluctuation theorems [4–6] and a
nonequilibrium quantum theory for transport through inter-
acting systems [27–30,39–43] provides a powerful tool for
modeling energy production and refrigeration at the nanoscale.
In this context, significant currents and power outputs require
significant system-reservoir coupling. However, only systems
in the weak-coupling limit have Markovian dynamics [44,45].
Thus there is great interest in improving the power output
of experimental setups like the quantum dot heat engines in
Refs. [22–24] by taking them to stronger coupling, where their
dynamics will be non-Markovian systems.

Previous proofs of fluctuation theorems in non-Markovian
quantum systems exist [4] but rely on treating the system and
reservoirs together as a single isolated quantum system. This
is elegant, but not amenable to calculating a given machine’s
power or efficiency, except in the rare cases where the full
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FIG. 1. (a) This work considers a quantum system coupled to any
number of electron reservoirs with chemical potentials and tempera-
tures {μα, Tα}, and photon or phonon reservoirs at temperatures {Tα}.
(b) A typical double Keldysh trajectory, γ , in which the horizontal
lines represent the evolution of the system state, while the dashed lines
indicate transitions within the system due to the coupling to one of the
reservoirs. (a) Typical set-up considered here (b) Typical trajectory
on Keldysh contour.

Hamiltonian (system plus reservoirs) is exactly soluble. It gives
no indication of what approximations allow calculations of
this power or efficiency, without an unphysical violation of
fluctuation theorems and of the second law of thermodynamics.
This work finds a microscopic symmetry which underlies the
fluctuation theorems, beyond the Markovian quantum systems
considered in Ref. [46]. This enables one to identify a family
of approximations that allow tractable calculations of machine
power and efficiency, with no risk of violating the second law
or fluctuation theorems.

A. Overview of this work

The central observation of this work is the result con-
necting trajectories on the Keldysh contour in a system, to
time-reversed trajectories in a time-reversed system, given in
Sec. VII E and shown schematically in Fig. 5. The sections
leading up to Sec. VII set the scene, with Sec. VI making
the observation that such trajectories obey the first law of
thermodynamics on average. Then Sec. VII itself provides a
derivation of the result connecting trajectories to their time
reverse.

The rest of this work then uses this result in deriving
various fluctuation theorems. Section VIII uses it to derive
various fluctuation theorems in various situations, such as the

Jarzynski equality and the Crooks equation. In particular, it
shows that the integral fluctuation theorem in Eq. (1) holds for
any system which starts in a product state with the reservoirs,
thereby showing that any such system obeys the second law
of thermodynamics on average. Section IX provides similar
proofs for situations where the system and reservoir start
in a nonfactorizable initial state. Finally, Sec. X discusses
approximations that respect the result in Sec. VII E, and thereby
will not violate any of the fluctuation theorems in Secs.
VIII and IX, and so will always satisfy the second law of
thermodynamics on average.

B. A comment on the system-reservoir coupling

The recent literature on Keldysh for quantum thermody-
namics [34–37] has strongly debated the role of the average
energy stored in the system-reservoir coupling, 〈Es-r〉, in
models of adiabatic pumping or in which interactions are
absent. The initial claim was that 〈Es-r〉 should be separated
into two equal parts, with one part being assigned to the system
and the other part to the reservoir; however Ref. [36] argued
that this was mainly a matter of calculational convenience.

In light of this debate, it is worth mentioning the role
of 〈Es-r〉 in the diagrammatic approach used here, whose
differences from the approach in Refs. [34–37] are described in
Sec. II below. First, 〈Es-r〉 appears in the first law, but does not
appear in the second law or the integral fluctuation theorem,
since they involve entropy rather than energy. Second, it is not
convenient to assign any part of 〈Es-r〉 to the reservoirs for the
following reason. In the cases considered here, each reservoir is
in a state that is “simple”; that is to say it is in local equilibrium,
which is completely described by two parameters: temperature
and electrochemical potential. However, the system state is
not “simple” in this sense, because it is typically far from
equilibrium (due to the action of multiple reservoirs and/or
driving), and requires more than just these two parameters to
describe it. This means that the system-reservoir coupling is
also not “simple.” Hence, it is unhelpful to associate any part of
the system-reservoir coupling with the reservoir state, because
one then loses the simplicity of the latter. In contrast the energy
in the system-reservoir coupling always appears together with
the system energy (see Sec. VI), and as neither contribution
is “simple” in the above sense, there is no disadvantage with
making the choice to combine the two into a single effective
internal system energy. That said, this article keeps the energy
in the system-reservoir coupling separate from the system
energy throughout, to avoid ambiguity.

II. HAMILTONIAN

This work considers a small quantum system with the
Hamiltonian, Ĥsys(t ), which may include a time-dependent
driving and interactions between the particles in the system.
This system [shown at the center of Fig. 1(a)] acts as a machine
changing the heat and work in the reservoirs that surround
it. Each term in Ĥsys(t ) contains one creation operator for a
system electronic state, d̂†

i , for every annihilation operator, d̂j .
This system is coupled to multiple reservoirs of noninteracting
fermions (electrons) via couplings V̂

(α)
el (t ), or noninteracting

bosons (photons or phonons) via couplings V̂
(α)

ph (t ). This article
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uses the word “setup” to refer to the system and reservoirs
together; the total Hamiltonian of this setup is

Ĥtot (t ) = Ĥsys(t ) +
∑
α∈el

[
V̂

(α)
el (t ) + Ĥ

(α)
el

]

+
∑
α∈ph

[
V̂

(α)
ph (t ) + Ĥ

(α)
ph

]
. (2)

The sums are over electron (el) and photon/phonon (ph)
reservoirs. For el reservoirs,

Ĥ
(α)
el =

∑
k

Eαkĉ
†
αkĉαk, (3)

for reservoir α’s state k with energy, creation, and annihilation
operators Eαk , ĉ

†
αk , and ĉαk . The tunnel coupling

V̂
(α)

el (t ) =
∑

k

[V̂ +
αk (t )ĉαk + V̂ −

αk (t )ĉ†αk], (4)

where V̂ −
αk (t ) and V̂ +

αk (t ) contain only system operators, and
may be time-dependent. The change in the system state when
an electron is added from reservoir α’s state k is given by V̂ +

αk .
The reverse process is given by V̂ −

αk = [V̂ +
αk]†. The simplest

case has V̂ +
αk = ∑

i A
(α)
ik d̂

†
i ; however if the coupling depends

on the system state, then V̂ +
αk contains extra factors of d̂

†
j d̂j ′ .

For bosonic reservoirs, one replaces the fermionic operators
ĉ
†
αk and ĉαk with bosonic ones. The simplest case has V̂ +

αk =∑
ij A

(α)
ijk d̂

†
i d̂j , meaning the system goes from j to i when a

boson is absorbed from reservoir α’s state k.
The first step to using the real-time transport theory [27–30]

is to write all system operators as N × N matrices acting on the
basis of N many-body system states; see, e.g., Appendix C of
Ref. [11]. We go to an interaction representation (indicated by
calligraphic symbols), where system operators evolve under a
matrix,

Usys(τ, t0) = T exp

[
−i

∫ τ

t0

Hsys(t )dt

]
, (5)

with T indicating time ordering. Hence,

V±
αk (τ ) = U†

sys(τ ; t0)V ±
αk (τ )Usys(τ ; t0). (6)

Reservoir operators evolve under H
(α)
el/ph, so we have

ĉ
†
αk (τ ) = eiEk (τ−t0 )ĉ

†
αk,

ĉαk (τ ) = e−iEk (τ−t0 )ĉαk. (7)

The initial condition (at time t0) is an arbitrary system state
in a product state with the reservoirs. Each reservoir α is in its
local equilibrium with temperature Tα and chemical potential
μα (μα = 0 for reservoirs of photons or phonons). We treat
Hsys exactly, and keep the reservoir’s effect on the system finite,
in the limit of vanishing reservoir level spacing. This requires
taking the system’s coupling to each reservoir mode to zero, as
the density of such modes goes to infinity, so this coupling
can be treated at lowest order (second order) [30,47–49].
Nonetheless, the system may interact with any number of
reservoir modes at one time (all orders of cotunneling events),
and these interactions do not commute. Upon tracing out
the reservoirs, the resulting system dynamics are highly non-
Markovian. Thus its dynamics are not described by Markovian

master equations (Lindblad equations), whose thermodynam-
ics have already been well studied [31]. These dynamics are
represented in terms of a Keldysh double trajectory, as in
Fig. 1(b), where each second-order interaction with a given
reservoir mode is represented by a pair of interactions joined by
a dashed line.

For readers familiar with the Keldysh methods reviewed
in Kamenev’s textbook [38] and used in Refs. [34–37], we
note that the method used here is different at the level of
what is treated as a perturbation. In Kamenev’s textbook,
the Hamiltonian is written in the single-particle basis; in
this basis the Hamiltonian is quadratic in the absence of
interactions between particles, and so is exactly soluble. One
then uses increasingly sophisticated perturbative techniques
to include the interaction terms such as electron-electron
interactions (which are quartic in the single-particle operators).
In contrast, this work uses a diagrammatic method on the
Keldysh contour referred to as the real-time transport theory
[27–30], which takes a different starting point: it starts in
the many-body basis for the system Hamiltonian (the fact
that it is in real time is not particularly important). In this
basis, the physics of the system alone is trivial (including all
interaction effects); however the system-reservoir couplings
take forms that are too complicated to treat exactly. Thus,
one has moved the difficulty from the interaction terms to
the system-reservoir coupling terms. This is why this coupling
must be treated as a perturbation, for which one sums up classes
of irreducible diagrams within some suitable approximation
scheme.

III. ASSUMPTION OF NO MAXWELL DEMONS
IN RESERVOIRS

The equations of classical and quantum physics are re-
versible. For example, if all degrees of freedom in a quantum
system were easy to observe and extract work from, the
fact that the full wave function of the system and reservoirs
undergoes unitary evolution means no (von Neumann) entropy
is ever produced. In both classical and quantum physics,
entropy production emerges from a physically motivated
assumption about which degrees of freedom are easy to
observe and extract work from, and which are not. Typically
this assumption separates everything into macroscopic and
microscopic dynamics, where macroscopic dynamics are easy
to observe and extract work from, while the microscopic
dynamics are inaccessible. All works on thermodynamics
make some sort of assumption of this type, explicitly or
implicitly.

The assumption at the basis of this work is presented
here; for compactness it is referred to as the “assumption
of no Maxwell demons in reservoirs.” It requires that the
system operate without knowing microscopic details of the
reservoirs, beyond those encoded in the system-reservoir
interaction in Eq. (2). For example, this disallows Maxwell’s
“observant and neat-fingered” demons [50] (which are usually
just circuitry built by physicists) which measure individual
reservoir states, and then feed back this information by making
a change in the time dependence of Ĥsys(t ) or V̂ (α)(t ) in
Eq. (2) which is conditional on the result of the measure-
ment. Just as in classical mechanics, assuming no Maxwell
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FIG. 2. The second-order interaction with reservoir α’s mode k.
Vertices marked ⊕ or � correspond to the the matrices V+

αk or V−
αk ,

respectively. The upper line is read from left to right, so the ⊕ vertex
in D0+ or D1+ indicates the matrix element [V+

αk]in+1in . The lower line
is read from right to left, so the ⊕ vertex in D2+ indicates [V+

αk]jmjm+1 .
Interaction Da− is given by Da+ with ⊕ ↔ �, for a = 0, 1, 2.

demons is crucial in the emergence of the second law from
the underlying theory. This assumption makes all classical
correlations and quantum entanglement between system and
reservoirs at the end of the evolution irrelevant, since the
system cannot extract work from them. Hence, one can trace
out the reservoirs when calculating system entropy, and vice
versa. Further, even though the system pushes certain reservoir
modes out of equilibrium, it is assumed that this information
is inaccessible, so no more work can be extracted from the
reservoir than if it were in a thermal state with the same
energy.

Superficially, one might think this work has nothing to say
about experimental implementations of Maxwell demons in
quantum systems, similarly to Refs. [51,52]. However, in those
cases where the demon is completely mechanical (made of
some finite number of degrees of freedom coupled to reservoirs
with or without time-dependent driving), we can include these
degrees of freedom in the system Hamiltonian Ĥsys, and all
results in this work apply.

IV. TRAJECTORIES

Consider a trajectory γ on the Keldysh contour, whose
upper line goes from the system’s many-body state i0 at time
t0 to i at time t , and whose lower line goes from j0 to j

[see examples in Fig. 5(a)]. Matrix elements for transitions
are time ordered on the upper line and reverse-time ordered on
the lower line. Each transition (each dashed line in γ ) has a
weight determined by whether it is D0±, D1±, or D2± in Fig. 2
(see below). Real transitions correspond to D1+ in Fig. 2 and
virtual transitions to D0+ and D2+. The trajectory’s weight,
P (γ ), is the product of all of these factors of Da±, multiplied
by a factor of −1 for each crossing of dashed lines [30]. The
probability to go from one system state to another in time t is
simply the sum of the weights of all trajectories between those
states.

The dashed lines have the following weights,

[
Dαk

0+
]i ′m,i ′n
im,in

=−[V−
αk (tm)]

i ′m
im

[V+
αk (tn)]

i ′n
in
f +

αke
i�mn

k , (8)[
Dαk

1+
]jm,i ′n
j ′
m,in

= [V−
αk (tm)]jm

j ′
m
[V+

αk (tn)]
i ′n
in
f +

αke
i�mn

k , (9)[
Dαk

2+
]jn,jm

j ′
n,j

′
m

=−[V−
αk (tn)]jn

j ′
n
[V+

αk (tm)]jm

j ′
m
f +

αke
i�mn

k , (10)

where [V]i
′

i = 〈i ′|V|i〉 and �mn
k = Ek (tm − tn). The factor f +

αk

is the number of particles in state k of reservoir α; it is f +
αk =

1/(eδSαk + ν) with ν = 1 for fermionic reservoirs and ν = −1
for bosonic reservoirs. Here [18],

δSαk = (Ek − μα )/Tα, (11)

which is the entropy change of reservoir α when a particle is
added to state k. Identifying Eq. (11) with an entropy change
follows from the Claussius definition of entropy, applicable
here because each reservoir is in its own local thermodynamics
equilibrium with a well-defined temperature.

The weight of Da− (for a = 0, 1, 2) is given by the Her-
mitian conjugate of Da+ (so V+ ↔ V− and i�mn

k → −i�mn
k )

with f +
αk replaced by f −

αk . Hence

[
Dαk

0−
]i ′m,i ′n
im,in

= −[V+
αk (tm)]

i ′m
im

[V−
αk (tn)]

i ′n
in
f −

αke
i�nm

k , (12)[
Dαk

1−
]jm,i ′n
j ′
m,in

= [V+
αk (tm)]jm

j ′
m
[V−

αk (tn)]
i ′n
in
f −

αke
i�nm

k , (13)[
Dαk

2−
]jn,jm

j ′
n,j

′
m

= −[V+
αk (tn)]jn

j ′
n
[V−

αk (tm)]jm

j ′
m
f −

αke
i�nm

k . (14)

Here f −
αk is the number of ways one can add a particle to state k

of reservoir α. For any reservoir (fermionic, bosonic, or other)
in internal equilibrium,

f −
αk = eδSαkf +

αk, (15)

which is known as local detailed balance or microreversibility.
For fermion or boson distributions, this is guaranteed by the
fact that f −

αk = 1 + νf +
αk with ν = +1 for fermions, and ν =

−1 for bosons. Physically, Dαk
1− removes a particle from the

system and adds it to state k of reservoir α; this adds a work of
μα and heat of (Ek − μα ) to reservoir α. Thus, Dαk

1− involves
a change of reservoir α’s entropy of δSαk in Eq. (11). The
reverse process, Dαk

1+, removes such a particle from reservoir
α, changing the reservoir’s entropy by −δSαk . Contributions
Dαk

0± and Dαk
2± do not change the number of particles in the

reservoirs, and so involve no reservoir entropy change.

V. TOTAL ENTROPY

The assumption of no Maxwell demons in the reservoirs
implies that entanglement between system and reservoir cannot
be used to produce work. Then the correct definition of the total
entropy production,�Stot , is the sum of that for the system (sys)
and reservoirs (res),

�Stot = �Ssys +
∑

α

�S (α)
res , (16)

with no term related to system-reservoir entanglement. We take
the change in entropy of each reservoir to be given by the
Claussius formula. This means that the change in reservoir α’s
entropy, �S (α)

res , for a trajectory γ is taken to be the sum of
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the entropy changes ∓δSαk associated with each of the Dαk
1±

transitions in γ .
As the system is typically in a highly nonequilibrium state,

one cannot use the Claussius law to calculate its entropy. In the
stochastic thermodynamics of classical systems [8,10,53], an
entropy is assigned to each system state in such a way that the
entropy of the system averaged over all such system states is
the Shannon entropy. For quantum systems, one can do exactly
the same thing, if (and only if) the system’s density matrix is
in its diagonal basis. To get this entropy for the system’s initial
density matrix (at time t0), we write it as

ρ
sys
ml (t0) =

∑
n0

[W0]mn0Pn0 (t0)[W†
0]n0l , (17)

where W0 is the unitary matrix which rotates
the system density matrix at time t0 to its
diagonal basis. This means that Pn0 (t0) is the probability
to find the system in state n0 of its diagonal basis. In this basis,
the system’s von Neumann entropy, −tr{ρsys(t0) ln[ρsys(t0)]},
is simply −∑

n0
Pn0 (t0) ln[Pn0 (t0)], where the sum is

over the elements of the diagonal density matrix. Thus,
one can treat each element in the sum as a contribution
to the entropy from a given initial state, so that state
n0’s contribution to the entropy of the initial system
state is

Sn0 (t0) = − ln[Pn0 (t0)], (18)

with the average over all n0 (i.e., a sum over n0 weighted
by the probability of state n0) giving the system’s initial von
Neumann entropy. The final system state’s entropy (at time
t) is calculated in the same way by rotating to the diagonal
basis of the final system density matrix, given by ρ

sys
ml (t ) =∑

n Wmnpn(t )[W†]nl for unitary W , and assigning to the state
n an entropy of

Sn(t ) = − ln[Pn(t )], (19)

with Pn(t ) being the probability that the system is in state n

of the diagonal basis of its reduced density matrix at time t .
Equations (18), (19) can be used to associate trajectory γd,
from initial state n0 to final state n, with an entropy change in
the system of

�Ssys(γ ) = Sn(t ) − Sn0 (t0) = − ln

[
Pn(t )

Pn0 (t0)

]
, (20)

as in the stochastic thermodynamics of classical rate equations.
Recall that this is only possible because the trajectory γd

is defined as going from a system state n0 in the diagonal
basis of the system density matrix at time t0 to a system state
n in the diagonal basis of the system’s final density matrix
(which is found by tracing out the reservoirs at the end of the
evolution). This requires calculating the final density matrix
(and finding its diagonal basis); this is much like in the usual
stochastic thermodynamics, where one also needs a complete
knowledge of the final-state probability distribution to assign
entropies to it.

VI. FIRST LAW OF THERMODYNAMICS

Here we show that energy conservation ensures that the
first law of thermodynamics is obeyed on average. If one goes

beyond the average, there are fluctuations that violate the first
law, much like the fluctuations that violate the second law.
These are little studied to date and merit a detailed study of
their own. In this section, we restrict ourselves to considering
the average energy in the setup, and thereby show that the first
law holds on average.

To ensure energy conservation, one must sum the three
terms which contribute to the total energy: the energy in the
reservoirs, the energy in the system, and the energy in the
system-reservoir coupling. If the system is not driven this total
energy is conserved. If the system is driven then the difference
between the final and initial total energy is the work done by
the drive; thus between time t0 and time t , the average work
done by the drive is

〈�Wdrive(t ; t0)〉 = 〈�Eres(t ; t0)〉 + 〈�Esys(t ; t0)〉
+ 〈�Es-r(t ; t0)〉, (21)

where �Eres(t ; t0) is the energy change in the reservoirs,
�Esys(t ; t0) = Esys(t ) − Esys(t0) is the energy change in the
system, and �Es-r(t ; t0) = Es-r(t ) − Es-r(t0) is the energy
change in the system-reservoir coupling.

Of course, all terms in this sum are necessary to get
to get energy conservation, irrespective of whether one can
physically measure each of them or not. Under the assumption
of no Maxwell demons in the reservoirs, made in Sec. III, one
can measure the energy in the system and reservoirs, but not
that in the system-environment coupling, since that depends
on the state of individual reservoir modes. In such a case, one
could none the less determine 〈�Es-r(t ; t0)〉 by using Eq. (21),
assuming one can also measure the work done by the drive,
〈�Wdrive(t ; t0)〉.

The average energy in the quantum system is

〈Esys(t )〉 = trsys[Ĥsys(t )ρsys(t )], (22)

while that in the system-reservoir coupling is

〈Es-r(t )〉 =
∑
α∈el

tr
[
V̂

(α)
el (t )ρ̂tot (t )

]

+
∑
α∈ph

tr
[
V̂

(α)
ph (t )ρ̂tot (t )

]
, (23)

where the trace in 〈Esys〉 is over the system states and ρsys(t )
is the reduced system density matrix, but 〈Es-r〉 contains traces
over the total density matrix (including reservoirs).

The trajectories which sum to give the average change in the
system energy, 〈�Esys(t ; t0)〉, are those considered elsewhere
in this article, such as those in Fig. 1(b) or Fig. 5. However, the
trajectories which sum to give the average change in the energy
in the system-reservoir coupling, 〈�Es-r(t ; t0)〉, are rather
different from those considered elsewhere in this article. They
have an additional single interaction vertex with mode k of
reservoir α at some time before t , so that at time t the system is
in a superposition of a state with different numbers of particles
in reservoir α (see Fig. 3). Luckily, they have exactly the same
structure as those used to calculate the current into the system
in Refs. [27–30]; currents are given the difference between the
term that creates a particle in the reservoir and one that destroys
a particle, while the energy in the system-reservoir coupling
is given by the sum of these two terms. These trajectories are
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FIG. 3. (a) A trajectory which contributes to [V−
αk (t )]n

′
n ĉ

†
αk , and

(b) its contribution to the average energy in the system-reservoir
coupling, 〈Es-r〉. Such contributions to 〈Es-r〉 are the same as those
necessary to calculate the current at time t , and their evaluation has
been greatly discussed in Refs. [27–30]. (a) A trajectory giving a
non-zero sys-res coupling energy (b) its contribution to 〈Es-r〉

not discussed further here, because Refs. [27–30] go into great
detail about how to calculate their contribution.

The fact that reservoir α is in local thermodynamic equi-
librium defined by its temperature Tα and electrochemical po-
tential μα means it makes sense to split its energy, 〈E(α)

res (t )〉 =
tr[H (α)

el/phρ̂(t )], into two contributions〈
E(α)

res (t )
〉 = −〈

W (α)
res (t )

〉 − 〈
Q(α)

res (t )
〉
, (24)

with

〈
W (α)

res (t )
〉 = −tr

[
μα

∑
k

ĉ
†
αkĉαkρ̂(t )

]
, (25)

〈
Q(α)

res (t )
〉 = −tr

[∑
k

(Eαk − μα )ĉ†αkĉαkρ̂(t )

]
. (26)

Then the change in reservoir energy between time t0 and t can
be defined as〈

�E(α)
res (t ; t0)

〉 = −〈
�W (α)

res (t ; t0)
〉 − 〈

�Q(α)
res (t ; t0)

〉
; (27)

the first quantity here is the average work done by the
reservoir 〈�W (α)

res (t ; t0)〉 = 〈W (α)
res (t )〉 − 〈W (α)

res (t0)〉, and the
second quantity is the average heat flow out of the reservoir
〈�Q(α)

res (t ; t0)〉 = 〈Q(α)
res (t )〉 − 〈Q(α)

res (t0)〉. There is no ambigu-
ity in this separation, because the fact that the reservoir is in
local equilibrium means that the former (the work done) has
no entropy change associated with it, while the latter (the heat
change) is associated with an entropy change of

�S (α)
res = �Q(α)

res

/
Tα. (28)

The trajectories which sum to give these average changes in
a reservoir’s energy are those considered elsewhere in this
article, such as those shown in Fig. 1(b) or Fig. 5. However
the change in work or heat in the reservoir α is extremely
easy to read from a given trajectory; one simply sums up the

change in work or heat for each dashed line symbolizing Dαk
1±,

as outlined at the end of Sec. IV.
Given these definitions and Eq. (21), one easily arrives at

the first law of thermodynamics for the average dynamics of
the setup:

〈�Esys(t ; t0)〉 + 〈�Es-r(t ; t0)〉
= 〈�W (t ; t0)〉 +

∑
α

〈
�Q(α)

res (t ; t0)
〉
, (29)

where we define �W (t ; t0) as the total work done on the system
by drive or reservoirs,

〈�W (t ; t0)〉 = 〈�Wdrive(t ; t0)〉 +
∑

α

〈
�W (α)

res (t ; t0)
〉
. (30)

It thereby seems natural to interpret 〈�Esys(t ; t0)〉 +
〈�Es-r(t ; t0)〉 as the change in the effective internal energy of
the system (an effective energy which includes the system-
reservoir coupling), as mentioned in Sec. I B.

Just as in classical thermodynamics systems, the simplest
cases to consider are those where the system returns to its initial
state at the end of the evolution, so that its internal energy is the
same at the final time, t , as it was at the initial time, t0. Then
〈�Esys(t ; t0)〉 = 〈�Es-r(t ; t0)〉 = 0, which means that Eq. (29)
directly gives the simplest and best-known consequence of
the first law: the work output of the machine equals the heat
absorbed from the reservoirs.

Note that the change of energy in the reservoirs was
separated into a change of heat and a change of work, but
this was not done for the energy of the system or the system-
reservoir coupling. The reason is that each reservoir is in local
thermodynamic equilibrium, with a well-defined temperature,
when the system and system-reservoir couplings are typically
far from equilibrium with no well-defined temperature. Thus
there is no ambiguity in the separation of energy into heat
and work in a reservoir, see Eq. (28), but there is no simple
way to make the same separation for the system or for the
system-reservoir couplings.

VII. TIME-REVERSED SETUP

As in classical systems, one derives fluctuation theorems
by comparing two different setups (A and B), where the
Hamiltonian in setup B is the time reverse of the Hamiltonian in
setup A over the time window from t0 to t . To be clear, whatever
the Hamiltonian of setup A, we can invent a setup B whose
Hamiltonian is the time reverse of setup A. In the special case
of a time-independent Hamiltonian without external magnetic
fields or spins, the two setups are identical, but otherwise they
are not.

The objective of this section is to make the connection
between weight of trajectories on the Keldysh contour in setup
B and setup A. This starts by making the connection between
the terms in the Hamiltonians of setups A and B in Sec. VII A,
and then between the perturbative terms in the interaction
representation in Sec. VII C. This enables one to make the
connection between the weight of individual transitions in Sec.
VII D, from which one gets the connection between weight
of trajectories on the Keldysh contour in setup B and setup
A in Sec. VII E. The central observation of this work is this
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FIG. 4. A sketch of how time reversal affects the Hamiltonian,
in the absence of external magnetic fields and spins. If there are
external magnetic fields and spins, then the time reverse is given in
the Appendix.

relationship, given in Eq. (48) below. It is this relationship
which is so similar to the relationship between trajectories in
the stochastic thermodynamics theory for classical Markovian
systems [8,10,53] that we can use very similar logic to derive
various well-known fluctuation theorems in Sec. VIII.

A. Time-reversed Hamiltonian

If A’s Hamiltonian (system+reservoir) is Ĥ in Eq. (2), then

B’s is Ĥ (τ ) = �̂†Ĥ (t0 + t − τ )�̂, where �̂ is the time-reverse
operator in Messiah’s texbook [54]. The main results we need
from Messiah’s texbook are recalled here in the Appendix, with
the most trivial case sketched in Fig. 4. Thus if setup A has a
given time-dependent system Hamiltonian, Hsys(τ ), with given
system-reservoir couplings, V ±

αk (τ ), then setup B is chosen to
have the system Hamiltonian and system-reservoir couplings

Ĥsys(t0 + t − τ ) = �̂†Ĥsys(τ )�̂, (31)

V̂ ±
αk (t0 + t − τ ) = �̂†V̂ ±

αk (τ )�̂, (32)

where the bar above a symbol means that it is in setup B, while
the bar’s absence means it is in setup A.

These equations are cast in terms of matrix elements by
inserting them between 〈ı| = 〈i|�̂ and |j〉 = �̂†|j 〉; then

[ Hsys(t0 + t − τ )]ıj = [Hsys(τ )]ij , (33)

[ V ±
αk (t0 + t − τ )]ıj = [V ±

αk (τ )]ij , (34)

where [· · · ]ıj = 〈ı| · · · |j〉. Thus the matrix elements for transi-
tions from system state |j 〉 to system state |ı〉 in setup B (whose
Hamiltonian is the time reverse of setup A’s) are the same as
the matrix elements from system state |j 〉 to system state |i〉 in
setup A. Spinless systems written in a basis of position states
are trivial, because then |ı〉 = |i〉. However, if one is working
with basis states with nonzero momentum states, then |ı〉 is the
state with the opposite momentum from |i〉. If one is working
with spins, then the state |ı〉 is the state with the opposite spin
from from state |i〉.

Equally, the reservoir Hamiltonians for setup B are the time
reverse of those in setup A, so reservoir α in setup B has a
Hamiltonian

Ĥ
(α)
el = �̂†Ĥ (α)

el �̂, (35)

where Ĥ
(α)
el is that reservoir’s Hamiltonian in setup A. In the

absence of spins or external magnetic fields, this time-reverse
operation is of no consequence. However, if reservoir α in
setup A is a reservoir of electrons which are spin-up with
respect to some axis, then the same reservoir in setup B will
contain electrons which are spin-down with respect to that
axis. Similarly, if there is an external magnetic field acting
on the reservoir in setup A, then the field must be reversed in
that reservoir in setup B. For photon or phonon reservoirs, the
relation between their Hamiltonians in the two setups is the
same as in Eq. (35).

B. Reservoir states are not time reversed

If one evolves an initial state under a Hamiltonian, time-
reverses the state, and evolves it under the time-reversed
Hamiltonian, the dynamics in the second part of the evolution
will look like a time reverse of the dynamics in the first part of
the evolution.

However, this work’s setup A and setup B are a different
time-reversal situation, in which each setup is divided into a
system and reservoirs, and we make the “assumption of no
Maxwell demons in the reservoirs” in Sec. III. This assumes
the setup and its drive are not aware of the microscopic
dynamics of the reservoirs; as such one cannot time-reverse
the state of the individual modes in the reservoirs, even if one
can can time-reverse the reservoirs’ Hamiltonians (typically
time-reversing the reservoir part of the Hamiltonian only
requires interchanging the chemical potentials on spin-up and
spin-down reservoirs and reversing any external magnetic
fields acting on the reservoirs). Thus, even if we time-reverse
the system state and time-reverse the total Hamiltonian, we
will not see time-reversed dynamics, because we have not
time-reversed the reservoir states.

Suppose setup A starts with the system and reservoirs in a
product state, and then evolves. The system becomes correlated
and/or entangled with individual reservoir modes. A measure-
ment of the system state indicates that it is decohering and
decaying towards a thermal state. A measurement of individual
reservoir modes shows that an infinitesimal proportion of them
are acquiring a nonthermal state. Then in setup B, the total
Hamiltonian is the time reverse of that in setup A, and the initial
state is a product state, where the system state is the time reverse
of the final system state in setup A, and the reservoir modes are
taken to be thermal (i.e., not time reversed). The system state in
setup B does not become less correlated and/or entangled with
the reservoirs as it evolves (as it would if we had time-reversed
the full state, including the reservoir modes). Instead, the
system continues to become more entangled with reservoir
modes, which means that a measurement of the system state in
setup B will indicate that it also decoheres and decays towards
a thermal state.

C. Time reversal for the interaction representation

Under time reversal, the matrix representation of the system
evolution operator is

Usys(t + t0 − τ ; t0) = �̂†U†
sys(t ; τ )�̂. (36)
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Now, to simplify the algebra, it is assumed that a complete
solution of the dynamics under Hsys exists; then the final state
of the system (its state at given time t) can always be written
in a basis chosen such that Usys(t ; t0) = 1. Then, the unitary of
Usys means that

U†
sys(t ; τ ) = Usys(τ ; t0). (37)

Given this one has

Usys(t + t0 − τ ; t0) = �̂† Usys(τ ; t0) �̂. (38)

The interaction between the system and the reservoirs at time
τ = (t0 + t − τ ) is written in the interaction representation for
the time-reversed Hamiltonian as

V±
αk (τ ) = U†

sys(τ ; t0) V ±
αk (τ ) Usys(τ ; t0), (39)

where the matrix V ±
αk (τ ) is defined above. Substituting in

Eqs. (32), (38) on the right, and comparing with Eq. (6), one
finds that

V±
αk (t0 + t − τ ) = �̂†V±

αk (τ )�̂ (40)

for all τ between t0 and t .
For what follows it is convenient to cast this equality in

terms of matrix elements by inserting it between 〈ı| = 〈i|�̂
and |j〉 = �̂†|j 〉; then

[V±
αk (t0 + t − τ )]ıj = [V±

αk (τ )]ij . (41)

Thus the matrix element for reservoir-induced transitions from
system state |j〉 to system state |ı〉 in setup B (the setup whose
Hamiltonian is the time reverse of setup A’s) is the same as
the matrix element from system state |j 〉 to system state |i〉 in
setup A.

D. Time-reversal symmetry between Dαk
a± transitions

Equation (9) implies that the D1+ transition in the time-
reserved system (setup B) must have the weight[

Dαk
1+(tm, tn)

]jm,ı ′n
j ′

m,ın
= [V−

αk (tm)]jm

j ′
m
[V+

αk (tn)]
ı ′n
ın

× f +
αk exp[iEk (tm − tn)], (42)

where tn = t0 + t − tn. Now substituting in Eq. (41) and noting
that (tm − tn) = (tn − tm), we get[

Dαk
1+(tm, tn)

]jm,ı ′n
j ′

m,ın
= [V−

αk (tm)]jm

j ′
m
[V+

αk (tn)]
i ′n
in

× f +
αk exp[iEk (tn − tm)]. (43)

Now comparing this with D1− in Eq. (13), one sees the only
difference is the factors of f ±

αk . However, local detailed balance
in reservoir α implies Eq. (15), so[

Dαk
1+(tm, tn)

]jm,ı ′n
j ′

m,ın
= [

Dαk
1−(tm, tn)

]jm,i ′n
j ′
m,in

e−δSαk . (44)

Exactly the same logic holds if one starts with Dαk
1− in place of

Dαk
1+. One just has to take the Hermitian conjugate throughout

(so V+ ↔ V− and i�mn
k → −i�mn

k ) and replace f +
αk by f −

αk ,
getting the results in Eq. (47a).

Similarly, Eq. (8) means that[
Dαk

0+(tn, tm)
]jn,jm

j ′
n,j

′
m

= −[V−
αk (tn)]jn

j ′
n
[V+

αk (tm)]jm

j ′
m

× f +
αk exp[iEk (tn − tm)]; (45)

FIG. 5. (a) Time reversal of trajectories on the Keldysh contour,
via a 180◦ rotation in the plane of the page. The interaction times are
related by tn = t + t0 − tn. (b) A graphical representation of Eq. (48),
where the shaded box is the trajectory’s weight, P (γ ), and its 180◦

rotation is P (γ ).

note that tn > tm, since it is assumed that tm > tn. As above,
Eq. (41) is substituted in, and one notes that (tm − tn) =
(tn − tm), to get[

Dαk
0+(tn, tm)

]jn,jm

j ′
n,j

′
m

= −[V−
αk (tn)]jn

j ′
n
[V+

αk (tm)]jm

j ′
m

× f +
αk exp[iEk (tm − tn)], (46)

which is the same as the right-hand side of Eq. (10). One can
do the same for Dαk

0−.
The result of all these relations between D’s in the time-

reversed setup (setup B) and the original setup (setup A) can
be summarized as follows:

[
Dαk

1∓(tm, tn)
]jm,ı ′n
j ′

m,ın
= [

Dαk
1±(tn, tm)

]i ′n,jm

in,j ′
m

e±δSαk , (47a)[
Dαk

0±(tn, tm)
]jn,jm

j ′
n,j

′
m

= [
Dαk

2±(tn, tm)
]jn,jm

j ′
n,j

′
m

, (47b)

where tn = t0 + t − tn.

E. Time-reversed trajectories

For any trajectory γ on the Keldysh contour in setup A, one
can define a trajectory γ in setup B which is the time reverse
of γ . More precisely, γ is defined by rotating γ by 180◦ in the
plane of the page and replacing all states by their time reverse;
see Fig. 5(a). The time reverse of state |in〉 is |ın〉 = �̂†|in〉.

One then observes that if γ contains a D factor on the right-
hand side of one of the equalities in Eq. (47), then γ contains
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the D factor on the left-hand side of the same equality, and vice
versa. The weights of trajectory γ in setup A and γ in setup
B are given by products of the factors of Dαk

a± that form each
of them; this results in the central observation of this work
[shown graphically in Fig. 5(b)],

P (γ ) = P (γ ) exp[−�Sres(γ )], (48)

where P (γ ) is the weight of double trajectory γ in setup A,
and P (γ ) is that of γ in setup B. The reservoir entropy change,
�Sres(γ ), is the sum of the δSαk for all transitions in γ .

Now consider a double trajectory γd, which goes from the
n0th state in the diagonal basis of ρ(t0) to the nth state in the
diagonal basis of ρ

sys
ml (t ) [see Fig. 1(b)]. The subscript “d” is to

indicate that it goes from diagonal basis to diagonal basis. Let
us define its weight as P (γd ); this equals P (γ ) multiplied by a
factor of [W0]i0n0

[W†
0]n0j0 to transformation out of the diagonal

basis at time t0, and a factor of [W†]niWjn to go to the diagonal
basis at time t . The unitarity of the transformations W0 and W
means they do not change �Sres or �Ssys, so one has

P (γd ) = P (γd ) exp[−�Sres(γd )]. (49)

Here, one must recall that the trajectory γd is in setup A, and
goes from the state n0 in the diagonal basis of the (initial)
system density matrix at time t0 to the state n in the diagonal
basis of the (final) system’s reduced density matrix at time t .
Its time-reverse trajectory γd is a trajectory in setup B which
goes from state n at time t0 to state n0 at time t .

This relation is much the same as in Markovian stochastic
thermodynamics of classical systems and which was used
to derive various of the best-known fluctuation theorems
[8,10,53]. In the next section, we will show that a very similar
procedure allows us to derive these fluctuation theorems for
quantum systems with non-Markovian dynamics. In particular,
we will show that the integral fluctuation theorem in Eq. (1)
holds for any system, which we will show implies that any
system will satisfy the second law of thermodynamics on
average, 〈�Stot〉 � 0.

However, a complication in these quantum system (absent
in the classical ones) is the question of the basis in which the
dynamics are diagonal. It is crucial to note that the bases in
which we consider the states n and n0 in setup B are those
defined as the basis in which setup A’s final and initial system
density matrices are diagonal. In general, these will not both
coincide with the bases in which the system density matrix for
setup B will be diagonal. Consider the initial state in setup B
which coincides with the time reverse of the final state in setup
A; it will not evolve to a state that coincides with the initial state
in setup A (cf. Sec. VII B). Thus, there is no reason to expect
the final state in setup B to be diagonal in the same basis as
the initial state in setup A. In this case n0 corresponds to the
n0th diagonal matrix element in the reduced system density
matrix in setup B, when that density matrix is not written in
its diagonal basis, but is written in the basis in which setup A’s
initial density matrix was diagonal.

This is not a problem in deriving certain fluctuation theo-
rems, such as Eq. (1). However, our derivation of the Crooks
equation only applies in those special cases in which the final
state in setup B is diagonal in the same basis as the initial

state in setup A; Sec. VIII D elaborates on this point and gives
examples of special cases for which it applies.

VIII. FLUCTUATION THEOREMS

Schmiedl and Seifert showed in Ref. [8] that trajectories in
classical rate equations obey Eq. (48), and one can derive most
of the standard fluctuation relations from suitable sums over
these classical trajectories. Their proofs were for a discrete set
of states with transitions governed by Markovian rate equa-
tions. Together with a more complicated continuum version
[7], this became known as stochastic thermodynamics, and it
is discussed in a number of reviews [9,10,53]. Our objective
here is to show that the same logic as in Refs. [8,10,53] can be
used to derive fluctuation theorems from the Keldysh-contour
trajectories using Eq. (49). Before going into the detail of the
derivations for non-Markovian quantum systems, which are
very close to the derivations for classical rate equations in
Refs. [8,10,53], we mention the points which differ between
stochastic thermodynamics for classical rate equations and for
non-Markovian quantum systems.

The most obvious difference is that the trajectories them-
selves are very different. The quantum system’s trajectories
come from perturbation theory on the Keldysh contour, while
the trajectories in Refs. [8,10,53] come from classical rate
processes. One consequence of this is a trajectory γd, on
the Keldysh contour, typically has a complex weight P (γd ).
However, every trajectory has a partner with the same entropy
change, but with the complex conjugate weight; this trajectory
is found from its partner by interchanging the trajectory’s upper
and lower lines and taking ⊕ ↔ �. Any physical probability
will involve an equal sum of the two weights, and so will be
real. None the less, this sum of a trajectory and its complex
conjugate partner will often be a negative real number, so it
should be considered as a contribution to the probability, and
not a probability itself. The contributions with negative weights
reduce the probability to go to a given state, while those with
positive weights increase the probability to go to another state.

These negative weights do not occur in the usual stochastic
thermodynamics of classical rate equations; however it is
easy to see why. In the usual stochastic thermodynamics, the
probability that a trajectory in state i has no transitions in the
time window τn to τn+1 is [8,10,53] exp [− ∫ τn+1

τn
dτ�i (τ )],

where �i (τ ) is the sum of all transition rates out of state i

at time τ . To compare this with our quantum theory (which
is perturbative in the reservoir couplings), such exponential
terms should be expanded in powers of �i . This generates a
version of stochastic thermodynamics in which trajectories can
have positive or negative weights. Our quantum theory has
trajectories with positive and negative weights for the same
reason.

The weight of a trajectory γd obeys Eq. (49); combining
this with Eq. (20) gives

P (γd )Pn(t ) = P (γd )Pn0 (t0) exp[−�Stot (γd )], (50)

where �Stot (γd ) is the sum of the entropy change in system
and reservoirs [see Eq. (16)] associated with trajectory γd

from state n0 at time t0 to state n at time t . Despite the
difference in the nature of the trajectories, this relation is the
same as for classical rate equations, where t was used to derive
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various well-known fluctuation theorems. Now, we can follow
basically the same derivations to derive the same fluctuation
relations for non-Markovian quantum systems. These deriva-
tions are presented in the following subsections; readers
familiar with Refs. [8,10,53] will notice their similarity to those
for classical rate equations.

A. Integral fluctuation theorem

Let us start by deriving Eq. (1), which is known as the
nonequilibrium partition identity [19–21] as well as the inte-
gral fluctuation theorem [8,10]. In classical systems it is the
most general fluctuation theorem, since one can use stochastic
thermodynamics to show that it applies to any classical system
with Markovian dynamics, irrespective of that system’s initial
or final state. This section will show that the same is true for
non-Markovian quantum systems.

If one has a physical quantity (energy, particle current,
entropy, or similar) that one can calculate for each trajectory of
the system, then the average value of that quantity for a system
is given by the following sum over all trajectories:

〈· · · 〉 =
∑
n0,n

∑
γd∈{n0,t0→n,t}

P (γd )Pn0 (t0) (· · · )γd , (51)

where (· · · )γd is the quantity of interest for trajectory γd, and
the sum is over all trajectories from state n0 (in the diagonal
basis of the system’s density matrix) at time t0 to state n (in
the diagonal basis of the system’s reduced density matrix) at
time t .

The proof of the integral fluctuation theorem is carried out
by considering the average,

〈e−�Stot 〉 =
∑
n0,n

∑
γd∈{n0,t0→n,t}

P (γd )Pn0 (t0) e−�Stot (γd ), (52)

where P (γd ) is a trajectory in the setup A defined in the
paragraph above Eq. (47). Substituting in Eq. (50) on the
right-hand side gives a result in terms of the trajectories in
the time-reverse setup (the one called setup B above),

〈e−�Stot 〉 =
∑
n0,n

∑
γd∈{n0,t0→n,t}

P (γd )Pn(t ). (53)

The sum over all trajectories γd from n0 at time t0 to n at time
t is replaced by a sum over all trajectories γd from n at time t0
to n0 at time t in setup B, so

〈e−�Stot 〉 =
∑
n0,n

∑
γd∈{n,t0→n0,t}

P (γd )Pn(t ). (54)

Nothing changes if the sum over all n0 is replaced by one over
all n0. The dynamics of the system in setup B (whatever they
may be) must conserve probability, which means that the sum
over all trajectories from n to n0 summed over all n0 must give
unity: ∑

n0

∑
γd∈{n,t0→n0,t}

P (γd ) = 1. (55)

This hold irrespective of the basis in which one writes the final
state of the system, since probability conservation guarantees
that the diagonal elements of a reduced density matrix sum
to one in any basis. This is convenient, because the final state

of the evolution in setup B (the sum over trajectories γd) is
not usually diagonal in the basis used (which is the diagonal
basis of the initial state of setup A), as discussed at the end of
Sec. VII E.

Substituting Eq. (55) into Eq. (54), the right-hand side
reduces to

∑
n Pn(t ); this is a sum over the final state of the

system in setup A. However, irrespective of the dynamics of
setup A, conservation of probability tells us that

∑
n Pn(t ) = 1.

Thus we have proven the integral fluctuation theorem in Eq. (1)
under completely general conditions for an arbitrary quantum
setup described by any Hamiltonian of the form Eq. (2) for any
initial factorized state of system and reservoirs.

The fact the proof is restricted to factorized states of system
and reservoirs means it does not apply to situations in which
the system is initially entangled with reservoir states. Below, in
Sec. IX, we will use the above proof as the principal ingredient
in a proof of Eq. (1) for arbitrary initial states including those
where the system and reservoirs are initially entangled.

However, the above proof already applies to one of the
most common experimental situations, that where one has
measured the system state at the beginning of the evolution
in an arbitrary basis. If the basis is not the system’s energy
eigenbasis then the system will be in a superposition of energy
states, a situation which one cannot model with the classical
rate equations in Refs. [8,10,11], irrespective of whether the
dynamics are Markovian or not.

B. Second law of thermodynamics

Since Eq. (1) applies for any factorizable initial state, it
takes only one line of algebra [8,10,53] to arrive at the second
law of thermodynamics on average:

〈�Stot〉 � 0. (56)

The proof is done by noting that x � 1 − e−x for all x (this is
easily seen graphically, but is formally an example of Jensen’s
inequality), and so whatever the probability distribution of
�Stot, one must have 〈�Stot〉 � 1 − 〈e−�Stot 〉 = 0.

However, Eq. (1) tells us more than this; it tells us that all
setups must sometimes have fluctuations in which �Stot < 0.
Hence, the second law is only obeyed on average, and there will
always be fluctuations (perhaps only very rare fluctuations)
which violate it. To see this, it is enough to note that if
a setup only had trajectories with �Stot (γd ) > 0 (positive
entropy production), then it would have 〈e−�Stot 〉 < 1. Thus,
any setup must also have trajectories with �Stot (γd ) < 0 to
satisfy Eq. (1). The exponential factor in Eq. (1) means that
the probability of trajectories with �Stot (γd ) < 0 will be less
than that of those with �Stot (γd ) > 0, but the probability
of trajectories with �Stot (γd ) < 0 cannot be zero. The only
exception to this statement is a system in which no trajectories
generate any entropy, so �Stot (γd ) = 0 for all γd.

C. Jarzynski equality under certain conditions

Let us consider the Jarzynski equality [13] generalized to
grand-canonical potentials [8]. It applies to a classical system
that starts its evolution in thermal equilibrium at temperature
T , that then experiences a time-dependent drive and time-
dependent coupling to multiple reservoirs at different chemical
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potentials, but all at temperature T . This generalized Jarzynski
equality states that the work �W that is done on a system by
the drive and the reservoirs obeys

〈e−�W/T 〉 = e−�F/T , (57)

where temperature is measured in units of energy, so kB = 1.
The free energy difference

�F = T {ln[Z(μ0; t0)] − ln[Z(μ0; t )]}, (58)

with Z(μ0; τ ) = eμ0/T
∑

n0
eE

(n)
sys (τ )/T . Here Z(μ0, t0) coin-

cides with the partition function of the initial equilibrium state;
however the factors of eμ0/T cancel in Eq. (58), so �F is
independent of μ0. The original Jarzynski equality is recovered
in the limit where the system exchanges energy but not particles
with the reservoirs. The above generalized Jarzynski equality
was proven for classical systems described by Markovian rate
equations in Refs. [8,10].

The derivation for non-Markovian quantum systems pre-
sented here is restricted to systems in which the system-
reservoir coupling is reduced to zero at the end of the evolution
at time t . This is in addition the assumption that system and
reservoirs are in a product state (each in internal equilibrium at
the same temperature T ). In general, the system and reservoirs
will arrive at time t in a nonfactorizable state, which will
have a nonzero amount of energy in the system-reservoir
coupling. Turning off the system-reservoir coupling (typically
by changing the voltage on the gate that separates the system
from the reservoirs) will thus change the setup’s energy, and
thus corresponds to work being done by the drive. We include
this work done to turn off the system-environment coupling in
W in Eq. (57).

Let us be clear, this restriction is a way of avoiding the
problem of the energy in the system-reservoir coupling, by
having it be zero at the beginning and end of the evolution.
This is a small step beyond the proof for Markovian classical
systems in Refs. [8,10], because the dynamics can be non-
Markovian between time t0 and time t (as well of course
allowing for quantum physics). However, it is hoped that future
work might reveal a more general Jarzynski equality, that holds
when the energy in the system-reservoir coupling is nonzero at
the beginning or end of the evolution. One possible direction
for this future work is to compare with the situation where all
reservoir chemical potentials are equal (so the reservoirs do no
work on the system), for which there is an elegant proof of the
Jarzynski equality in Ref. [4].

The proof presented here makes use of Eq. (48), but involves
different rotations at the beginning and end of the evolution
from those discussed below Eq. (48). Instead of rotations to
the basis where the system’s density matrix is diagonal, one
rotates to the basis in which the system’s Hamiltonian Hsys is
diagonal. Thus W0 is the rotation from the diagonal basis of
Hsys(t0) to the basis in which the evolution is calculated (if
these bases are the same, then W0 = 1). Similarly, W is the
rotation from the basis in which the evolution is calculated to
the basis in which Hsys(t ) is diagonal. While these rotations
are different from those below Eq. (48), they are still unitary,
which means they do not affect the trajectory’s entropy; hence
Eq. (49) still holds.

Consider a trajectory γd from system state n0 at time t0
to system state n in time t , where n0 is the eigenstate of
Hsys(t0) with energy En0 (t0) and n is the eigenstate of Hsys(t )
with energy En(t ). Then the work done on the system by the
driving is

�Wdrive(γd ) = [
E(n)

sys (t ) − E(n0 )
sys (t0)

] +
∑

α

�Eα (γd ). (59)

The square brackets give the work done by the drive which
stays in the system, while �Eα (γd ) is defined as the energy
flow into reservoir α during the trajectory γd. Note that this
equality holds because of the above restriction to the system
in which there is no energy in the system-reservoir coupling at
the beginning or end of the evolution. The work done on the
system by the reservoirs during trajectory γd is given by

�Wres(γd ) = −
∑

α

μα�Nα (γd ), (60)

where �Nα (γd ) is the number of particles flowing into reser-
voir α during the trajectory γd. Given Eq. (11), one sees that

�Sres(γd ) = 1

T

∑
α

[�Eα (γd ) − μα�Nα (γd )], (61)

since all reservoirs have the same temperature. Thus,

�W (γd ) = E(n)
sys (t ) − E(n0 )

sys (t0) + T �Sres(γd ), (62)

where �W (γd ) = �Wdrive(γd ) + �Wres(γd ) is the total work
done on the system. Using this equality in the average of
exp[−�W (γd )/T ] over all γd, defined in Eq. (51),

〈e−�W/T 〉 =
∑
n0,n

∑
γd∈{n0,t0→n,t}

P (γd )e−�Sres (γd )

× e−[E(n)
sys (t )−E

(n0 )
sys (t0 )]/T Pn0 (t0), (63)

Eq. (48) is now used to write this in terms of P (γd ). In other
words, the average over trajectories in a setup A is written in
terms of the trajectories in setup B (defined earlier as the time
reverse of setup A). The initial system density matrix (at time
t0) is diagonal in the eigenbasis of Hsys(t0), and the probability
of being in state n0 is

Pn0 (t0) = 1

Z0(μ0)
e−[E

(n0 )
sys (t0 )−μ0]/T , (64)

with Z0(μ0) given below Eq. (57). Then Eq. (63) becomes

〈e−�W/T 〉 = 1

Z0(μ0)

∑
n0,n

e−[E(n)
sys (t )−μ0]/T

∑
γd∈{n,t0→n0,t}

P (γd ),

(65)

where the sum over all γd from n0 to n in setup A has become a
sum over all γd from n to n0 in setup B. Nothing changes if the
sum over all n0 is replaced by one over all n0. Irrespective of
the dynamics in setup B, the sum over all trajectories with final
state n0, summed over all n0, must give one. Therefore Eq. (65)
reduces to 〈e−�W/T 〉 = Z(μ0)/Z0(μ0). Now using Eq. (58),
one immediately gets the generalized Jarzynski equality in
Eq. (57).
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One can apply Jensen’s inequality to Eq. (57) to find a well-
known formulation of the second law,

〈�W 〉 � �F, (66)

but the assumptions and restrictions in this derivation to
Eq. (57) make this a less general version of the second law
than that in Eq. (56).

D. Crooks equation

The Crooks equation[15] is a relation between the dynamics
of a setup A and a setup B (which has the time reverse of setup
A) in situations where the system undergoes time-dependent
driving while coupled to reservoirs. Consider setup A described
by the Hamiltonian in Eq. (2) starting at time t0 with the
system’s density matrix ρ (i)

sys (“i” for initial), and ending the
evolution at time t with the systems reduced density matrix
being ρ (f)

sys (“f” for final). Let us define P (�Stot; ρ (i)
sys → ρ (f)

sys) as
the probability that setup A would have a total entropy changes
of�Stot between t0 and t . Now let us consider setup B described
by the time reverse of Eq. (2), and take its initial system
density matrix to be ρ (f)

sys ≡ �
†
sysρ

(f)
sys�sys where �sys is the

time-reversal operator on the system alone; so setup B’s initial
system state is the time reverse of setup A’s final system state.
Setup B’s evolution will not be the time reverse of setup A’s,
because we do not time-reverse individual reservoir states; cf.
Sec. VII B. Let its evolution be under the time reverse of Eq. (2),
so that its reduced system density matrix at time t is ρ (f2)

sys . Let us

then define P (�Stot; ρ (f)
sys → ρ (f2)

sys ) as the probability that setup
B would have a total entropy changes of �Stot between t0 and
t . Below we will prove the following slight generalization of
the Crooks equation for non-Markovian quantum systems; it
reads

P
(−�Stot; ρ

(f)
sys → ρ (f2)

sys

) = P
(
�Stot; ρ

(i)
sys →, ρ (f)

sys

)
e−�Stot ,

(67)

under the condition that the time reverse of the final state of
the evolution in setup B, ρ (f2)

sys , is diagonal in the same basis as
the initial state in setup A, ρ (i)

sys. This is slightly more general
than the condition used by Crooks for classical systems [15],
since his condition was that the final state in setup B was the
same as (the time reverse [55] of) the initial state in setup A.

In general, there is no reason to expect the condition below
Eq. (67) to hold; if setup B’s initial state is the time reverse of
the final state of setup A, it is likely to end up in some state ρ (f2)

sys ,
whose time reverse ρ (f2)

sys has nothing to do with ρ (i)
sys. Thus, in

general Eq. (67) will not be satisfied, but there are scenarios
of interest in which the condition is satisfied. Figure 6 shows a
situation (a quantum version of a scenario proposed by Crooks
[15]) in which one naturally has ρ (f2)

sys = ρ (i)
sys.

One can easily generalize the scenario in Fig. 6 to one where
ρ (f2)

sys is diagonal in the same basis as ρ (i)
sys without equaling ρ (i)

sys.
This generalization is one where setup A’s dynamics between
time t0 and t1 (and hence setup B’s dynamics between time
t1 and t) involve strong Markovian decoherence, but need
not have relaxation. Let us assume that setup A starts with
a nonequilibrium ρ (i)

sys which is diagonal in the diagonal basis
of Hsys(t0). Then at time t1 it will still be diagonal in that
basis, but after that its evolution will generate an arbitrary state,

ρ (f)
sys, at time t . Taking the initial state in setup B as ρ (f)

sys, the
dynamics of setup B will give some other state at time t1 (the
red square in Fig. 6). However, this state will be completely
decohered between time t1 and time t , irrespective of whether
it relaxes or not. This means that setup B’s reduced system
density matrix at time t will be diagonal in the diagonal basis
of setup B’s Hamiltonian at time t . Thus the time reverse of
this state will be diagonal in the same basis as ρ (i)

sys. Hence,
it satisfies the condition below Eq. (67), even though the state
ρ (f2)

sys �= ρ (i)
sys and ρ (f2)

sys may be very far from equilibrium (if little
or no relaxation has occurred).

Proof of the Crooks equation

To derive Eq. (67) from Eq. (48) we can follow the proof in
Ref. [10]. The probability that the entropy change is �Stot in
the time from t0 to t is

P
(
�Stot; ρ

(i)
sys → ρ (f)

sys

)=
∑
n0,n

∑
γd∈{n0,t0→n,t}

P (γd )P (i)
n0

× δ[�Stot (γd ) − �Stot], (68)

where the δ function picks out only those trajectories with
entropy change �Stot, and P (i)

n0
is the n0th element of ρ (i)

sys in its
diagonal basis. The δ function means that the equality holds
if one multiples the left-hand side by e−�Stot and the right-
hand side by e−�Stot (γd ). Equation (50)—derived above from
Eq. (48)—can be used to write

P
(
�Stot; ρ

(i)
sys → ρ (f)

sys

)
e−�Stot

=
∑
n0,n

∑
γd∈{n0,t0→n,t}

P (γd )P (f)
n δ[�Stot (γ ) − �Stot].

This means the dynamics are now written in terms of trajec-
tories in the time-reversed setup (setup B). Rewriting the sum
over γd from n0 to n as a sum over γd from n to n0, and using
the fact that �Stot (γ ) = −�Stot (γ ), leads to

P
(
�Stot; ρ

(i)
sys → ρ (f)

sys

)
e−�Stot

=
∑
n0,n

∑
γd∈{n,t0→n0,t}

P (γd )P (f)
n δ[�Stot (γ ) + �Stot],

(69)

where we have used the fact that nothing changes when the
sum over n0 and n is replaced by a sum over n0 and n.
Recalling that P (f)

n is the probability that setup A finishes in
state n in the diagonal basis of ρ (f)

sys, one can always choose
the initial density matrix in setup B to be ρ (f)

sys. Then, the
probability that the system starts in state n in the diagonal
basis of ρ (f)

sys equals P (f)
n . Hence, it looks like the right-hand

side of Eq. (69) equals P (−�Stot; ρ (f)
sys → ρ (f2)

sys ), whatever final
system density matrix, ρ (f2)

sys , this evolution may give. However,
this is overlooking the fact that the trajectories γd end in the
diagonal basis of ρ (i)

sys; thus the right-hand side of Eq. (69) only

equals P (−�Stot; ρ (f)
sys → ρ (f2)

sys ), if ρ (f2)
sys is diagonal in the same

basis as ρ (i)
sys. So one only recovers Eq. (67) if the dynamics

satisfy the condition below Eq. (67).
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FIG. 6. A sketch of a situation for which the Crooks equation in Eq. (67) is applicable. The plots show a cartoon of how the system density
matrix (vertical axis) varies with time from t0 to t . In setup A, the system starts in a thermal state (open green circle). For time t0 to time t1, the
system has a coupling to a single Markovian reservoir with which it is in equilibrium. Thus at time t1 the system is still in the thermal state. For
time t1 to time t , the system is driven while interacting with many non-Markovian reservoirs, so that at time t it is in a highly nonequilibrium state
(filled purple circle). In setup B the system starts in the time reverse of setup A’s final state, and evolves under the time-reversed Hamiltonian.
Between t0 and t1 = t + t0 − t1 it undergoes driven non-Markovian dynamics, so it is in some nonequilibrium state (red square) at time t1.
However, after that it is only coupled to a single Markovian reservoir, so it decays towards the thermal state in equilibrium with that reservoir.
We assume it reaches that state at time t . Thus the initial state in both setups is the final state in the other, which is sufficient that Eq. (67) is
applicable, even though the evolution in setup A is completely arbitrary and non-Markovian between t1 and t . Finally, as nothing happens to
the state in setup A between t0 and t1, we can equally find a Crooks equation of the type in Eq. (67) between the dynamics from time t1 to time
t in setup A and the dynamics from time t0 to time t in setup B.

IX. FLUCTUATION THEOREMS FOR
NONFACTORIZABLE INITIAL CONDITIONS

The system and reservoirs can be in either a factorizable or
nonfactorizable state, a factorizable state being one where the
total density matrix can be written as a product of the system
density matrix and the reservoir density matrices, e.g., ρ̂sys ⊗
ρ̂res1 ⊗ ρ̂res2 ⊗ · · · . This state is often also called a product
state. A nonfactorizable state is any other density matrix for
the system plus the reservoirs. Up to this point, this work has
discussed a setup which started its evolution at time t0 in a
factorized state. In this section, we consider protocols in which
the initial density matrix is in a nonfactorizable state.

In quantum mechanical systems, a system’s state is changed
by the mere fact of observing it. In particular, the act of
measuring the system state projects it into a definite system
state, which means the entanglement with the reservoirs is
destroyed, leaving the system and reservoirs in a factorized
density matrix. Hence, the only way to measure the changes
between time t1 and time t2 without this projection onto
a factorized state at time t1 is to consider the following
protocol.

Nonfactorizing protocol. We prepare many setups in the
same manner (starting each with the same factorized state at a
time t0 and letting them evolve in the same manner), so they
are all in the same nonfactorized state at a time t1. We then
split them into two groups (i and ii). We measure group i at
time t1 and we measure group ii at a later time t2. As we do not
measure the setups in group ii at time t1, they are not projected
onto a factorized state at time t1. Despite this, we know about
the state of the system at time t1 from the measurements on
setups in group i. This enables us to see the difference between
the setup’s properties at time t2, and its properties at the earlier
time t1, when it was in a nonfactorized state at time t1.

It is important to note that this protocol cannot be used
to study correlations between the state at time t1 and time
t2, because one measurement is on group i and the other is
on group ii. For example, we can see how the distribution of

entropy changes between time t1 and time t2, but we cannot see
how a fluctuation of entropy (say the system having much less
entropy than average) at time t1 correlates with a fluctuation of
entropy at the later time t2.

A. Conditional probability in this protocol

Let us consider the above nonfactorizing protocol being
used to study the changes in a setup between time t1 and time
t2, when the system is in a nonfactorized state at time t1. For
this one can assume the setup was prepared in the distant past at
time t0 in a factorized state, but that the system has interacted
with the reservoirs for so long by the time t1 that it is in a
highly complicated entangled state with the reservoirs. Our
main interest is in situations where the time t0 was so far in the
past that the dynamics at the times of interest (t1 and t2) do not
depend on the choice of the system state at time t0.

Consider P (�S tot
1 ; t1, t0) to be the probability distribution

of the entropy change �S tot
1 between the time in the distant past

t0 and time t1, as measured on setups in group i. Then consider
P (�S tot

2 ; t2, t0) to be the probability distribution of the entropy
change �S tot

2 between the time in the distant past t0 and time
t2, as measured on setups in group ii. Then one can define
Q(�S tot

2←1; t2, t1) as a conditional probability distribution, for
the entropy change of

�S tot
2←1 = �S tot

2 − �S tot
1 , (70)

between time t1 and time t2. This means that Q(�S tot
2←1; t2, t1)

measures how the probability distribution changes between t1
and t2. It obeys

P
(
�S tot

2 ; t2, t0
) =

∫
d(�S tot

1 ) Q
(
�S tot

2 − �S tot
1 ; t2, t1

)
×P

(
�S tot

1 ; t1, t0
)
. (71)

One can always define the function Q(�S tot
2←1; t2, t1) in this

manner. However, the price to pay for highly non-Markovian
dynamics (strong memory effects) is that it may depend on both
the initial state of the setup at time t0 and on the dynamics of the
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setup from time t0 to time t1 (as well as the dynamics from t1 to
t2). Thus this is not a pleasant quantity to consider in general.
However, it becomes much more natural in situations where t0
is far enough in the past that Q(�S tot

2←1; t2, t1) depends weakly
on it, and where the dynamics for a long time before time t1
are simple enough to treat in some manner. An ideal example,
which we will consider in more detail below, is when the system
Hamiltonian is time-independent for a long enough time before
t1 that the setup has achieved a steady state at time t1.

B. Integral fluctuation theorem

Now we use the proof of the integral fluctuation theorem,
Eq. (1), for factorized initial conditions, to prove that it also
holds for the entropy change between time t1 and t2, when the
setup is in an arbitrary nonfactorized state at both t1 and t2. In
this context, we assume the entropy change is measured via
the nonfactorizing protocol above, in which the setup was in a
factorized state at a time t0 in the distant past (long before the
times of interest, t1 and t2).

As above we assume �S tot
2 is the entropy change from

time t0 to time t2 (as measured on setups in group ii of the
nonfactorizing protocol). Then Eq. (1), proven for a factorized
state at time t0 in Sec. VIII A above, becomes

〈e−�Stot
2 〉 =

∫
d
(
�S tot

2

)
P

(
�S tot

2 ; t2, t0
)
e−�Stot

2 . (72)

Substituting in Eq. (71),

〈e−�Stot
2 〉 =

∫
d
(
�S tot

2←1

)
d
(
�S tot

1

)
Q

(
�S tot

2←1; t2, t1
)

×P
(
�S tot

1 ; t1, t0
)
e−�Stot

2←1−�Stot
1

=
∫

d
(
�S tot

2←1

)
Q

(
�S tot

2←1; t2, t1
)
e−�Stot

2←1〈e−�Stot
1 〉,
(73)

where 〈exp[−�S tot
1 ]〉 is the average over dynamics from time

t0 to t1. Now substituting in Eq. (1) for the two averages, we
have

1 =
∫

d
(
�S tot

2←1

)
Q

(
�S tot

2←1; t2, t1
)
e−�Stot

2←1 ≡ 〈e−�Stot
2←1〉,

(74)

where �S tot
2←1 is the entropy change in the setup between time

t1 and t2. Hence, we have the integral fluctuation theorem in
Eq. (1) for any nonfactorized initial state, the initial state now
being the time at which one starts to study the setup (time t1).

The average, 〈· · · 〉, in Eq. (74) is defined via the nonfactor-
izing protocol above, which relates changes to the difference
between the setup’s nonfactorized state at time t1 (as measured
on setups in group i of the nonfactorizing protocol) and the
setup’s nonfactorized state at a later time t2 (as measured on
setups in group ii of the nonfactorizing protocol).

It immediately follows from this proof that all statements
about the second law of thermodynamics in Sec. VIII B above
also hold for nonfactorized states. The second law is always
true on average, 〈

�S tot
2←1

〉
� 0, (75)

irrespective of whether the setup is in a factorized state at time
t1 or not. Hence the average entropy will never be smaller at
time t2 than at time t1 (for any t2 > t1), However, there must
also be fluctuations for which �S tot

2←1 < 0, if Eq. (74) is to be
satisfied.

C. Steady-state fluctuation relation

We can expect that a large class of non-Markovian systems
will decay to a situation of steady state flow, if the system is
coupled to two or more reservoirs at different temperatures
and electrochemical potentials, while the Hamiltonian is kept
time-independent. Here we consider the case where there is a
single steady state (for a given Hamiltonian and given reservoir
parameters), which all initial states decay to. This steady state
will generally not be a factorizable state of the system and
the reservoirs, since the system will be entangled with at least
some reservoir modes at all times.

The objective here is to derive the Evans-Searles fluctuation
relation [14] for such a non-Markovian system for which
the steady state is nonfactorizable. For this, consider the
nonfactorizing protocol above, in which time t0 is so far in
the past that the choice of initial state at t0 is irrelevant for the
steady-state dynamics at the times of interest (t1 and t2). Since
one is completely free to choose the system state at time t0, take
it to coincide with that given by the steady state when one traces
out the reservoirs. Then, by construction, the initial-system
density matrix and the reduced final-system density matrix
are the same. This means the setup obeys the Crooks equality
derived above in Sec. VIII D. We also assume the Hamiltonian
is invariant under time reversal, such as is the case if it is
time-independent, and has no external magnetic field. This
means that the dynamics in the time-reversed setup are the
same as in the original setup. Then the Crooks equality for the
entropy change between time t0 and time t2 reads

P
( − �S tot

2 ; t2, t0
) = P

(
�S tot

2 ; t2, t0
)
e−�Stot

2 , (76)

where we have dropped the overline on the left, because time
reversal changes nothing. Now Eq. (71) is used to write the
right-hand side as evolution from time t0 to time t1 followed
by evolution from t1 to t2, as follows:

P
(
�S tot

2 ; t2, t0
)
e−�Stot

2

= e−�Stot
2

∫
d
(
�S tot

1

)
Q

(
�S tot

2

−�S tot
1 ; t2, t1

)
P

(
�S tot

1 ; t1, t0
)
. (77)

By the same logic the left-hand side of Eq. (76) is

P
( − �S tot

2 ; t2, t0
)

=
∫

d
(
�S tot

1

)
Q

(
�S tot

1

−�S tot
2 ; t2, t1

)
P

(−�S tot
1 ; t1, t0

)
= e−�Stot

2

∫
d(�S tot

1 )Q
(
�S tot

1 − �S tot
2 ; t2, t1

)
× e�Stot

2 −�Stot
1 P

(
�S tot

1 ; t1, t0
)
, (78)
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where the last line comes from substituting in the Crooks
equality, as applied to the evolution from time t0 to t1, for which
it takes the form P (−�S tot

1 ; t1, t0) = P (�S tot
1 ; t1, t0)e−�Stot

1 .
Note that the integrals in Eq. (77) and Eq. (78) are both con-

volutions of P (�S tot
1 ; t1, t0) with another function; in the for-

mer case that function is Q(�S tot
2 − �S tot

1 ; t2, t1) and in the lat-
ter case that function is Q(−�S tot

2 + �S tot
1 ; t2, t1)e�Stot

2 −�Stot
1 .

Substituting Eq. (77) and Eq. (78) into the right- and left-
hand sides of Eq. (76) gives us an equality between the two
convolutions,∫

d
(
�S tot

1

)
Q

(
�S tot

2 − �S tot
1 ; t2, t1

)
P

(
�S tot

1 ; t1, t0
)

=
∫

d
(
�S tot

1

)
Q

(
�S tot

1 − �S tot
2 ; t2, t1

)
× e�Stot

2 −�Stot
1 P

(
�S tot

1 ; t1, t0
)
. (79)

This equality has the mathematical structure∫
dxA1(y − x)B(x) =

∫
dxA2(y − x)B(x) for all y.

We wish to show that this implies that the functions A1(x)
and A2(x) are identical, irrespective of the form of A1(x)
and B(x). To do this we consider the Fourier transforms of
the functions defined as Ai (x) = ∫

dkai (k)eikx for i = 1, 2,
and B(x) = ∫

dkb(k)eikx . We assume that the functions a1(k),
a2(k), and b(k) are well behaved, and also assume that b(k) is
not zero over any finite range of k. Given the Fourier transforms
we have∫

dy e−iky

∫
dx A1(y − x)B(x) = (2π )2a1(k)b(k), (80)

with a similar equation for A2 in place of A1. This immediately
gives a2(k) = a1(k) for all k where b(k) �= 0 [however it tells
us nothing about the relationship between a2(k) and a1(k)
whenb(k) = 0]. So long asb(k) is not zero over a finite range of
k, then it is sufficient to perform the inverse Fourier transform
on a1(k) and a2(k), to find A2(x) = A1(x) for all x.

This means that so long as the Fourier transform of all the
probability distributions in Eq. (79) are well behaved and the
Fourier transform of P (�S tot

1 ; t1, t0) only vanishes at discrete
points, then

Q
( − �S tot

2←1; t2, t1
) = Q

(
�S tot

2←1; t2, t1
)
e−�Stot

2←1 , (81)

where �S tot
2←1 is the entropy change between time t1 and time

t2, given by Eq. (70). This is the Evans-Searles steady-state
fluctuation relation derived for a nonfactorizable steady state in
a non-Markovian system. The derivation holds for any situation
where all initial system states decay to the same steady state.

A careful reader will note that the proof is a little more
general; it can also hold for a system with multiple steady
states (A, B, etc.), so long as the initial factorized state with
the system density matrix which corresponds to the reduced
density matrix of steady state A does indeed decay to steady
state A (and not to steady state B). This is plausible, since one
would imagine that this initial state is the closest product state
to steady state A, but there may be systems that violate it. Of
course the proof does not apply to systems which do not decay
to steady states, such as those that decay to limit cycles.

X. APPROXIMATE THEORIES

This work connects fluctuation theorems to a microscopic
symmetry of the system-reservoirs interactions, going beyond
Ref. [4]. This can be used to identify a family of approximations
which are guaranteed to satisfy fluctuation theorems. These ap-
proximations must contain a trajectory γ for every trajectory γ ,
and individual transitions must satisfy local-detailed balance,
thereby satisfying Eqs. (47). Then the above arguments apply,
so Eq. (48) is recovered, which leads to all the usual fluctuation
theorems, which means they will always obey the second law
on average.

The first approximation is the Born approximation for weak
system-reservoir coupling, also called the Bloch-Redfield
[56,57] or sequential tunneling approximation [30]; see also
Refs. [44,45,58,59] or various textbooks [60–62]. This neglects
trajectories where the system interacts with multiple reservoir
modes at the same time, which is reasonable when the coupling
is weak on the scale of the reservoir’s memory time. The ap-
proximation has a trajectory γ for every γ , and individual tran-
sitions satisfy local-detailed balance, which is enough to prove
that it obeys all the usual fluctuation theorems. For strictly
vanishing memory time (Markovian dynamics), this reduces
to a Lindblad equation [44,63,64], for which a different proof
of fluctuation theorems exists [46]. However, our proof applies
equally to systems with short (but nonzero) memory times.

Next is the cotunneling approximation [30], in which the
system can interact with two reservoir modes at the same time.
This is a used in Coulomb-blockaded quantum dots, where
it can dominate the transport in certain regimes [30]. Since
this approximation obeys the conditions discussed above, this
constitutes a proof that the cotunneling approximation obeys
all the usual fluctuation theorems. Similarly, by allowing up to
n simultaneous interactions with reservoir modes (for different
n), one gets a family of approximations which all obey the
fluctuation theorems.

XI. CONCLUSIONS

This work uses a real-time diagrammatic theory on the
Keldysh contour to develop the quantum stochastic thermo-
dynamics of arbitrary systems coupled to ideal reservoirs. It
shows that energy conservation ensures that the system obeys
the first law of thermodynamics on average. Then, by finding
the symmetry between trajectories on the Keldysh contour in
Eq. (48), it shows that the integral fluctuation theorem, Eq. (1),
holds for all non-Markovian system dynamics, including
nonfactorized initial conditions, so these dynamics obey the
second law on average. It gives other fluctuation theorems,
such as Jarzynski or Crooks, in the right conditions. Similarly, a
nonfactorized steady state obeys the Evans-Searles fluctuation
relation [14], if the Hamiltonian in Eq. (2) is invariant under
time reversal.

The most obvious practical consequence of these results
is that they prove that no quantum machine (Markovian or
non-Markovian) will ever exceed Carnot efficiency on average.

A family of approximations is identified which satisfies
Eq. (48) and so fulfills the fluctuation theorems. This provides
a powerful tool to analyze nanoscale energy harvesting and
refrigeration beyond weak coupling.
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APPENDIX: REMINDER ON TIME REVERSAL
IN QUANTUM MECHANICS

Here we recall the results that we will need related to
time reversal in quantum mechanics, which can be found in
Messiah’s famous textbook [54]. First, the time inversion of a
quantum state |i〉 is defined as

|ı〉 = �̂†|i〉, (A1)

where �̂† is the time-inversion operator. In the absence of
spins, time inversion of a wave function is just taking its
complex conjugate; thus �̂† = �̂

†
0, where �̂

†
0 is the complex-

conjugation operator. To understand the role of �̂
†
0 for a single-

particle problem, one notes that position states are invariant
under time inversion, and so if one writes the system wave
function |i〉 as a vector of position states, then �̂

†
0 is the operator

which takes the complex conjugate of all elements of the vector.
For a many-body problem, the same is also true, if one writes
the system state as a vector of many-body position states (with
a position for each particle). Defining �̂0 such that �̂0�̂

†
0 = 1,

one has �̂
†
0X �̂0 = X ∗ for any matrix X written in a basis of

many-body position states.
In the presence of spin-halves, the time-inversion operator

also flips the spins about the y axis, so

�̂† = −iσy�̂
†
0. (A2)

The time inversions of a position operator, x̂, a momentum
operator, p̂ = −ih d/dx, and a Pauli spin operator σ̂α are

x̂ = �̂†x̂�̂ = x̂, (A3a)

p̂ = �̂†p̂�̂ = −p̂, (A3b)

σ̂ α = �̂†σ̂α�̂ = −σ̂α. (A3c)

The time reverse of a Hamiltonian in the time window t0 to
t as sketched in Fig. 4 is

Ĥ (B, σα, τ ) = �̂†Ĥ (B, σ̂α, t0 + t − τ )�̂

= Ĥ (−B,−σ̂α, t0 + t − τ ), (A4)

where the dependence ofH on external fields, B, and Pauli spin
matrices, σα , is explicitly shown to recall how they transform
under time reversal. The evolution operator from time t0 to
time τ under such a time-dependent Hamiltonian [the solid
part of the curve in Fig. 4(a)] is given by the usual time-ordered
integral

Û (τ ; t0) = T exp

[
−i

∫ τ

t0

dτ ′Ĥ (τ ′)
]
, (A5)

where T is the time-ordering operator. Similarly, the evolution
operator from time τ to time t [the dashed part of the curve in
Fig. 4(a)] is

Û (t ; τ ) = T exp

[
−i

∫ t

τ

dτ ′Ĥ (τ ′)
]
. (A6)

If one now compares this to the evolution operator from time
t0 to time τ in the system with the time-reversed Hamiltonian
[the solid part of the curve in Fig. 4(b)],

Û (t ; τ ) = T exp

[
−i

∫ τ

t0

dτ ′ Ĥ (τ ′)
]
, (A7)

where one should recall that τ = t0 + t − τ . Then it is straight-
forward to show that

Û (τ ; t0) = �̂† Û †(t ; τ ) �̂. (A8)
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