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Andreev transport through single-molecule magnets
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The Andreev transport through a large-spin magnetic molecule, such as a single molecular magnet, attached
to superconducting and ferromagnetic leads is studied theoretically by means of the real-time diagrammatic
technique. It is shown that due to the proximity effect, molecular Andreev bound states form in the system,
with energies depending on the intrinsic parameters of the molecule. We study the spin-resolved Andreev
current, conductance, and tunnel magnetoresistance in both the linear and nonlinear response regimes and find
regions of negative differential conductance, as well as either enhanced or negative tunnel magnetoresistance. The
mechanisms leading to those effects are thoroughly discussed. It is also shown that the tunnel magnetoresistance
can provide information about particular spin multiplets responsible for the Andreev reflection processes.
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I. INTRODUCTION

Coupling of a magnetic impurity to a superconductor results
in the formation of bound states inside the superconducting
energy gap �, predicted and studied already half a century
ago [1–3]. Such bound states can be, for example, revealed
in scanning tunneling spectroscopy experiments for magnetic
adatoms deposited on superconducting substrates [4–8]. The
bound states can be also examined in tunnel junctions involving
a quantum dot or a molecule attached to external superconduct-
ing leads [9]. For bias voltages and temperatures lower than �,
transport in these systems occurs due to the Andreev reflection
processes [10]. In fact, Andreev reflection spectroscopy has
been recently used to study the Andreev bound states in various
nanoscale systems, involving both single and double quantum
dots [11–17].

Besides the possibility of exploring the subgap states, hy-
brid multiterminal nanostructures, involving superconducting
and normal electrodes, provide a controllable platform for
extracting and manipulating the Cooper pairs in crossed An-
dreev reflection (CAR) processes [18–21]. In a CAR process
the Cooper pair electrons are split into different electrodes,
which is opposite to direct Andreev reflection (DAR), where
the two electrons tunnel to the same lead. Because controllable
extraction and manipulation of entangled electrons is crucial
for solid-state quantum computation, a large endeavor has
been undertaken to optimize the splitting efficiency of various
hybrid devices [22–24]. In addition, it has been also suggested
that spin-polarized contacts can play an important role in
the detection of entangled electrons [25]. From this point
of view, understanding the Andreev transport properties of
hybrid nanostructures involving both superconducting and
ferromagnetic electrodes is very important. In fact, transport
characteristics of such hybrid quantum dot systems have
already been a subject of extensive investigations [26–34].
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In turn, when instead of a simple spin one-half magnetic
impurity a large-spin molecule is embedded in a hybrid tunnel
junction, one can expect that additional effects, resulting from
intrinsic properties of the molecule, will emerge [35–38]. It is
worth mentioning that transport through large-spin molecules,
such as single molecular magnets [39], is undergoing an
extensive exploration, and the properties of molecular systems
with both nonmagnetic and ferromagnetic contacts have been
thoroughly analyzed [40–59]. This research has also been
stimulated by potential applications, for example, in molecular
spintronics and information storage and processing technolo-
gies [60,61]. In this context, however, the transport character-
istics of magnetic molecules attached to both superconducting
and normal (ferromagnetic) leads have been rather poorly
studied so far. Only very recently an experimental realization
of an artificial molecule composed of coupled quantum dots
attached to nonmagnetic and superconducting leads has been
reported, where the Yu-Shiba-Rusinov screening of spin triplet
states has been observed [62]. The goal of this paper is therefore
to shed more light on transport properties of hybrid large-spin
molecules and examine the Andreev reflection processes of
such molecules attached to ferromagnetic and superconducting
electrodes. Our work is thus expected to bring further insight
to the interplay of spin-resolved tunneling through large-spin
molecules and superconducting proximity-induced effects,
paving the way towards further development of superconduct-
ing molecular spintronics.

To perform the analysis, we make use of the diagrammatic
technique in real time [63], assuming a weak coupling between
the molecule and the ferromagnetic leads, while imposing no
restriction on the strength of coupling to the superconductor.
Moreover, to focus exclusively on Andreev transport and the
corresponding subgap states, the analysis is performed in
the so-called superconducting atomic limit [64,65], in which
the proximity effect is included via a pairing potential induced
in the molecule. This pairing results in the formation of
molecular Andreev bound states. We resolve those states by
studying the bias voltage and the molecule’s orbital level
dependence of the Andreev current, differential conductance,
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and the tunnel magnetoresistance, which is associated with
different magnetic configurations of the device. We show
that Andreev reflection processes strongly depend on the
intrinsic properties of the molecule, giving rise to enhanced
magnetoresistive properties of the device and, depending on
the transport regime, negative differential conductance. In
addition, in certain transport regimes we find inverse tunnel
magnetoresistance of the system. These effects are explained
by invoking the nonequilibrium spin accumulation that builds
up in the molecule and examining particular Andreev bound
states relevant for transport. Furthermore, because large val-
ues of tunnel magnetoresistance can be associated with the
enhanced role of CAR processes in Andreev reflection [27],
our analysis reveals transport regions where crossed Andreev
reflection processes are considerable.

The structure of this paper is as follows. The theoretical
formulation of the model and method is given in Sec. II,
where also the analytical formulas for the molecular Andreev
bound states are given. Section III is devoted to presentation
and discussion of the numerical results, where we separately
analyze the case of nonmagnetic and ferromagnetic leads.
Finally, the paper is summarized in Sec. IV.

II. THEORETICAL FORMULATION

A. Model

In this paper we consider a large-spin magnetic molecule,
such as a single molecular magnet (SMM), coupled to two
ferromagnetic (FM) and one superconducting (SC) lead, as
shown schematically in Fig. 1. The magnetizations of the
ferromagnetic leads are assumed to be collinear, parallel to
the magnetic easy axis of the molecule (z axis), and the
configuration of the leads can be either parallel or antiparallel.
We assume the electronic transport through the molecule to

LUMO 

J 

 

SMM 

 

FIG. 1. Schematic of the system under consideration. The mag-
netic molecule is attached to an s-wave superconductor with coupling
strength �S and to ferromagnetic leads with spin-dependent cou-
plings, �σ

L and �σ
R , respectively. Transport occurs due to tunneling

through the lowest unoccupied molecular orbital (LUMO) of the
molecule, which is exchange-coupled (with exchange interaction J )
to the magnetic core spin S of the molecule. The magnetizations of
the ferromagnetic leads can be either parallel or antiparallel. The case
of infinite superconducting gap � → ∞ is considered. The chemical
potential of the superconductor is set to zero.

take place only via the lowest unoccupied molecular orbital
(LUMO) of the molecule, which is directly coupled to fer-
romagnetic and superconducting leads. This orbital level is
also coupled to the magnetic core of the molecule via the
exchange interaction J . Taking the above into account, the
model Hamiltonian assumes the following form:

H = HSMM +
∑

β=L,R

Hβ + HS +
∑

β=L,R

H
β

T + HS
T . (1)

The first term describes the single molecular magnet in the
giant-spin approximation [42,43,46,47,51,56,66]:

HSMM =
∑

σ

εd†
σ dσ + Ud

†
↑d↑d

†
↓d↓ − DS2

z − J s · S, (2)

where the first two terms describe the LUMO level of energy
ε and the Coulomb interaction U between the two electrons
occupying that level. The operator d†

σ (dσ ) is a creation
(annihilation) operator for an electron in the LUMO level. The
third term of HSMM describes the magnetic anisotropy of the
molecule, with D being the uniaxial anisotropy constant and
Sz is the zth component of the SMM’s core spin operator S.
The last term describes the exchange interaction between the
molecule and the LUMO level, whereJ is an exchange integral.
In particular, expressing the local spin operator in terms of elec-
tronic creation/annihilation operators, s = 1

2

∑
σσ ′ d†

σσ σσ ′dσ ′ ,
where σ σσ ′ is a matrix element of the vector of Pauli spin
matrices, we can rewrite the last term explicitly as

J s · S = J

2
d
†
↑d↓S− + J

2
d
†
↓d↑S+ + J

2
(d†

↑d↑ − d
†
↓d↓)Sz. (3)

The exchange interaction can be either of ferromagnetic
(J > 0) or antiferromagnetic (J < 0) type [47], and in the
following sections we will treat both cases separately. In these
considerations we neglect corrections to the magnitude of
the uniaxial anisotropy due to the charging of the LUMO
level. These corrections are typically much smaller than the
anisotropy constant itself and their effect is relatively small
and mainly quantitative [47]. We also consider only one
orbital level of the molecule to be relevant for transport. This
is motivated by experimental data where typically Coulomb
diamonds associated with charging of a single orbital level are
observed [39,40,56].

The second term of the total Hamiltonian describes the
left (β = L) and right (β = R) ferromagnetic electrode in the
noninteracting electron gas approximation, characterized by
the dispersion relation εkβσ , where σ is a spin index and k is
an electron wave vector. The explicit form of this term is

Hβ =
∑
kσ

εkβσ c
†
kβσ ckβσ , (4)

where c
†
kβσ (ckβσ ) is the corresponding creation (annihilation)

operator. The third term in Eq. (1) describes the s-wave BCS
superconducting lead in the mean-field approximation,

HS =
∑
kσ

εkSc
†
kSσ ckSσ +

∑
k

�(ckS↓c−kS↑ + c
†
−kS↑c

†
kS↓),

(5)

085411-2



ANDREEV TRANSPORT THROUGH SINGLE-MOLECULE MAGNETS PHYSICAL REVIEW B 98, 085411 (2018)

where εkS denotes the single-particle energy and � is the
superconducting order parameter, which is assumed to be real
and momentum-independent.

Finally, the last two terms of the total Hamiltonian describe
the tunneling processes between the molecule and external
leads. For normal and superconducting leads these are given
by

H
β

T =
∑
kσ

Vkβσ (c†kβσ dσ + H.c.) (6)

and

HS
T =

∑
kσ

VkS (c†kSσ dσ + H.c.), (7)

respectively, where Vkβσ (VkS) are the relevant tunneling
amplitudes between the molecule and the corresponding lead β

(superconductor). In the following we assume that the tunnel-
ing amplitudes are momentum-independent, Vkβσ ≡ Vβσ and
VkS ≡ VS . The coupling of the molecule to the ferromagnetic
leads can be parametrized by �σ

β = 2π |Vβσ |2ρσ
β , where ρσ

β

denotes the density of states of the ferromagnetic lead β

(β = L,R) for spin σ . The couplings can be also expressed
in terms of spin polarization pβ of the lead β as �σ

β =
�β (1 + σ̂pβ ), where σ̂ = 1 (σ̂ = −1) for the coupling to the
majority-spin (minority-spin) subband of ferromagnetic lead
β. The spin polarization of lead β is defined as pβ = (ρ+

β −
ρ−

β )/(ρ+
β + ρ−

β ), where ρ+
β (ρ−

β ) is the density of states of the
corresponding majority (minority) spin band. Here, we assume
symmetric couplings to ferromagnetic leads, �L = �R ≡ �/2,
and symmetric, collinear lead polarizations, pL = pR ≡ p.

B. Effective SMM-SC Hamiltonian and molecular
Andreev bound states

In our considerations we focus on the Andreev reflection
regime, therefore, to exclude quasiparticle tunneling in the
following we assume that the superconducting energy gap is
the largest energy scale in the problem. From the experimental
side, this approximation is justified in the low-bias voltage
regime, i.e., when the applied bias is smaller than the gap, such
that the Andreev levels can be resolved in transport [12,15].
On the other hand, from the theoretical side, it allows us to
explore and understand the pure Andreev reflection regime
[27,28,30,32–34,67]. In the limit of � → ∞, the molecule
coupled to the superconductor, described by HSMM + HS +
HS

T , can be modeled by the following effective Hamiltonian

H eff
SMM = HSMM − �S

2
(d†

↑d
†
↓ + d↓d↑), (8)

with the last term corresponding to the proximity-effect-
induced pairing potential [30,64,65] in the molecule. Here,
�S = 2π |VS |2ρS is the coupling strength between the super-
conducting lead and the magnetic molecule, where ρS denotes
the density of states of the superconductor in the normal state.

Let us start the discussion by analyzing the spectrum of the
effective SMM-SC Hamiltonian. The local states of the LUMO
level are the following, |α〉L = {|0〉L, |↑〉L, |↓〉L, |2〉L}, for the
empty, singly occupied with spin-up/spin-down electron, and
doubly occupied level. On the other hand, the local states of
the magnetic core of the molecule can be denoted by the spin S

and its zth component quantum numbers, |S, Sz〉core. The local
state of the effective Hamiltonian can be thus written as a tensor
product of the LUMO level state and the state of the internal
magnetic core of the molecule, |α, S, Sz〉 = |S, Sz〉core ⊗ |α〉L.
However, these states are not the eigenstates of H eff

SMM. This
is due to the exchange coupling J , which mixes the spin
subspaces of the LUMO level and the molecule’s core spin, and
the pairing correlations, which do not conserve charge. Nev-
ertheless, because the pairing correlations conserve the charge
parity and the total spin, Stot = S + s, one can immediately
infer that the eigenstates in the case of singly occupied LUMO
level are the same as for �S = 0 and can be found, e.g., in
Ref. [47]. We label these states as |Stot, S

z
tot〉o, where subscript

indicates that the occupancy of the LUMO level is odd. On the
other hand, the empty and doubly occupied LUMO states are
mixed due to particle-nonconserving proximity-induced terms
of the effective Hamiltonian, such that the eigenstates in the
even (e) LUMO occupation sector become

|Stot, S
z
tot〉±e =

√
1

2
∓ δ

4εA

|0,S,Sz〉 ∓
√

1

2
± δ

4εA

|2,S,Sz〉. (9)

Here, δ = 2ε + U denotes the detuning from the particle-hole

symmetry point, ε = −U/2, and 2εA =
√

δ2 + �2
S is the en-

ergy difference between the states |Stot, S
z
tot〉+e and |Stot, S

z
tot〉−e .

Clearly, for uniaxial magnetic anisotropy D > 0 as considered
here, the ground state is twofold degenerate and given by
|Sz

tot| = Stot. Note also that in the even occupation sector
Stot = S and Sz

tot = Sz. The eigenenergies of the above states
are given by

E±
e = δ

2
± εA − DS2 (10)

and they do not depend on the type of exchange interaction J .
The excitation energies between the odd and even states can

be used to determine the energies of the Andreev bound states
(ABS). In principle, there is a finite probability of excitations
between various even and odd molecular states. In practice,
however, the highest contribution to transport comes from
the transitions involving the two even states |Stot, S

z
tot〉±e and

the odd states representing the lowest-energy components
of the multiplets with Stot = S + 1

2 and Stot = S − 1
2 . Because

the multiplet which is the ground state in the odd occupation
regime depends on the type of exchange interaction, let us
discuss these two cases separately. Moreover, we recall that
in the absence of magnetic field, as considered in this paper,
the spin states are twofold degenerate; however, for the sake
of clarity, we will analyze only the positive-spin components.

For the ferromagnetic exchange interaction (J > 0), the
ground state (GS) in the odd-parity sector is explicitly given
by |Stot = S + 1

2 , Sz
tot = S + 1

2 〉FM

o,GS
= |↑, S, Sz〉, and has the

energy

EFM
o,GS = ε − DS2 − JS

2
. (11)

On the other hand, the lowest-energy state of the multiplet with
Stot = S − 1

2 is a superposition of the states |↑, S, S − 1〉 and
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|↓, S, S〉 [47], while its energy is given by

EFM
o,exc = ε − DS2 + J

4
+ D

(
S − 1

2

)
+ �, (12)

where �= 1
4 [4D(D − J )(2S − 1)2 + J 2(2S + 1)2]1/2. Thus,

one can distinguish two sets of Andreev bound state energies
(E), which are explicitly given by

EFM
αβ = α

U + JS

2
+ βεA (13)

and

EFM
exc,αβ = α

2U − J − 2D(2S − 1) − 4�

4
+ βεA, (14)

where α, β = +,−. The first four states, EFM
αβ , are associated

with excitations between the two even states, cf. Eq. (9), and
the odd-parity ground states, whereas the four additional states,
EFM

exc,αβ , are due to excitations between the same even states and
the excited spin multiplet Stot = S − 1

2 . For α = +, the ABS
states correspond to the excitations from the odd to the even
states, while the states with α = − are related to the opposite
transitions.

On the other hand, for the antiferromagnetic exchange
coupling (J < 0), the role of the above discussed ground and
excited states in the odd-parity regime is generally reversed.
Now, the ground state becomes the multiplet with Stot = S − 1

2
and its energy is given by

EAFM
o,GS = ε − DS2 − |J |

4
+ D

(
S − 1

2

)
− �, (15)

while the energy of the relevant excited state, i.e., the multiplet
with Stot = S + 1

2 , reads

EAFM
o,exc = ε − DS2 + |J |S

2
. (16)

This yields the following Andreev bound state energies,

EAFM
αβ = α

2U + |J | − 2D(2S − 1) + 4�

4
+ βεA, (17)

and four others due to tunneling through excited odd states,

EAFM
exc,αβ = α

U − |J |S
2

+ βεA, (18)

with α, β = +,−.
By comparing the two cases of ferromagnetic and antifer-

romagnetic exchange coupling, one can note some similarities
between the energies of Andreev bound states. As one could
expect, the main difference in the above formulas is the sign
change of J . However, there is also a more subtle point
that needs to be emphasized. While for J > 0, the energies
EFM

αβ correspond to excitations between even states and the
odd ground state of the effective Hamiltonian, for J < 0, the
corresponding energies EAFM

exc,αβ result from transitions between
respective excited states. This difference will be reflected in the
behavior of the Andreev current and the associated differential
conductance, as shown in the sequel, since the Andreev bound
states resulting from the lowest-energy excitations will be
much more pronounced compared to the other ABS states.

We also note that the formulas for the molecular Andreev
bound states presented above are quite general and hold for

an arbitrary molecule’s spin S within the giant spin approxi-
mation, in which the molecule is described by its ground-state
spin multiplet. Such approximation has been frequently used
in the literature [42,43,51,56,66], and is justified for the low-
energy physics considered here. The corrections resulting from
higher-energy spin multiplets are expected to hardly change the
presented results in the studied parameter space.

C. Calculation method

To determine the Andreev current flowing through the
considered hybrid molecular system, we employ the real-time
diagrammatic technique [63,68,69]. The main idea of this
method is a systematic expansion of the reduced density matrix
of the system with respect to the coupling strength of the
molecule to the ferromagnetic leads �. After integrating out
the electronic degrees of freedom of ferromagnetic leads, we
obtain the reduced density matrix, the time evolution of which
essentially determines the transport characteristics of interest.
The time evolution can be depicted graphically as a sequence
of irreducible diagrams (self-energies) on the Keldysh contour.
The self-energy plays a crucial role in the diagrammatic
technique, as it can be interpreted as a general transition rate
between given states. The self-energies can be calculated in a
perturbative scheme, order by order with respect to tunneling
processes, using respective diagrammatic rules [63,68,69]. In
this paper we have calculated the relevant self-energies up
to the first order of expansion. This covers the sequential
tunneling regime for processes between the molecule and
ferromagnetic leads, while the coupling to superconductor
is treated exactly. This assumption is justified in the weak-
coupling regime and, as long as � � T , it can also give some
insight into transport in the Coulomb blockade regime.

In calculations, we assume that the reduced density matrix
is diagonal. In general, however, the superpositions of states
|Stot, S

z
tot〉+e and |Stot, S

z
tot〉−e should also be considered. Nev-

ertheless, because in this paper we are only interested in the
case of weak coupling to ferromagnetic leads in comparison
to the coupling to the superconductor, i.e., �S � �, one can
neglect the off-diagonal terms as they are at least of the order
of O(�), so they become negligible in the weak-coupling
regime [28]. In such a case, the diagonal elements of the
reduced density matrix can be determined from the following
steady-state master equation [63,68]∑

χ ′
�χ,χ ′Pχ ′ = 0, (19)

where Pχ is the probability of finding the system in a certain
state |χ〉, which is the eigenstate of H eff

SMM. �χ,χ ′ is the self-
energy corresponding to the transition between the states |χ ′〉
and |χ〉. Once the occupation probabilities of all the states are
found, the current flowing through the lead β can be calculated
from [63,68]

Iβ = − ie

2h̄

∑
χχ ′

�
Iβ

χ,χ ′Pχ ′ , (20)

where �
Iβ

χ,χ ′ denotes the self-energy that takes into account
the number of electrons that tunneled between the molecule
and the corresponding lead. The above formula can be used to
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determine the currents flowing through both junctions, which
then allows us to find the current flowing into the supercon-
ducting electrode from the Kirchhoff’s law, IS = IL + IR .

We would also like to notice that although we take into
account only the lowest-order processes between the molecule
and normal leads, the coupling to the superconductor is treated
exactly. Consequently, within our approximations we are able
to resolve both direct and crossed Andreev reflection processes
[27,28,30,33,34].

III. RESULTS AND DISCUSSION

In this section we present and discuss the numerical results
on the Andreev current, IS , the associated differential conduc-
tance, GS ≡ dIS/dV , and tunnel magnetoresistance (TMR)
of a large-spin magnetic molecule attached to ferromagnetic
and superconducting leads; cf. Fig. 1. Because, in the Andreev
transport regime, the current in the antiparallel configuration of
magnetic moments of ferromagnetic leads is generally larger
than that flowing in the parallel configuration, we define the
TMR as [27,30]

TMR = IAP
S − IP

S

IP
S

. (21)

Here, IP
S (IAP

S ) is the Andreev current flowing in the parallel
(antiparallel) magnetic configuration of the device. Note that
this definition is opposite to that typically used for normal
electron transport [70,71]. For Andreev processes, the in-
vestigations of TMR can give certain insight into the role
of direct (DAR) and crossed (CAR) Andreev reflections in
transport. DAR is a process in which a Cooper pair leaving the
superconductor tunnels to the same ferromagnetic lead, while a
CAR process occurs when electrons forming a Cooper pair are
split and tunnel to different leads. Changing the sign of the bias
voltage results in inverse processes, i.e., a pair of electrons from
single lead (different leads) tunnels into the superconductor as
a Cooper pair in a DAR (CAR) process. It is important to note
that the rates of these processes depend on the couplings to
both majority and minority spin subbands. For CAR processes
the rate involves the bands of different leads, while for DAR
processes the couplings to the same lead are relevant [27,30].
This implies that any change in magnetic configuration of the
device should affect the rate of CAR processes, while leaving
DAR unaffected. This observation suggests that studying the
behavior of the TMR, besides revealing the magnetoresistive
properties of the considered device, shall shed more light
onto the relative behavior of CAR and DAR processes in the
system. Large TMR can indicate that the role of CAR processes
is crucial. It is needless to say that CAR processes are of
particular interest, because of potential applications of such
hybrid nanoscale systems as solid-state sources of spatially
separated entangled particles [18,72,73].

In calculations we assume that the bias voltage is applied
symmetrically between the ferromagnetic leads and the super-
conductor, i.e., μL = μR = eV , while μS = 0. For positive
bias voltage eV > 0, a pair of electrons tunnels into the
superconductor, while for the opposite bias voltage, the Cooper
pairs tunnel to ferromagnetic leads. For the considered system,
the current changes sign, IS → −IS , under the transformation
eV → −eV and δ → −δ.

A. The case of nonmagnetic leads

Let us start the discussion with the case of nonmagnetic
leads. To reveal the transport features associated with molec-
ular degrees of freedom, we first present the results for the
case of J = 0, which corresponds to the single-level quantum
dot [27,28,30]. This gives us the possibility to explicitly see
how the presence of a large-spin molecule affects the Andreev
transport characteristics. The bias voltage and level detuning
dependence of the Andreev current and the corresponding
differential conductance is shown in the left column of Fig. 2.
First of all, one can see that in the case of J = 0 there are
four Andreev bound states visible in transport characteristics,
denoted with dashed lines in Figs. 2(a) and 2(b) and given
explicitly by Eq. (13) with J = 0. Moreover, it is clearly visible
that the Andreev current is maximal in the absence of detuning,
δ = 0, and becomes suppressed when |δ| increases. This is
due to the fact that the amplitude for Andreev reflection is the
largest when the particle-hole symmetry holds. One can also
see that the current vanishes for small values of detuning and
low bias voltages. In this region, the LUMO level is singly oc-
cupied and there are no states in the transport window, such that
the current is suppressed. The Andreev current starts flowing
when the applied bias exceeds the energy of one of the ABS
states. In fact, the energies of those states become degenerate
for |δ| ≈

√
U 2 − �2

S and two resonances are present in the
linear response conductance; cf. Fig. 2(b). Furthermore, in the
case of |δ| �

√
U 2 − �2

S , the range of bias voltage for which
the current is suppressed grows proportionally to the absolute
value of detuning |δ|. This is due to the fact that in this regime
the occupation of the LUMO level is even and the gap between
μS and the nearest ABS state increases proportionally to the
value of the detuning, such that for larger values of |δ| a larger
bias voltage needs to be applied for the Andreev current to
flow.

Important information can be also deduced from the An-
dreev differential conductance spectra shown in Fig. 2(b).
Clearly, the conductance peaks coincide with the energies of
Andreev bound states estimated analytically. We also notice
that differential conductance (and transport characteristics in
general) is asymmetric with respect to the bias reversal. Most
evidently, one can see that the top conductance peak, i.e.,
associated with the ABS state E++, vanishes when the detuning
is changed from δ/U = 2 to δ/U = −2, while switching the
detuning and bias polarization we notice the vanishing of the
bottom conductance peak. This is generally due to the fact that
for large positive (negative) detuning, when shifting the voltage
down (up) there are no states available in the transport window.
Nevertheless, it suffices to flip the sign of either detuning or
bias voltage to allow for the Andreev transport to reappear.

In the presence of finite exchange interaction J , the An-
dreev transport behavior becomes generally more complex.
Figures 2(c) and 2(d) present the Andreev current and the
corresponding differential conductance in the case of ferro-
magnetic exchange coupling between the LUMO level and
the magnetic core of the molecule (J > 0). In calculations,
without loss of generality, for the molecule’s core spin we
assumed S = 2. One can immediately see that when Andreev
reflection processes take place through a large-spin molecule
additional steps in the current and the associated conductance
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J = 0 J > 0 J < 0|IS |/I0 |IS |/I0 |IS |/I0

GS (e2/h) GS (e2/h) GS (e2/h)δ/Uδ/U δ/U

δ/Uδ/Uδ/U

eV
/
U

eV
/
U
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FIG. 2. The Andreev current (first row) and the associated Andreev differential conductance (second row) as a function of the bias voltage eV

and the LUMO level detuning δ = 2ε + U in the case of (a), (b) J = 0, (c), (d) ferromagnetic exchange coupling (J > 0) between the LUMO
level and the molecule’s core spin, and (e), (f) the antiferromagnetic exchange interaction (J < 0). The leads are assumed to be nonmagnetic,
p = 0. The dashed (dotted) lines indicate the energies of Andreev bound states, E (Eexc), derived analytically; see the main text for details. The
parameters are T = 0.03, �S = 0.4, � = 0.01, |J | = 0.2, D = 0.05 in units of U ≡ 1, while the spin of the molecule is S = 2. The current is
plotted in units of I0 = e�/h̄.

peaks are present. In fact, these features result from additional
ABS states due to excitations between the even and excited
odd parity states. The Andreev bound states represented by
dashed lines correspond to excitations between the even states
and the odd-parity ground state, which are given by Eq. (13).
On the other hand, the additional conductance peaks coincide
with the Andreev states associated with excitations between
even states and highest-weight spin component of the excited
multiplet with Stot = S − 1

2 . These are analytically described
by Eq. (14). We also note that in the case of J > 0 the Andreev
linear conductance exhibits two resonances, which now occur
for δ ≈ ±

√
(U + U )2 − �2

S ; cf. Fig. 2(d).
The Andreev current and differential conductance in the

case of antiferromagnetic exchange coupling (J < 0) is pre-
sented in Figs. 2(e) and 2(f), respectively. The positions
of eight Andreev bound states coinciding with the conduc-
tance peaks are given by Eq. (17) (involving the odd-parity
ground state) and Eq. (18) (involving odd-parity excited
multiplet with Stot = S + 1

2 ). Again, a large Coulomb block-
ade regime can be observed, which is present as long as
|δ| �

√
[U + |J |/2 − D(2S − 1) + 2�]2 − �2

S and the bias
voltage is lower than the corresponding threshold. On the other
hand, for larger bias voltages the Andreev conductance exhibits
peaks whenever the next ABS state enters the bias window.

As can be seen in Fig. 2, the main difference between
the case of a quantum dot (J = 0) and a large-spin molecule
is the presence of a larger number of Andreev bound states

(molecular ABS), which can be resolved in the transport
spectroscopy. It is also important to notice that here we focus
on molecular ABS that are most pronounced in the differential
conductance, i.e., the ones resulting from excitations between
even states and the odd states for multiplets Stot = S + 1

2 and
Stot = S − 1

2 , both involving the spin highest-weight com-
ponents. In general, however, the ABS resulting from the
excitations between the other spin components of the odd
and even parity sectors may be also present. The amplitude
coming from those states is nevertheless relatively small, such
that these states are not resolved in Fig. 2, which is due to
finite temperature and the fact that the assumed molecule’s
magnetic anisotropy is not large. Moreover, we would also
like to note that the difference between the cases of J = 0 and
finite J will become much more visible in the spin-resolved
Andreev transport properties, since magnetic properties of
the molecule will have a profound impact on the Andreev
reflection processes. Then, the differences between the cases of
ferromagnetic and antiferromagnetic exchange couplings will
be also more clearly revealed.

B. The case of ferromagnetic leads

We now proceed to the analysis of the case when the
spin polarization of ferromagnetic leads is finite. We set the
polarization parameter to p = 0.5 and consider the trans-
port characteristics in the parallel and antiparallel magnetic
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configuration of the device, as well as its magnetoresistive
properties for both the ferromagnetic and antiferromagnetic
type of coupling between the LUMO level and the magnetic
core of the molecule.

1. Ferromagnetic exchange interaction

Figure 3 presents the bias voltage and the LUMO level
detuning dependence of the Andreev differential conductance
in the parallel and antiparallel configuration, together with
the associated TMR, in the case of ferromagnetic exchange
interaction (J > 0). In Fig. 3(b) we also explicitly mark the
corresponding ABS states. First of all, one can notice that
the behavior of the differential conductance in the case of
the antiparallel configuration is qualitatively very similar to
the nonmagnetic lead case; cf. Figs. 2(d) and 3(b). This is
contrary to the situation of the parallel magnetic configuration,
where the conductance is found to be generally lower than
that in the antiparallel configuration. Moreover, for the parallel
configuration some regions with negative differential conduc-
tance (NDC) can be observed; see Fig. 3(a). The difference
in the behavior of GS in the two magnetic configurations
can be understood as follows. It has already been pointed
out that the rate of DAR processes is not affected by the
mutual alignment of the two ferromagnets; therefore let us
focus on the behavior of CAR processes. For the antiparallel
configuration, the Cooper pair electrons, which are involved
in a CAR process, always belong to the same subband of the
two ferromagnets, i.e., either to the spin majority or to the
spin minority subband. Consequently, the two electrons tunnel
through the ferromagnetic junctions with the same rates—there
is a fast majority and a slow minority spin channel. This is
opposite to the case of parallel magnetic configuration, where
the two electrons always belong to different subbands. As
a consequence, in this case transport is determined by the
density of states of the minority band carriers. In fact, in the
case of half-metallic leads (p → 1), the Andreev conductance
in the parallel configuration becomes fully suppressed due
to the lack of minority spin states in the leads. The above
mentioned imbalance between the rates of CAR processes in
both magnetic configurations explains the observed differences
in conductances, i.e., the fact that generally GAP

S > GP
S .

However, there are still some transport regions in the case
of the parallel configuration, which definitely need further
inspection. As one can see in Fig. 3(a), for δ > 0 and positive
bias voltage, there are three regimes of negative differential
conductance. These can be understood by recalling different
rates for tunneling of spin-up and spin-down electrons through
the two ferromagnetic junctions. For δ �

√
(U + U )2 − �2

S

and for voltages larger than EFM
−+, i.e., when the first ABS state

enters the transport window, there is a drop of the Andreev
current and the associated negative differential conductance
develops; see Fig. 3(a). This can be also clearly seen in
Figs. 4(d) and 4(e), which show the bias dependence of the
Andreev current and differential conductance, respectively,
calculated for δ/U = 2. In the considered transport regime the
LUMO level is empty for eV � EFM

−+ [eV � U/3 in the inset of
Fig. 4(d)] and becomes singly occupied once the bias voltage
exceeds the threshold. The LUMO occupation becomes then
however strongly spin polarized due to the spin dependence

eV
/
U

eV
/
U

eV
/
U

δ/U

δ/U

δ/U

TMR

GAP
S (e2/h)

GP
S (e2/h)

EFM
++

EFM
−+

EFM
+−

EFM
−−

EFM
exc,−− EFM

exc,+−

EFM
exc,−+EFM

exc,++

FIG. 3. The Andreev differential conductance in (a) the parallel
and (b) antiparallel magnetic configuration as well as (c) the tunnel
magnetoresistance plotted as a function of bias voltage eV and the
molecule’s level detuning δ in the case of ferromagnetic exchange
interaction with J/U = 0.2. The parameters are the same as in Fig. 2
with p = 0.5. The dashed and dotted lines indicate the positions of
the corresponding Andreev bound states derived in Sec. II B and given
by Eqs. (13) and (14).

of tunneling processes. This is a direct consequence of the
fact that the tunnel rate for minority spin electrons is much
lower than that of majority spin electrons. As a consequence,
a large nonequilibrium spin accumulation develops in the
LUMO level (note that the core spin of the molecule is also
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FIG. 4. The bias voltage dependence of (a), (d) the Andreev
current, (b), (e) the differential conductance in the parallel and antipar-
allel configuration, as well as (c), (f) the tunnel magnetoresistance
calculated for ferromagnetic exchange interaction. The left column
corresponds to δ = 0, while the right column shows the results for
δ/U = 2. The inset in (d) presents the expectation values of the
spin-resolved LUMO occupation for the parallel configuration and for
bias voltages where the negative differential conductance develops.
The other parameters are the same as in Fig. 3.

highly spin polarized then). This can be explicitly seen in the
inset of Fig. 4(d), which depicts the bias voltage dependence
of the spin-resolved LUMO level occupation number 〈nσ 〉 in
the case of the parallel magnetic configuration, where nσ =
d†

σ dσ . Clearly, because the spin-up electrons (belonging to the
majority spin subband) can more easily tunnel to the LUMO
level, the occupation of this level is much larger for spin-up
compared to the spin-down electrons, such that 〈n↑〉 > 〈n↓〉;
see Fig. 4(d). A direct consequence of this fact is the drop of
the Andreev current and the associated NDC, because it is now
more difficult for the Cooper pair, which involves electrons
with opposite spins, to tunnel through the system.

It is also interesting to notice that in the cross section of
Fig. 3(a) shown in Fig. 4(e) one can observe other small reso-
nances in the differential conductance, as well as tiny regions
of negative differential conductance. These are associated with
ABS states due to the other excited states of the molecule. The
regions with small NDC are related to the fact that when more
ABS states enter the transport window the nonequilibrium spin
accumulation in the LUMO level slightly changes [cf. the inset

in Fig. 4(d)], and such variations can result in a small current
drop.

The other two large negative differential conductance re-
gions can be seen for δ/U ≈ 1 in Fig. 3(a). The first one occurs
for voltages slightly below the energy of the stateEFM

exc,++, while
the second one develops for voltages just before the resonance
associated with the ABS state EFM

++. These NDC regions are
again associated with nonequilibrium spin accumulation in the
LUMO level, which results in the drop of the Andreev current.
Finally, all the regions of negative differential conductance
disappear once the occupation of the LUMO level changes
again to even, which happens once eV � EFM

++. Note also that
NDC is not present in the case of δ = 0, when the Andreev
current is maximized and the electron- and hole-like excitations
have the same energy. Then, the transport characteristics are
symmetric with respect to the bias reversal. This situation is
presented in Figs. 4(a) and 4(b), which show the bias voltage
dependence of IS and GS in the two magnetic configurations
for δ = 0. As already mentioned, the differential conductance
spectra are symmetric under the transformation δ → −δ and
eV → −eV and the associated NDC regions visible for δ < 0
and eV < 0 in Fig. 3(a) can be understood in a similar fashion
by invoking the nonequilibrium spin accumulation in the
molecule.

The different behavior of the Andreev reflection processes
in the two magnetic configurations of the device is clearly
revealed in the tunnel magnetoresistance, the bias voltage and
detuning dependence of which is shown in Fig. 3(c). Generally,
the TMR is positive in almost entire range of eV and δ. This is
due to the fact that, as was explained above, in the antiparallel
configuration both electrons forming a Cooper pair belong to
the same spin subband, such that there is a fast majority spin
channel for Andreev processes and the current is maximized.
Interestingly, the values of the TMR are much larger compared
to those predicted in the case of J = 0 [30], where the TMR
was found to be 0 < TMR < 2p2/(1 − p2). For magnetic
molecules we find that the magnetoresistance due to Andreev
processes can largely exceed TMR = 2p2/(1 − p2) and it can
even become negative.

Let us first discuss the mechanisms leading to large TMR.
The transport regions where enhanced TMR develops are
also presented in the cross sections of Fig. 3(c), which are
depicted in Figs. 4(c) and 4(f) and calculated for δ = 0 and
δ/U = 2, respectively. In the case of δ = 0, an enhanced
TMR develops for voltages around the threshold for sequential
processes. The reason for its development is a large spin polar-
ization of the molecule in the parallel magnetic configuration
once a finite bias voltage is applied. In fact, one then finds
〈Stot〉 → Sz

tot for eV > 0 and 〈Stot〉 → −Sz
tot for eV < 0 (note

that Stot = S + 1
2 ). Consequently, the Andreev current in the

parallel configuration becomes much suppressed compared
to that in the antiparallel configuration, where 〈Stot〉 ≈ 0.
With increasing the bias voltage |eV |, the TMR drops in
a two-step-like fashion, see Fig. 4(c), which results from
a similar two-step-like decrease of the nonequilibrium spin
accumulation. The first step with decreased TMR for eV > 0
occurs forEFM

+− � eV � EFM
++ [forU/2 � eV � U in Fig. 4(c)],

while for negative bias it takes places when EFM
−− � eV � EFM

−+
[−U � eV � −U/2]. On the other hand, once eV � EFM

++ or
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eV � EFM
−− [|eV | � U in Fig. 4(c)], all the molecular states

start contributing to Andreev transport and one then finds
TMR = p2/(1 − p2), which is similar to the quantum dot case
[30].

Another region where the TMR is enhanced develops for
positive detuning and the bias voltage such that the occupation
of the LUMO level is odd (EFM

−+ � eV � EFM
++); see Figs. 3(c)

and 4(f). The mechanism responsible for large difference
between the Andreev currents flowing in the two magnetic
configurations is again associated with nonequilibrium spin
accumulation, which builds up in the parallel configuration
and suppresses the rate of Andreev processes; see the inset in
Fig. 4(d).

Quite counterintuitively, the TMR can also take negative
values; see, e.g., Fig. 4(f) in the negative bias voltage range.
In this situation, despite the asymmetry in the couplings to
ferromagnetic leads, which favors the Andreev current in the
antiparallel configuration, the current in the parallel configu-
ration is larger. The mechanism responsible for such behavior
is associated with appropriate distribution of the occupation
probabilities of the states of the proximized molecule. It turns
out that in the parallel magnetic configuration, once the bias
voltage becomes negative, the molecule becomes predomi-
nantly occupied by the even-parity state |S,−S〉+e . This is
contrary to the antiparallel configuration case, where no par-
ticular state is so strongly distinguished from the other states.
Because the corresponding even state is relevant for driving the
Andreev reflection processes, one finds |IP

S | > |IAP
S | and the

associated negative TMR develops. With further increasing
the negative bias voltage, the occupation of |S,−S〉+e in the
parallel configuration drops, and negative TMR eventually
disappears, such that for eV � EFM

exc,+− [eV � −U in Fig. 4(f)],
the TMR becomes generally suppressed. We also note that the
region of negative TMR for δ > 0 extends for EFM

exc,+− � eV �
0 and a similar behavior is observed for reversed bias voltage
and δ < 0; see Fig. 3(c).

2. Antiferromagnetic exchange interaction

Let us now analyze the Andreev transport behavior for the
magnetic molecule with antiferromagnetic exchange coupling
(J < 0). The bias voltage and LUMO level detuning depen-
dence of the differential conductance in both magnetic config-
urations as well as the TMR is shown in Fig. 5. The dashed and
dotted lines present the energies of the corresponding Andreev
bound states EAFM

αβ and EAFM
exc,αβ , estimated from Eqs. (17) and

(18), respectively. The relevant cross sections of this figure are
shown in Fig. 6 and present the bias dependence of the current,
differential conductance, and TMR for δ = 0 and δ/U = 2.
Because the behavior of the differential conductance in the
case of the antiparallel configuration is qualitatively similar
to the nonmagnetic case, let us focus on the behavior of GP

S

shown in Fig. 5(a).
One can see that for eV � EAFM

−+ and δ/U � 1, GP
S exhibits

a pronounced region of negative differential conductance. This
effect again occurs in the transport regime when the occupation
of the molecule is odd. For the case of δ/U = 2 presented in
the right column of Fig. 6, this happens for EAFM

−+ � eV �
EAFM

++ , i.e., U/2 � eV � 3U/2 for assumed parameters. Then,
similarly to the case of ferromagnetic exchange interaction, a

eV
/
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eV
/
U

eV
/
U

δ/U

δ/U

δ/U

TMR

GAP
S (e2/h)

GP
S (e2/h)

EAFM
++

EAFM
−+

EAFM
+−

EAFM
−−

EAFM
exc,−− EAFM

exc,+−

EAFM
exc,−+EAFM

exc,++

FIG. 5. The Andreev differential conductance in (a) the parallel
and (b) antiparallel magnetic configuration and (c) the TMR cal-
culated as a function of eV and δ in the case of antiferromagnetic
exchange interaction. The parameters are the same as in Fig. 3 with
J/U = −0.2. The dashed and dotted lines indicate the positions of
the corresponding Andreev bound states derived in Sec. II B and given
by Eqs. (17) and (18).

nonequilibrium spin accumulation builds up in the molecule.
In the case of J < 0, however, depending on the bias voltage,
there are certain crucial differences. First of all, the molecule’s
core spin is highly spin polarized with 〈Sz〉 ≈ S in the whole
odd LUMO occupation regime. Interestingly, this is not the
case for the spin on the molecule’s orbital level, for which
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FIG. 6. (a), (d) The Andreev current, (b), (e) differential conduc-
tance, and (c), (f) TMR plotted as a function of bias voltage for
δ = 0 (left column) and δ/U = 2 (right column). The inset in (d)
shows the spin-resolved LUMO occupations for the parallel magnetic
configuration and for bias voltages where the negative differential
conductance develops. The parameters are the same as in Fig. 5.

we actually find 〈sz〉 ≈ 1
2 for voltages falling between the

energies of the two excited Andreev bound states, EAFM
exc,−+ �

eV � EAFM
exc,++ (corresponding to 4U/5 � eV � 6U/5 for as-

sumed parameters) and 〈sz〉 ≈ − 1
2 in the other odd occupation

regime; see the inset to Fig. 6(d). Thus, with increasing the
bias voltage, first the state |1, S − 1

2 , S − 1
2 〉 becomes mainly

occupied, then, at eV ≈ EAFM
exc,−+ (eV ≈ 4U/5), the occupation

of |1, S + 1
2 , S + 1

2 〉 gets enhanced, and when eV ≈ EAFM
exc,++

(eV ≈ 6U/5), again the state |1, S − 1
2 , S − 1

2 〉 starts playing
an important role. The crucial difference is that once the
highest-weight component of the multiplet Stot = S + 1

2 be-
comes relevant, nonequilibrium spin accumulation is maximal
and the Andreev tunneling gets suppressed, resulting in a
considerable NDC.

The internal structure of the molecular states that are mainly
relevant for transport is also nicely revealed in the behavior of
the TMR, which is shown in Fig. 5(c). Generally, in all the
transport regimes where a strong nonequilibrium spin accu-
mulation in the highest spin multiplies builds up, the Andreev
conductance in the parallel configuration gets much suppressed
compared to the antiparallel case. As a consequence, one then
finds an enhanced tunnel magnetoresistance. In the case of
antiferromagnetic exchange coupling, the TMR can however

also take negative values in much larger parameter space as
compared to the case of J > 0; cf. Figs. 3(c) and 5(c). In fact,
negative TMR occurs now not only for low bias voltages, but
also in transport regimes where a large Andreev current can
flow; see Fig. 6(f). The enhancement of IP

S in comparison
to IAP

S results from particular states relevant for transport. It
needs to be emphasized that an enhanced occupation of certain
molecular states due to the spin accumulation can have both
positive and negative impact on the Andreev conductance. (Re-
call that in the antiparallel configuration all spin components
are equally occupied and 〈Sz

tot〉 = 0.) If the occupation of the
state |1, S + 1

2 , S + 1
2 〉 is large, it results in the suppression

of Andreev conductance, since the LUMO level favors one
component of the spin. However, this is just opposite to
the case when the other multiplet |1, S − 1

2 , S − 1
2 〉 becomes

mainly responsible for Andreev transport. Because this state
is a superposition of both spin-up and spin-down components,
Andreev processes become much enhanced. Moreover, in this
particular case one in fact finds that IAP

S < IP
S , which yields

negative TMR; see Fig. 6(f).
In addition, a pronounced negative TMR is also found

in the case of δ = 0, which is shown in the left column of
Fig. 6. Note that this behavior is completely opposite to the
ferromagnetic exchange coupling case. Now, despite the fact
that the current is symmetric with respect to the bias reversal
and there is no NDC [see Figs. 6(a) and 6(b)], the TMR
changes sign and becomes negative. This happens for voltages
when the system is in the Coulomb blockade regime. Then,
in the regime of � � T , the current is mediated by thermally
activated sequential processes. In the case of J > 0 and for
parallel magnetic configuration, in this transport regime the
molecule was occupied by the state |1, S + 1

2 , S + 1
2 〉, which

led to large TMR. In the case of J < 0, in turn, the molecule is
occupied by |1, S − 1

2 , S − 1
2 〉, and since this state involves su-

perposition of both up and down spin components the Andreev
current gets enhanced compared to IAP

S , yielding TMR < 0;
see Fig. 6(c).

Finally, we note that the effect of negative TMR is clearly
associated with a particular occupation of molecular states that,
despite the asymmetry in the couplings to the ferromagnetic
leads, enhances the Andreev current in the parallel configura-
tion. However, one needs to keep in mind that with increasing
the spin polarization of the leads, the current in the parallel
configuration should eventually become suppressed, such that
IAP
S < IP

S will not hold anymore and the TMR will become
positive.

IV. SUMMARY

In this paper we have studied the subgap transport through
a large-spin magnetic molecule, such as a single molecular
magnet, coupled to one superconducting and two ferromag-
netic leads. The analysis has been performed by employing
the diagrammatic technique in real time and including lowest-
order processes between the molecule and ferromagnetic leads,
while the coupling to the superconductor was treated exactly.
We have determined the bias voltage and the molecule’s
orbital level detuning dependence of the Andreev current
and associated differential conductance, as well as the tunnel
magnetoresistance. We have shown that, due to the super-
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conducting proximity effect, transport processes take place
through molecular Andreev bound states. The energies of those
bound states can be estimated from excitation energies between
the odd and even charge parity states. For large-spin molecules,
as considered in this paper, there are in principle many such
states. However, we have shown that the main peaks visible in
the Andreev differential conductance are associated with eight
ABS states, resulting from excitations between the even states
and the highest-weight spin components of the odd states for
multiplets with Stot = S + 1

2 and Stot = S − 1
2 .

Because the ground state properties of the molecule depend
strongly on the type of exchange interaction between the
molecule’s core spin and the spin of electrons occupying
the LUMO level, different behavior was found in these two
corresponding cases. This difference is in fact clearly revealed
in the case of ferromagnetic leads. Then, for both cases of J , we
have identified regions of negative differential conductance in
the parallel magnetic configuration. The reason for the current

suppression and associated NDC is the nonequilibrium spin
accumulation that builds up in the molecule. Moreover, we
have shown that there is a crucial difference between the cases
of ferromagnetic and antiferromagnetic exchange couplings,
resulting in a completely different behavior of the TMR. If the
spin accumulation develops in the multiplet with Stot = S − 1

2 ,
as happens in certain transport regimes for J < 0, a large nega-
tive TMR can develop. On the other hand, in transport regimes
when one of the highest-weight components of the multiplet
Stot = S + 1

2 is mainly responsible for Andreev reflection, the
Andreev current in the parallel configuration becomes greatly
suppressed. This transport regime is characterized by a large
positive TMR.
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