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Two-phonon Raman bands of single-walled carbon nanotubes: A case study
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It has been long accepted that the second-order Raman bands in carbon nanotubes are enhanced through
the double-resonance mechanism. Although separate aspects of this mechanism have been studied for a few
second-order Raman bands, including the most intense defect-induced D band and the two-phonon 2D band, a
complete computational approach to the second-order bands is still lacking. Here, we propose such an approach,
entirely based on a symmetry-adapted nonorthogonal tight-binding model with ab initio derived parameters. As
a case study, we consider a nanotube (6, 5), for which we calculate the two-phonon spectrum. We investigate
in detail the 2D band and identify three contributions to it: a nondispersive one and two dispersive ones, which
are found to depend on the electron and phonon dispersion of the nanotube, and on the laser excitation. We also
predict two-phonon bands, which are not allowed in the parent structure graphene. The obtained two-phonon
bands are in very good agreement with the available experimental data. The symmetry-adapted formalism makes
feasible the calculation of the two-phonon Raman bands of any observable nanotube.
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I. INTRODUCTION

In the last few decades, the layered carbon materials like
fullerenes, nanotubes, and few-layer graphene have been a
subject of intense experimental and theoretical study because
of their unique properties, originating from their zero, one,
two, and three dimensionality [1]. In particular, significant
progress has already been achieved in the synthesis and the
study of the properties and application of carbon nanotubes
[2,3]. The application of nanotubes in nanoelectronics requires
their precise structural characterization. For this purpose, the
Raman scattering by phonons is the experimental technique
of choice, being a fast and nondestructive characterization
method [4].

The so-called single-walled nanotube (or briefly nanotube)
can be viewed as obtained by rolling up a graphene sheet into
a seamless cylinder. It has a few intense first-order Raman
bands, arising from the radial-breathing mode (RBM) and
the longitudinal and transverse tangential modes (G modes).
The RBM frequency is found to be inversely proportional
to the nanotube radius and is normally used for fast sample
characterization [5]. The G modes also depend on the nanotube
radius and can be used to support the assignment of the
Raman spectra to particular nanotubes but also allow for dif-
ferentiating between metallic and semiconducting nanotubes
[6]. Intense second-order Raman bands are also observed in
nanotubes. These bands arise from scattering processes, which
can involve two phonons with opposite momenta (two-phonon
bands) or a phonon and a defect (defect-induced bands). The
most intense two-phonon band (so-called 2D band), usually
observed around 2700 cm−1, is due to electron/hole scattering
by two transverse optical (TO) phonons with opposite mo-
menta. Other two-phonon bands have also been measured (for
summary, see, e.g., Ref. [7]). The two-phonon spectra contain
valuable information about the phonon dispersion of the
nanotubes [8].

The D and 2D band intensity is found to be enhanced
for certain laser excitations, which has been explained by
the double-resonant (DR) scattering mechanism, initially pro-
posed for graphene [9]. In the early days of the modeling
of these bands in graphene, simplifying assumptions such as
constant electronic linewidth, limiting the calculations only to
high-symmetry directions in the Brillouin zone, and exact DR
conditions have been used (for a review, see, e.g., Ref. [10]).
Only recently, theoretical two-phonon bands in graphene,
which are in good agreement with the experimental data,
have been reported [10,11]. The success of the latter studies
is based on the explicit calculation of the couplings and the
electronic linewidth, and performing the integration of the
quantum-mechanical expression for the Raman intensity over
the entire Brillouin zone for both electrons and phonons.

The theoretical description of the two-phonon bands of
nanotubes is much more complex than for graphene, mainly,
because of the quantum confinement in one dimension and
the large variety of nanotube types. Recently, a step towards
the understanding of the defect-induced D mode in nanotubes
vs diameter and energy has been made using the hexagonal
symmetry of graphene and geometrical considerations [12,13].
This approach allows assigning the two-phonon bands to pairs
of definite phonons. However, the two-phonon band shape can
only be predicted, taking into account the couplings and the
electronic linewidth, and carrying out full integration over the
Brillouin zone. In a recent publication [14], this has been done
for a few narrow nanotubes using ab initio and tight-binding
approaches, neglecting, however, the effects of the nanotube
curvature.

Here, we propose a computational approach to the calcu-
lation of the two-phonon Raman spectra of carbon nanotubes,
which is entirely based on a symmetry-adapted ab-initio-based
nonorthogonal tight-binding (NTB) model. This model has
been used for more than a decade for the successful prediction
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of the electronic band structure and phonon dispersion, and the
first-order Raman bands of several hundred nanotube types
[15–19]. The model describes the curvature effects on the
physical properties of carbon nanotubes, which are essential
for nanotube diameters below about 1 nm. As a case study, we
consider the narrow nanotube (6, 5) and perform a complete
calculation of the two-phonon bands at a number of laser
excitations and discuss the contributions to the 2D band,
as well as the appearance of two-phonon bands, which are
symmetry-forbidden for the parent structure graphene.

The paper is organized as follows. The theoretical back-
ground is presented in Sec. II. The obtained results are
discussed in Sec. III. The paper ends up with conclusions,
Sec. IV.

II. THEORETICAL BACKGROUND

A nanotube can be considered as obtained by cutting out a
rectangle of graphene, defined by a pair of orthogonal lattice
vectors �T and �C, and rolling it along �C into a seamless cylinder.
This rolled-up nanotube can be characterized by the radius R =
‖ �C‖/2π , translation period T ≡ ‖ �T ‖, as well as by the chiral
angle θ , which is the angle between �C and the nearest zigzag
of carbon atoms. All structural parameters of the rolled-up
nanotube can be expressed by means of the nearest-neighbor
interatomic distance and the hexagonal indices (n,m) of �C
or (ñ, m̃) of �T . The former notation is traditionally used to
specify uniquely the nanotube and is accepted here as well.
Normally, the total energy of the rolled-up nanotube is not
minimal and the atomic structure of the nanotube has to be
subjected to structural relaxation, which is a necessary step
before performing phonon calculations.

The straightforward calculation of the electronic states and
phonons for a large variety of nanotubes is accompanied by
insurmountable computational difficulties, because of the very
large translational unit cells of most of the observed nanotubes.
Fortunately, the nanotubes have screw symmetry that allows
reducing the computational efforts by resorting to two-atom
unit cells. The latter approach has been used for calculation
of the electronic states [15] and phonons [17] of several
hundred nanotubes within the NTB model. In this model, the
Hamiltonian and overlap matrix elements are derived as a
function of the interatomic separation from an ab initio study
on carbon dimers [20] and the Slater-Koster scheme is adopted
for the angular dependence of the matrix elements.

Imposing the translational periodicity and rotational bound-
ary conditions on the solutions of the electron and phonon
eigenvalue problems results in labeling of these solutions
by a pair of indices. The electronic states are labeled by
the one-dimensional wave vector k, k ∈ [0, 1) 2π/T , and
the integer quantum number l, l ∈ [0, N ), where N is the
number of two-atom unit cells in the translational unit cell
of the nanotube. Similarly, the phonons are labeled by the
one-dimensional wave vector q, q ∈ [0, 1) 2π/T , and the
integer quantum number λ, λ ∈ [0, N ). The selection rules
for scattering of electrons by phonons are k′ = k + q ± 2π/T

and l′ = l + λ ± L; L = (Nν + n)/ñ, where ν is an integer
number such that L is an integer number. These selection rules
can be derived similarly to those in Ref. [18] by including

umklapp processes. Notice that the integer quantum number is
nonconserving [21].

In quantum mechanics, the two-phonon process can
be viewed as a sequence of virtual processes, namely,
electron-hole creation, scattering of electrons or holes by
two phonons with opposite momenta, and finally electron-
hole annihilation. The wave vector is conserved for each
virtual process, while the energy is conserved only for the
entire two-phonon process. The corresponding two-phonon
Raman intensity can be described by an expression, de-
rived in fourth-order quantum-mechanical perturbation theory
[3,4,10,11,22],

I ∝
∑

f

∣∣∣∣∣
∑

c,b,a

Mf cMcbMbaMai

�Eic�Eib�Eia

∣∣∣∣∣

2

δ(Ei − Ef ). (1)

Here, �Eiu = Eiu − iγ and Eiu = Ei − Eu; Ei is the
energy of the initial state; Ei = EL, where EL is the incident
photon energy (laser excitation); Eu, u = a, b, c, f , are the
energies of the intermediate (a, b, c) and final (f ) states of
the system of photons, electrons, holes, and phonons. Muv are
the matrix elements between initial, intermediate, and final
states. Mai and Mf c are momentum matrix elements. Mba

and Mcb are electron-phonon matrix elements. The electron-
photon and electron-phonon matrix elements are calculated
explicitly within the NTB model [16]. γ = γc + γv , where γc

and γv are the halfwidths of conduction (c) and valence (v)
states, respectively [18]. The summation over the phonon wave
vectors q and the electron wave vector k is carried out over a
mesh of 400 points in the Brillouin zone. The Raman intensity
is enhanced for vanishing of one, two, or three of the Eiu in
Eq. (1), and therefore single, double, and triple resonances
can occur [10]. The incident and scattered light are assumed
polarized along the nanotube axis and only Stokes processes
are considered in this work.

III. RESULTS AND DISCUSSION

We consider nanotube (6, 5) for exemplifying the behavior
of the two-phonon bands vs laser excitation. The translational
unit cell of the nanotube contains N = 182 two-atom unit cells.
The atomic structure of the nanotube is relaxed, retaining its
circular cylindrical form. In this case, as independent structural
parameters, we choose the radius R, the translation period T ,
and the coordinates of the second atom relative to the first
atom in the zeroth two-atom unit cell, and obtain the relaxed
parameters R = 3.76 Å and T = 40.67 Å.

The electronic band structure of nanotube (6, 5) in the entire
Brillouin zone and for energies up to ±1.5 eV relative to the
Fermi energy EF = 0 eV is shown in Fig. 1(a). The valence and
the conduction bands in this energy range are bands of graphene
of mainly π and π∗ character, folded along the cutting lines
of the Brillouin zone of graphene [23]. None of the cutting
lines passes through the K and K ′ points of the Brillouin
zone of graphene and therefore there are no linear bands that
cross the Fermi energy in the Brillouin zone of the nanotube.
Thus, unlike graphene, nanotube (6, 5) is a semiconductor. Due
to the presence of electronic bands with extrema (so-called
parabolic bands), the electronic density of states for such
bands has singularities at the energies of the extrema, so-called
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FIG. 1. (a) Electronic band structure of nanotube (6, 5) close to
the Fermi energy, chosen as zero. The optical transition E22 is denoted
by vertical arrows. (b) Phonon dispersion of nanotube (6, 5) in the
extended zone representation. The pairs of close vertical lines bracket
the phonons, taking part in scattering between the extrema of the
parabolic bands for the E22 transition. (c) Half-widths of valence
(γv) and conduction (γc) states of nanotube (6, 5). The corresponding
half-widths for graphene (dotted lines) are provided for comparison.

Van Hove singularities (VHS) (not shown). The absorption
of electromagnetic radiation is enhanced for photon energies,
matching mirror pairs of VHS with respect to the Fermi energy
[15]. In the mentioned energy range, the NTB model predicts
only two optical transitions for nanotube (6, 5), which take
place between the first and the second pair of mirror VHS
and are denoted as E11 and E22, respectively. Here, we will be
interested in the parabolic bands, associated with the transition
E22 = 2.20 eV.

The phonon dispersion of nanotube (6, 5) consists of 6N

branches and their representation in the Brillouin zone for
the translational unit cell is not very informative, because the
branches would cover densely the graph. Alternatively, one
can draw fewer phonon branches in the extended zone repre-
sentation [24], namely, 6ν, where ν is the greatest common
divisor of n and m. In the case of nanotube (6, 5), ν = 1 and
therefore there are only six branches in this representation.
These branches have in-plane longitudinal optical (LO), trans-
verse optical (TO), longitudinal acoustic (LA), and transverse
acoustic (TA) character, and out-of-plane optical (ZO) and
acoustic (ZA) character. The unfolded phonon dispersion
consists of parts of width 2π/T characterized by different
values of the integer quantum number [Fig. 1(b)]. The selection
rules for the wave vector and the integer quantum number
impose restrictions on the allowed values of the phonon wave

FIG. 2. Calculated two-phonon Raman spectrum of nanotube
(6, 5) at laser excitation EL = 2.35 eV. The most intense two-phonon
bands are labeled. The spectrum is slightly upshifted for clarity.

vectors ±q for scattering of electrons between the parabolic
bands for transition E22 to the regions between the pairs of
close vertical lines in Fig. 1(b).

The Raman intensity, Eq. (1), depends crucially on the
electronic linewidth. The calculated linewidth for nanotube
(6, 5) exhibits sharp spikes, arising from the singularities of
the electronic density of states, while that for graphene is a
smooth function of energy [Fig. 1(c)]. The singularities of the
linewidth effectively decrease the Raman intensity close to the
transition energies of the nanotube.

The derived electronic band structure and phonon disper-
sion, halfwidths, electron-photon, and electron-phonon matrix
elements are used in Eq. (1) for calculating the two-phonon
Raman spectrum of nanotube (6, 5) at EL = 2.35 eV (see
Fig. 2). The most intense band in this spectrum is positioned
at ≈2630 cm−1. This band arises from TO phonons in the
vicinity of the K point of the hexagonal graphene Brillouin
zone and is usually denoted as 2TO@K or simply as 2D
band. The 2D band, along with two less intense bands—
TOLA@K at ≈2450 cm−1 and 2LO@� at ≈3200 cm−1—
are observed in the Raman spectra of the parent structure
graphene. In nanotubes, bands around 1950 cm−1 have been
observed and assigned to scattering processes TOLA@� or
LOLA@� (for discussion, see, e.g., Ref. [7]). Here, we find
that such combination modes have negligible intensity and
are unlikely to be connected to the observed Raman bands.
On the basis of our results, we assign such experimental
bands to the predicted here combination bands TOZA@K
and TOZO@K. Such combination modes are not observed
in graphene, because scattering of electrons by ZA and ZO
phonons is not allowed. However, these scattering processes
become allowed in nanotubes due to their curved surface [7].

We focus on the behavior of the 2D band vs laser excitation
EL in the range from 2.15 up to 2.60 eV [Fig. 3(a)]. It is clearly
seen that the 2D band undergoes an evolution from a single,
Lorentz-like shape at small EL to a two-peaked structure at
large EL. The separation between the two components of the
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FIG. 3. (a) Calculated Raman 2D band of nanotube (6, 5) vs laser
excitation EL. The 2D band shape evolves from a single- to two-
peaked structure (peaks 1 and 2) with increasing EL from 2.15 to
2.60 eV with a step of 0.01 eV (see right panel axis). (b) Integrated
Raman intensity of the 2D band (in arb. units) vs EL. Three peaks,
centered at EL = E22, E22 + h̄ω, and E22 + 2h̄ω, where ω is the TO
phonon frequency, are clearly seen. The line is a guide to the eye.

2D band is practically zero for energies below 2.35 eV but
increases up to a few tens of cm−1 at 2.60 eV. The integrated
Raman intensity exhibits three peaks with separation between
the adjacent peaks of about h̄ω, where ω is a characteristic TO
phonon frequency [Fig. 3(b)]. We have not attempted fitting
the 2D band with two Lorentzians and deriving the Raman
excitation profile for each of them, because of the strong
overlap of the two peaks of this band.

The two-peaked structure of the Raman spectrum, Fig. 3(a),
and the three-peaked structure of the integrated intensity,
Fig. 3(b), can be explained with the VHS of the electronic
density of states and the small denominator in Eq. (1) for
small E′

ius. In the case of mirror pairs of conduction parabolic
bands and mirror pairs of valence parabolic bands with
respect to k = π/T , which is characteristic for nanotubes
[Fig. 1(a)], there are two types of scattering processes that
give rise to the 2D band (see also Ref. [10]): (a) ee (or hh)
processes, with twice scattering of an electron (or a hole) by
phonons with opposite momenta, for which Eia = EL − Ec +
Ev , Eib = EL − Ec + E‘

v − h̄ω (or Eib = EL − E‘
c + Ev −

h̄ω), and Eic = EL − Ec + Ev − 2h̄ω; (b) eh processes with
scattering of an electron and a hole by two phonons with
opposite momenta, for which Eia = EL − Ec + Ev , Eib =
EL − Ec + E‘

v − h̄ω (or Eib = EL − E‘
c + Ev − h̄ω), and

Eic = EL − E‘
c + E‘

v − 2h̄ω.
First of all, single resonances are present for processes,

for which one of the E′
ius vanishes. However, this does not

yield a significant increase of the Raman intensity unless
the process involves initial and final electron wave vectors
at a VHS. Such electron wave vectors are connected by
phonon wave vectors, close to the wave vector q0 between
the extrema of mirror pairs of conduction bands and mir-
ror pairs of valence bands [Fig. 4(a)]. Thus the scattering

FIG. 4. Part of the electronic band structure of nanotube (6, 5)
in the extended zone representation with characteristic diagrams for
ee and eh two-phonon processes with largest (a) single resonance,
(b) double resonance, and (c) triple resonance contributions to the
2D band. The diagrams are closed polygons of arrows, denoting the
virtual processes. (d) Part of the TO branch of nanotube (6, 5) in
the extended zone representation, including phonons, relevant to the
two-phonon processes in (a), (b), and (c).

phonons will have frequency close to ω0 ≡ ω(q0) [Fig. 4(d)]
and the Raman shift of the 2D band will be equal to 2ω0

[Fig. 3(a)]. For the mentioned phonon wave vectors, Eia ,
Eib, and Eic turn to zero at EL = E22, EL = E22 + h̄ω0,
or EL = E22 + 2h̄ω0, respectively. This corresponds to the
derived three-peaked structure of the integrated intensity of the
2D band [Fig. 3(b)].

Double resonances are possible only for type ee/hh pro-
cesses but the largest contribution comes from processes
with initial or final electron wave vector at a VHS. There
are two phonon wave vectors for such processes, q1 and q2

[Fig. 4(b)]. These phonons generally have different frequencies
ω1 ≡ ω(q1) and ω2 ≡ ω(q2) [Fig. 4(d)] and give rise to two
peaks of the 2D band with Raman shifts of 2ω1 and 2ω2

[Fig. 2(a)]. In this case, Eia and Eib simultaneously turn to zero
at EL = E22 + 2h̄ω1 or EL = E22 + 2h̄ω2. These processes
will contribute to a double peak of the integrated intensity at
EL = E22 + 2h̄ω1 and EL = E22 + 2h̄ω2. However, because
ω2 − ω1 is much smaller than the electronic linewidth, the
two peaks are likely to be observed as a single one at EL =
E22 + 2h̄ω, where ω ∈ [ω1, ω2].

Finally, triple resonances are possible only for type eh

processes. In this case, the intensity is largest for initial or
final electronic states at a VHS. Similarly to the case of double
resonance, there are again two phonon wave vectors, q1 and q2,
satisfying this condition [Fig. 4(c)]. The corresponding phonon
frequencies ω1 and ω2 are generally different [Fig. 4(d)] and
give rise to two peaks of the 2D band with Raman shifts of 2ω1

and 2ω2 [Fig. 3(a)]. All three factors Eiu in the denominator of
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Eq. (1) vanish simultaneously at EL = E22 + 2h̄ω1 or EL =
E22 + 2h̄ω2. Triple resonance processes will then contribute to
the peak of the integrated intensity at EL = E22 + 2h̄ω, where
ω ∈ [ω1, ω2].

The provided description of the contributions of the various
scattering processes to the 2D band allows analyzing the
complex shape of this band. With increasing EL from below
E22, the 2D band is initially a single-peak one, mainly due
to single resonance processes. At higher EL, the 2D band
shape evolves into a two-peak one, due to the dominant
contributions of double and triple resonance processes; the
two peaks of the 2D band are redshifted and blueshifted,
depending on the behavior of the TO phonon branch. We
note that for such EL there will also be a contribution to
the 2D band from single resonances due to TO phonons with
frequency ω0, but it is much smaller than those from double and
triple resonances and cannot be resolved. The predicted two-
peaked 2D band corresponds well to the recent experimental
data [14].

The evolution of the 2D band of any nanotube with laser
excitation is expected to show similar behavior as that for
nanotube (6, 5). Namely, the 2D band will split into a two-
peaked structure with increasing EL. The redshift and blueshift
of the constituent peaks will depend on the TO branch and the
optical transition of the nanotube. For small enough slope of
the TO branch, splitting of the 2D band may not be observed
at all.

The characteristic three-peak shape of the integrated in-
tensity versus laser excitation is quite different from that
in graphene because the former is intrinsically connected to
the characteristic VHS in nanotubes, which are not present
in graphene. Also, unlike graphene, it is difficult to define
dispersion rate of the 2D band, because of the complex shape
of this band. However, dispersion rate can be associated with

each of the peaks of the 2D band and can be deduced from the
slope of the part of the TO branch, which is relevant to the 2D
band.

The behavior of the remaining two-phonon bands is similar
to that of the 2D band. Namely, the Raman bands have signifi-
cant intensity for laser excitation roughly in the range between
the optical transition Eii and Eii + 2h̄ω. For EL close to Eii ,
single resonance processes give rise to a nondispersive two-
phonon band. With increasing EL, double and triple resonance
processes become dominant and the two-phonon band splits
into two dispersive components.

IV. CONCLUSIONS

We presented a computational approach to the calculation
of the two-phonon bands of carbon nanotubes, based on a
symmetry-adapted nonorthogonal tight-binding model. As a
case study, we considered the narrow nanotube (6, 5) and
analyzed the evolution of the 2D Raman band versus laser
excitation. We found that this band splits into two dispersive
peaks with increasing laser excitation energy. Such behavior
is expected for any two-phonon band of any nanotube with
dispersion rate of the dispersive peaks, depending on the
electronic and phonon dispersion, and laser excitation. The
adopted symmetry-adapted approach significantly reduces the
computational efforts in comparison with the approach, based
only on the translational symmetry of the nanotubes, and allows
one to derive the two-phonon Raman bands of any observable
carbon nanotube.
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