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Control and detection of Majorana bound states in quantum dot arrays
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We study the low-energy physics of a one-dimensional array of superconducting quantum dots realized by
proximity coupling a semiconductor nanowire to multiple superconducting islands separated by narrow uncovered
regions. The effective electrostatic potential inside the quantum dots and the uncovered regions can be controlled
using potential gates. By performing detailed numerical calculations based on effective tight-binding models, we
find that multiple low-energy subgap states consisting of partially overlapping Majorana bound states emerge
generically in the vicinity of the uncovered regions. Explicit differential conductance calculations show that a
robust zero-bias conductance peak is not inconsistent with the presence of such states localized throughout the
system, hence, the observation of such a peak does not demonstrate the realization of well-separated Majorana
zero modes. However, we find that creating effective potential wells in the uncovered regions traps pairs of nearby
partially overlapping Majorana bound states, which become less separated and acquire a finite gap that protects
the pair of Majorana zero modes localized at the ends of the system. This behavior persists over a significant
parameter range, suggesting that proximitized quantum dot arrays could provide a platform for highly controllable
Majorana devices.
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I. INTRODUCTION

The quest for the realization of topological superconduc-
tivity and Majorana zero modes (MZMs) [1–3] in solid-state
systems has gained significant momentum in recent years.
Promising proposals for realizing these quantum states in
topological insulator–superconductor structures [4,5], atomic
magnetic chains coupled to conventional superconductors
[6–8], or semiconductor nanowires with strong spin-orbit
coupling and proximity-induced superconductivity [9–13]
have stimulated lively experimental activity [14–21]. In partic-
ular, improvements in materials science and nanofabrication
have led to significant progress in achieving experimental
conditions consistent with the presence of non-Abelian MZMs
in semiconductor-based platforms [22–28]. Moreover, the
development of high-quality two-dimensional semiconductor-
superconductor structures [29–31] opens the possibility of
using such systems as a platform for complex Majorana-based
topological circuits [32–36]. While the main initial challenge,
the presence of significant subgap conductance [37,38] which
plagued the first generation of experiments [14–16,18,19], has
been overcome, there are still serious concerns related to the
possible presence of (unwanted) quantum dots or nonuniform
parameters, which can lead to the formation of topologically
trivial low-energy states [39–51] that mimic the signatures of
non-Abelian MZMs in local measurements at the end of the
wire.

Emergent MZMs, also called zero-energy Majorana
bound states (MBSs), are topologically protected and pro-
vide a natural basis for fault-tolerant quantum computation
[52–54]. A key requirement for topological protection, which
ensures the immunity of the Majorana-based qubit against local
perturbations, is the nonlocality (i.e., the spatial separation)

of the MZMs. Specifically, in hybrid nanowire systems, the
topological superconducting phase supports one pair of MZMs
localized at the two ends of the wire. By contrast, the trivial
low-energy states mimicking MZM signatures are partially
separated Andreev bound states (ps-ABSs) consisting of a pair
of component MBSs separated by a distance comparable to or
larger than the characteristic Majorana length scale (but less
than the length of the wire) [51,55]. It was recently argued that
the nonlocality of MBSs in hybrid nanowires can be measured
via the interaction of the zero-energy state in the nanowire
with a quantum dot state at one end [56–59]. This method can
identify a ps-ABS, provided both constituent MBSs have a
measurable coupling to the quantum dot. A natural question
concerns the relevance a local measurement when the system
supports multiple MBSs localized throughout the wire, for
example, when several impurities (or defects) effectively “cut”
the wire into a chain of strongly coupled superconducting
islands.

A possible practical approach to the MZM nonlocality
challenge is to engineer hybrid structures that are more con-
trollable. One such proposal involves a chain of gate-tunable
quantum dots connected by s-wave superconductors [60].
A similar type of structure, which is directly related to the
Majorana nanowires used in current experiments, consists
of chains of proximitized nanowire segments (i.e., supercon-
ducting quantum dots or superconducting islands) separated
by narrow uncovered regions (see Fig. 1). The effective
electrostatic potential inside both the quantum dots and the
uncovered regions can be controlled using back gates. If the
superconducting islands are weakly coupled (e.g., by creating
large potential barriers in the uncovered regions), driving the
system into a parameter regime corresponding to a topological
superconducting phase (in long, homogeneous wires) will
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FIG. 1. Schematic representation of the hybrid device. A SM
wire with Rashba spin-orbit coupling is proximity coupled to NSC

superconducting islands (here NSC = 3) separated by small gaps,
resulting in a 1D array of superconducting quantum dots. A magnetic
field is applied along the wire. The electrostatic potential inside the
proximitized and the uncovered regions is controlled by back gates
(V ′

i and Vi , respectively). A normal metal lead is used to tunnel charge
into the end of the chain through a tunnel barrier controlled by V0.

result in the emergence of low-energy ps-ABSs localized inside
each island. The key question is whether or not these ps-ABSs
can be “merged” into a pair of MZMs localized at the ends of
the chain by controlling the barrier gates.

In this paper we address the questions formulated above
by systematically studying the low-energy physics of a chain
of superconducting islands using an effective tight-binding
model, which is solved numerically. The differential conduc-
tance for charge tunneling into the end of the wire from a
normal lead [38,41,61–67] is calculated explicitly as a function
of various control parameters. We find the observation of
a robust zero-bias conductance peak does not guarantee the
existence of a single pair of well-separated MZMs. In general,
the chain of coupled superconducting islands supports multiple
MBSs localized throughout the system and having nearly zero
energy within a significant range of Zeeman fields and back
gate potentials. We also find that realizing a uniform effective
potential, which is naively expected to lead to a topological
state with a single pair of MZMs localized at the ends of
the chain, by lowering the barrier potential between adjacent
quantum dots requires fine tuning and may even be impossible
if the barrier regions are too wide. Nonetheless, we identify
the optimal regime for realizing well-separated MZMs in a
quantum dot array as corresponding to (shallow) potential
wells in the barrier regions between the dots. The potential
wells act as “traps” for pairs of nearby MBSs, which overlap
strongly and acquire an energy gap, while the unpaired, end-
of-chain MBSs develop into robust, topologically protected
MZMs. Our study shows that the details of the effective
electrostatic potential are important for understanding the
low-energy physics of a Majorana hybrid structure. Accurately
capturing such details, particularly in the uncovered regions,
may require solving a three-dimensional Schrödinger-Poisson
equation [68]. In addition, our results show that arrays of
proximitized, gate-tunable quantum dots are versatile systems
for realizing robust MZMs, but the unambiguous detection
of such modes requires nonlocal probes, beyond end-of-chain
charge tunneling.

The remainder of the paper is organized as follows. In
Sec. II we describe the theoretical model used in our cal-
culations. The tight-binding Hamiltonian for the normal-
metal–semiconductor–superconductor structure is presented in

Sec. II A. In Sec. II B we briefly describe the method used for
calculating the differential conductance, while in Sec. II C we
discuss the approach used to calculate the effective potential
profile along the hybrid system. Our results are described in
Sec. III, starting with an overview of the general low-energy
differential conductance features that characterize the device.
In Sec. III A we establish the main regimes associated with
the potential in the uncovered regions of the device based on
a simplified effective model, while the details of the potential
profile are considered explicitly in Sec. III B. Our conclusions
are provided in Sec. V.

II. THEORETICAL MODEL

In this section we introduce the theoretical model and briefly
describe the methods used throughout this paper. In Sec. II A
we treat the nanowire within a simplified one-dimensional
(1D) chain model, but we incorporate the superconductor
components explicitly using a self-energy formalism. Section
II B sketches the method used in the conductance calculations,
while in Sec. II C we derive a multiorbital effective 1D model
that incorporates the details of the electrostatic profile.

A. Tight-binding Hamiltonian

The hybrid structure that we study consists of a semicon-
ductor nanowire proximity coupled to superconductor islands
separated by small uncovered regions (see Fig. 1). A magnetic
field is applied along the wire, while multiple back gates
enable the control of the electrostatic potential inside both the
proximitized and the uncovered regions. A normal lead coupled
to one of the ends is used for tunneling charge into the wire. The
total Hamiltonian describing this hybrid system has the form

H = HNM + HSM +
∑

j

HSC,j + TNM +
∑

j

TSC,j + Hext,

(1)
where the term HNM describes the normal metal (NM) lead,
HSM represents the Hamiltonian of a semiconductor (SM)
nanowire with Rashba-type spin-orbit coupling, HSC,j corre-
spond to the superconductor (SC) islands, TNM and TSC,j de-
scribe the coupling of the SM nanowire to the NM lead and the
SC islands, respectively, and Hext describes the external fields,
including the magnetic field and gate-induced potentials. Ex-
plicitly, the Hamiltonian for the metallic lead can be written as

HNM =
∑
i,δ

tNMa†i ai+δ + μNM

∑
i

a
†
i ai, (2)

where 1 � i � NNM labels the position along the chain,
δ = ±1, tNM is the hopping matrix element, and μNM the
chemical potential of the metallic lead. Using spinor notation,
the electron creation operator on site i is a

†
i = (a†

i↑a
†
i↓). We

neglect the effects of the external fields on the normal metal
and the superconductor. The Hamiltonian that describes the
semiconductor, including the applied fields, is

HSM + Hext =
∑
i,δ

tSMc
†
i ci+δ +

∑
i,j

[−μSM + Vj (i)]c†i ci

+ i
α

2

∑
i

(c†i+δσ̂yci + H.c.) + EZ

∑
i

c
†
i σ̂xci,

(3)
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where c
†
i = (c†i↑c

†
i↓) is the electron creation operator on

the site 1 � i � Nsm of the semiconductor wire, tSM is the
nearest-neighbor hopping, μSM is the chemical potential,
and α is the Rashba spin-orbit coupling coefficient. The
position-dependent potential V0(i) describes the charge
tunneling barrier V0(i) = V0 exp[−(i/σ )2], where σ is the
width of the tunnel barrier, while Vj (i), with j � 1, describes
the effective potential in the uncovered regions,

Vj (i) = Vj

[
1

1 + exp[i − Mj+1]
− 1

1 + exp[i − Nj ]

]
, (4)

where Mj and Nj label the leftmost and rightmost sites
of the jth uncovered region, respectively. Finally, EZ represents
the Zeeman splitting due to the applied magnetic field and
the matrices σ̂μ, with μ = x, y, z, represent Pauli matrices
associated with the spin degree of freedom. For now, we
assume vanishing effective potentials inside the proximitized
regions V ′

j (i) = 0. The superconducting islands are described
at the mean field level by the Bogoliubov–de Gennes (BdG)
Hamiltonian

HSCj
=

∑
i,δ

tSCa
†
i ai+δ − μSC

∑
i

a
†
i ai

+�0

∑
i

(a†
i↑a

†
i↓ + ai↓ai↑), (5)

where a
†
i = (a†

i↑a
†
i↓) is the electron creation operator on the

site i of the superconducting chains, δ is the nearest-neighbor
vector in the superconductor, tSC is the nearest-neighbor
hopping matrix element, μSC is the chemical potential, and �0

is the superconducting gap. The coupling between the semi-
conductor wire and the metallic lead is described by the term

TNM = t̃NM-SM(c†1aNNM + a
†
NNM

c1), (6)

where the nearest-neighbor hopping t̃NM-SM quantifies the
coupling strength between the right end of the metallic lead
and the left end of the nanowire. Finally, the coupling between
the semiconductor and the j th superconductor is described by
the term

TSC,j = t̃

Nj∑
i=Mj

(c†i ai + a
†
i ci ), (7)

where t̃ is the hopping across the semiconductor-
superconductor (SM-SC) interface, while ci designates the
annihilation operator in the semiconductor and ai designates
the annihilation operator on the surface of the superconductor.

In practice, rather than diagonalizing the full Hamiltonian,
it is convenient to calculate the effective Green function for
the semiconductor wire by integrating out the degrees of
freedom of the superconductors [69]. The proximity effect due
to superconductor j is captured by the self-energy term

�SC,j (ω) = t̃2GSC,j (ω), (8)

where GSC,j (ω) is the Green function of the j th superconduc-
tor at the SM-SC interface. Assuming that the superconductors
are truly bulk systems (i.e., wide enough and thick enough), the
self-energy becomes local [69] �SC,j (ω; i, i ′) = δi,i ′�SC,j (ω),

with

�SC,j (ω) = −|t̃ |2νSC

⎛
⎝ωτ0 + �0τx√

�2
0 − ω2

+ ζ τz

⎞
⎠, (9)

where νSC =
√

4tSCμSC − μ2
SC/(2t2

SC ) is the surface density of
states of the bulk superconductor at the chemical potential
and ζ = (2tSCμSC − 4t2

SC)/(μ2
SC − 4tSCμSC) is a proximity-

induced shift of the SM chemical potential. The matrices
τ̂μ, with μ = x, y, z, represent Pauli matrices associated with
particle-hole degree of freedom. For simplicity, we assume
that the superconducting islands are identical, so that the
self-energy will be the same for each proximitized segment.

B. Conductance calculations

The differential conductance is calculated using the
Blonder-Tinkham-Klawijk (BTK) formalism [70]. In essence,
this involves solving the BdG equation for the total Hamilto-
nian given by Eq. (1) with appropriate boundary conditions
[62]

Ntot∑
i ′=0

∑
σ ′

(Hiσ,i ′σ ′ − ωδi,i ′δσ,σ ′ )�i ′σ ′ = 0

for i = 1, . . . , Ntot, σ = ±1, (10)

where Ntot = NNM + NSC and H is the first quantized repre-
sentation of Htot. We apply plane-wave boundary conditions to
the wave vector � on the leftmost two sites of the normal lead,
i = 0, 1. Note that these boundary conditions are expressed
in terms of the normal and anomalous reflection coefficients
[62,70]. Solving Eq. (10) provides the values of these reflection
coefficients, which in turn, determine the differential conduc-
tance. Explicitly, we have

dI

dV
= e2

h

∑
σ,σ ′

(1−|[rN (V )]σ,σ ′ |2+|[rA(V )]σ,σ ′ |2), (11)

where rN is the matrix of normal reflection coefficients and rA

is the matrix of the anomalous coefficients, with the indices σ

and σ ′ running over the spin degrees of freedom.
Instead of solving the BdG equation (10) for the full

Hamiltonian, we can integrate out the superconducting degrees
of freedom and calculate the reflection coefficients by solving
the equation [67]

�̃ (σ ) =
⎛
⎝HNM + HSM + Tm +

∑
j

�SC,j + Q(ω) − ω

⎞
⎠

−1

× J (σ )(ω), (12)

where �SC,j is given by Eq. (9), HNM, HSM, Tm are
the first quantized representations of HNM, HSM, TNM, the
wave vector �̃ differs from � by phase factors multiplying
the reflection coefficients, J (σ ) is a vector determined by the
boundary conditions for the incoming current, and Q is a
matrix determined by the boundary conditions for the reflected
current. The details of the formalism can be found in Ref. [67].
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C. Effective potential calculations

The theoretical model described above, which is ubiquitous
in the literature on Majorana nanowires, is based on some rather
arbitrary assumptions regarding the position dependence of the
effective potential, i.e., the functions Vj (i) and V ′

j (i). In reality,
this potential depends on many system parameters including
the device geometry, material dielectric constants, applied
gate potentials, the work function difference between the
nanowire and superconductor, and even on the charge density
in the wire. Also, the actual nanowires have finite thickness, so
the effective electrostatic potential varies across the transverse
profile of the wire. This variation is critical in determining key
properties, such as the strength of the Rashba spin-orbit cou-
pling and the proximity effect induced in the wire. Moreover,
as the system parameters are, in general, position dependent,
the effective potential varies along the wire, particularly in
the uncovered regions. Therefore, to gain further insight into
the low-energy physics of the hybrid structure, it is critical
to calculate explicitly the effective electrostatic potential in
the wire. We emphasize that this is a highly nontrivial task,
as it involves solving a three-dimensional (3D) Schrödinger-
Poisson problem. Following Ref. [68], we address this problem
using an effective theory approach that allows us to construct
a multiorbital low-energy 1D model that incorporates the
information about the dependence across the transverse profile
of the wire into a position-dependent orbital basis. The details
of this construction can be found in Ref. [68]; below, we
summarize the key results relevant for this work.

Consider a finite nanowire with a given transverse profile.
We divide the wire into Nx layers (or slices), each containing
N⊥ sites. A cross section of the system is depicted in Fig. 2.

εr

ε0

εdielectric

φ = VSC

φ = Vg

R

d

FIG. 2. Schematic representation of the cross section of the
nanowire device in a proximitized region. The semiconductor (orange
hexagon) is proximity coupled to a superconductor (black). There is
a dielectric (purple) separating the nanowire from a back gate (gray).
The parameters εr and εdielectric are the dielectric constants of the SM
and the dielectric, respectively, Vg is the voltage applied to the (local)
back gate, and VSC is the work function difference between the SM
wire and the SC. In an uncovered region, the cross section is similar,
except that there is no superconductor.

The system is described by the tight-binding Hamiltonian

H3D =
∑

i,j,m,σ

t⊥ij c
†
imσ cjmσ +

∑
i,m,n,σ

t‖mnc
†
imσ cinσ

+
∑

i,m,σ,σ ′
Vimnimσ δσσ ′ + EZc

†
imσ (σx )σσ ′cimσ ′

+
∑

i,m,σ,σ ′
iαR[c†i(m+1)σ (σy )σσ ′cimσ ′ + H.c.], (13)

where c
†
imσ creates an electron with spin σ localized near the

site i of layer m, nimσ = c
†
imσ cimσ is the number operator,

t⊥ij and t
‖
mn are intralayer and interlayer nearest-neighbor

hopping matrix elements, respectively, EZ is the (half) Zeeman
splitting, and αR is the Rashba spin-orbit coefficient. The
electrostatic effects are described by the external potential Vim.
The potential matrix elements are Vim = −e〈i, m|V (r)|i, m〉,
where |i, m〉 is the state centered on site i of layer m, and
V (r) is the solution of the Laplace equation ∇2V (r) = 0. Note
that the boundary conditions for the Laplace equation are set
by the external gates (V0, V1, V2, . . . , V

′
1, V

′
2, . . . ), as well as

the work function difference between the superconductor and
nanowire VSC.

The Hilbert space of Eq. (13) is quite large, as each layer
contains many degrees of freedom (typically of the order 103).
However, we identify a layer-dependent low-energy subspace
defined by the eigenstates of the auxiliary Hamiltonian

H (m)
aux =

∑
i,j,k,σ

[
t⊥ij +

(
h̄2k2

2m∗ +V
(m)
i

)
δij

]
c
†
ikσ cjkσ

+
∑
ikσσ ′

αRkc
†
ikσ (σy )σσ ′cikσ ′ , (14)

where V
(m)
i = Vim. The auxiliary model, which describes an

infinite wire, is defined on a lattice with a transverse profile that
matches the lattice of layer m, i.e., the local transverse profile of
the original 3D system. Note that Hamiltonian (14) represents
a specific case of an infinite wire problem corresponding to an
external potential V

(m)
i = Vim and no Zeeman field, i.e., EZ =

0. In other words, the auxiliary Hamiltonian H (m)
aux describes

an infinite system in the presence of a translation-invariant
external potential that matches the local external potential
of the actual 3D wire on layer m. The low-energy effective
1D Hamiltonian is constructed by projecting the Hamiltonian
given by Eq. (13) onto the subspace defined by the lowest no

eigenstates of the auxiliary Hamiltonian:

Heff =
∑
m,n,σ

•∑
α,β

t̃
‖
mα,nβc†mασ cnβσ +

∑
m,σ

•∑
α

εm
α nmασ

+
∑

m,σσ ′

•∑
α,β

�(σx )σσ ′δαβc†mασ cmβσ ′

+
∑

m,n,σσ ′

•∑
α,β

iαmn
αβ (σy )σσ ′c†mασ cnβσ ′ , (15)

where m and n label the sites of the (finite) 1D lattice,
α and β designate the molecular orbitals corresponding to
the transverse bands of H (m)

aux , εm
α are the eigenvalues of the
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auxiliary Hamiltonian on layer m, and the summations marked
by a • symbol are restricted to the lowest-energy orbitals, i.e,
α, β � no. The hopping matrix elements t̃

‖
mα,nβ can be written

in terms of the hopping matrix [T ‖]im,jn = t
‖
mnδij between

layers m and n as

t̃
‖
mα,nβ = 〈

ϕm
α |T ‖|ϕn

β

〉
, (16)

where |ϕm
α 〉 is eigenstate α of Hamiltonian (14). Note that, in

general, the hopping matrix elements are position dependent.
The effective spin-orbit coupling matrix elements αmn

αβ are
calculated in a similar manner. Induced superconductivity is
added to the effective model through a term

∑
m

•∑
α,β

�m
αβc

†
mα↑c

†
mβ↓ + H.c., (17)

where the induced pairing potential is proportional to the
effective coupling γ mn

αβ between the semiconductor and super-
conductor. This effective coupling is calculated by

γ mn
αβ = 〈

ϕm
α |γ̃ |ϕn

β

〉
, (18)

with γ̃ mn
ij = γ̃ m

i δm,nδi,j , where γ̃ m
i is zero everywhere except

at the semiconductor-superconductor boundary.
The key observation behind this construction is that the

transverse profiles within the finite wire are very similar to
those of an infinite system with a potential matching the
local potential of the 3D system. Consequently, the low-
energy eigenstates defined by the auxiliary problem provide
an excellent basis for the finite 3D system, as demonstrated
explicitly in Ref. [68]. We note that in Eq. (15) εm

α plays the role
of an effective potential that is position and band dependent.
Also note that the effective potential εm

α incorporates all of the
information about the “actual” electrostatic potential Vim and
the intralayer hopping t⊥ij . In the calculations, we solve Eq. (14)
for each “slice” m and construct the effective Hamiltonian Heff ,
which is then solved numerically under the assumption that
the charge density in the wire is low. We note that, in general,
Heff includes a mean-field contribution due to the Coulomb
interaction of the charge inside the wire and has to be solved
self-consistently [68]. While the effects of interactions are not
expected to change qualitatively our conclusions, it may be
quantitatively significant and should be included in realistic
calculations of specific hybrid devices.

III. RESULTS

Before presenting our main results, it is useful to discuss
some generic low-energy features of the heterostructure by
focusing on a simple two-island system. Using the simplified
model described in Sec. II A, we determine the low-energy
local density of states (LDOS) for different values of the system
parameters, including the length of the uncovered region and
the value of the gate potential V1 in the uncovered region.
In Fig. 3 (left panels) we show the LDOS at zero magnetic
field as a function of energy and position along the wire
for different lengths Lu of the uncovered (barrier) region.
The dependence of the corresponding lowest state energy on
the applied gate potential V1 is shown in the right panels.
Notice the presence of low-energy subgap states localized in
the uncovered region. The number of these states increases

FIG. 3. Left: Color map of the local density of states at zero
magnetic field as a function of energy and position along the wire
for a system with NSC = 2 and different values L of the uncovered
(barrier) region length. The potential barrier height is chosen to
minimize the energy of the lowest-energy state, which is localized
in the barrier region. Right: Energy of the lowest-energy states as a
function of barrier height for various barrier region lengths. Notice
that the induced gap corresponding to the uncovered (barrier) region
decreases strongly with L, becoming effectively zero in the limit of
long uncovered regions (L → ∞).

with Lu, while the lowest state energy decreases. However,
these localized modes are always gapped since their wave
functions are not entirely confined inside the uncovered region,
but leak into the nearby proximitized regions. Note that the
covered regions have an induced superconducting gap of about
� = 0.25 meV, while the “effective induced gap” for the states
localized in the uncovered region is significantly lower. The
spectra shown in the right panels demonstrate that this gap is
strongly dependent on the gate potential V1 and reaches its
minimum at a value of the potential that depends on the length
of the uncovered region. We emphasize that the quasi-particle
gap is finite regardless of the length of the uncovered region.
The minimum of the quasiparticle gap corresponds to a state
localized near the center of the uncovered region and having
small weight inside the proximitized segments. Hence, when
the uncovered region is long enough (i.e., longer than about
0.4 μm) it can be considered to be nonsuperconducting for
practical purposes. In the following we will focus on systems
with Lu less than 0.4 μm, which means that the system will
always have a non-negligible gap. For all the figures, the
nearest-neighbor hopping is tSM = 10 meV and the spin-orbit
coupling is α = 2 meV.

The dependence of the zero-energy LDOS on the potential
barrier strength for different different values of the magnetic
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FIG. 4. Local density of states at zero energy as a function of
position and potential barrier strength for different magnetic field
values. For EZ = 0.2 meV the gap of the covered region has not yet
closed (since � ≈ 0.25 meV), but gapless states emerge in the barrier
region for small values of the barrier potential. The Zeeman field
EZ = �c = 0.25 meV corresponds to a topological quantum phase
transition. One or two pairs of MBSs emerge at higher field values.

field is shown in Fig. 4. For the covered regions, the induced
gap is � = 0.25 meV and the chemical potential is tuned
to the bottom of the band, so that a topological quantum
phase transition is expected at a critical value of the Zeeman
field Ec

Z = 0.25 meV. The topological phase is signaled by
the emergence of zero-energy MBSs localized at the ends
of the covered regions. Note that in the uncovered region
the “effective induced gap” has a significantly lower value,
generating a finite-size precursor of a topological quantum
phase transition (TQPT) at Zeeman fields lower than Ec

Z . For
example, in the upper left panel (EZ = 0.2 meV), for V1 <

0.2 meV, one can clearly distinguish a nearly zero-energy
mode having maxima at the ends of the uncovered region.
This mode can be viewed as an Andreev bound state (ABS)
consisting of two partially overlapping MBSs localized at the
ends of the uncovered segment. We note that the mechanism
responsible for the emergence of this mode is similar to that
acting in Majorana nanowires coupled to quantum dots, which
was shown to generate (trivial) ABSs that mimic the behavior
of well-separated MZMs when detected using local probes.
Increasing V1 is equivalent to a local increase of the chemical
potential, which drives the system into a trivial phase for V1 >

0.2 meV. The upper right panel corresponds to the critical
field Ec

Z = 0.25 meV. The closing of the bulk gap involves
a delocalized mode, which is signaled by the faint LDOS
present throughout the system at low values of the gate poten-
tial. For V1 > 0.2 meV the system becomes gapped. We can
understand this behavior as a manifestation of the finite-size
effect. Specifically, large V1 implies disconnected proximitized
regions, i.e., shorter “active” nanowires. In turn, this pushes

FIG. 5. Differential conductance as a function of magnetic field
and bias potential for various back gate potential values. Above V1 =
0.8 meV the two covered regions are completely separated and the
pairs of MBSs localized at the ends of each region overlap strongly.
The energy splitting oscillations decrease as the potential decreases
to zero and do not increase dramatically as the potential becomes
negative. Notice an additional ABS crossing in the V1 = −0.8 meV
panel (at EZ ≈ 0.6 meV).

the critical field for the topological “transition” (which, strictly
speaking, is a finite-size crossover) to higher values, E∗

Z > Ec
Z .

Consequently, the system with EZ = 0.25 meV and V1 >

0.2 meV is still in the trivial regime. The lower panels in Fig. 4
correspond to the topologically nontrivial regime characterized
by the emergence of zero-energy MBSs. The important feature
is the distinction between a low-barrier (strongly coupled)
regime and high-barrier (effectively decoupled) regime. The
two regimes are characterized by the presence a single pair
of MZMs localized at the ends of the system and two pairs
of MBSs localized at the ends of the proximitized segments,
respectively. The value of the crossover potential separating
these regimes depends on the Zeeman field.

A. Differential conductance calculations

The key question that we want to address next is how
would a charge tunneling measurement reveal the basic low-
energy physics discussed above. The relevant setup is shown
schematically in Fig. 1, with V0 acting as a tunneling barrier
(see also Secs. II A and II B). We start with a two-island
device, similar to that discussed above. Figure 5 shows the
differential conductance as a function of magnetic field and
bias potential for six different values of the barrier potential
V1. For V1 = 0 (which corresponds to a uniform effective
potential throughout the structure), the system undergoes a
TQPT at EZ ≈ 0.25 meV, as revealed by the emergence of
a robust zero-bias peak (ZBP) in the tunneling conductance
(see Fig. 5). In general, for small values of V1 the system
behaves like a (nearly) homogeneous wire consisting of two
strongly coupled segments. We will dub it as the strongly
coupled regime. Increasing V1 results in a partial decoupling
of the two proximitized regions and the emergence of a
low-energy state in the uncovered region. This state overlaps
with the MBSs localized at the ends of the system, which
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FIG. 6. Differential conductance as a function of magnetic field
and bias potential for a three-island device. The panels correspond to
different values of the back gate potentials in the uncovered regions V1

(which is closer to the tunneling barrier) and V2 (the “far” uncovered
region). When V1 is turned off, V2 does not have a significant effect on
the ZBP profile. Interestingly, the effect of V2 on the ZBP increases
at intermediate values of V1. As expected, large values of V1 result
in effectively disconnecting the first covered region (hence, V2 once
again has a negligible effect on the tunneling conductance).

acquire an energy gap that oscillates with the Zeeman field,
as revealed by the oscillations of the ZBP. The amplitude of
the oscillations increases with V1, until the two covered regions
become effectively decoupled (for gate potentials larger than
V1 ≈ 0.8 meV). We will refer to this high potential regime
as the decoupled (or uncoupled) regime. For all practical
purposes, a hybrid system in the uncoupled regime behaves as
two separate short wires. Note that the “critical” Zeeman field
associated with the emergence of the ZBP increases with V1,
which is a finite-size effect already mentioned in the previous
section. For values of V1 of the order of the induced gap, i.e.,
above the strongly coupled regime, but below the decoupled
regime, there is an intermediate regime characterized by a
partial protection of the ZBP. Finally, for negative values of V1,
i.e., when V1(i) corresponds to a potential well, the “critical”
Zeeman energy starts to increase again, signaling a reduction
of the coupling between the proximitized segments. However,
in this potential well regime, the oscillations of the ZBP do
not increase, suggesting that there is no additional low-energy
state that could hybridize with the MZMs localized at the
ends of the chain. Nonetheless, for particular values of the
gate potential and Zeeman field, Andreev bound states (ABSs)
trapped in the uncovered region can cross zero energy, as shown
in the top right panel of Fig. 5. These crossing can destroy
the topological protection of the Majorana mode, but they can
be easily avoided by tuning V1. Below, we will discuss in some
detail the challenges associated with effectively turning off the
potential barrier (i.e., realizing the strongly coupled regime), as
well as the low-energy physics in the potential well regime; for
now, let us focus on the intermediate and uncoupled regimes.

To better understand the intermediate regime, let us explore
the behavior of the tunnel conductance for a system with
two barriers (i.e., a three-island chain). Figure 6 shows the
differential conductance for a wire with two barrier regions

FIG. 7. Top: Differential conductance as a function of magnetic
field and bias potential for various strengths of the first barrier
potential in a three-island device. Bottom: The lowest-energy visible
state (red border/lowest panels) and the second-lowest visible state
(green border/middle panels). When V1 is turned off, the lowest
state is composed of two MBSs localized at either end of the wire,
while the second lowest state is a bulk state that is barely visible.
As V1 increases, the first state shifts its weight from the ends of the
wire to the edges of the combined second and third covered regions
(eventually becoming invisible), while the second state lowers its
minimum energy and shifts its weight to the edges of the first covered
region (becoming more visible).

as a function of magnetic field and bias potential for several
values of potential barrier strengths. When both barriers are
turned off (i.e., when both are in the strongly coupled regime),
the ZBP is extremely robust as there is a single pair of MZMs
separated by the entire length of the wire. In this case, the
phase transition occurs at Ec

Z = � = 0.25 meV and there are
no noticeable splitting osculations. Increasing V2 (i.e., the “far
gate” potential) has little effect on the ZBP, as the first two
covered segments are long enough to ensure its protection. On
the other hand, when the first barrier is in the decoupled regime
(V1 = 1.6 meV), there are two low-energy fermionic states,
although only one is visible in the differential conductance.
Again, the visible peak is unaffected by V2, as segments two
and three are effectively decoupled from segment one, which
is the only one coupled to the normal lead. By contrast, an
interesting behavior can be observed in the intermediate regime
V1 = 0.8 meV. In this case V2 has a sizable effect on the ZBP,
suggesting the presence of a low-energy state that couples to
the end-of-wire MBSs.

To support the picture described above, it is instructive to
calculate the probability distribution of the low-energy states
and track its change as the first gate potential increases from
V1 = 0 (strongly coupled regime) to the intermediate regime
and then into the uncoupled regime. The second barrier is
turned off, V2 = 0. The results are shown in Fig. 7. The top
panels represent the differential conductance as a function
of magnetic field and bias voltage. The next row (green
border) depicts the probability distribution along the wire
for the second lowest-energy state, while the third row (red
border) shows the probability distribution for the lowest state.
When V1 is off, the lowest-energy state is composed of two
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FIG. 8. Right: Probability distribution as a function of position for
the lowest two states of a two-island system at intermediate barrier
strength (upper panel) and high barrier strength (lower panel). The
Zeeman field is EZ = 0.5 meV. Left: Energy as a function of mag-
netic field for the same barrier strengths. When the potential barrier
in the uncovered region is strong (bottom), the proximitized regions
are effectively disconnected, each supporting a pair of (partially
overlapping) MBSs. At intermediate values of the barrier potential
(top), the two covered regions are strongly coupled. The four coupled
MBSs generate a low-energy fermionic mode that tends to stick at
zero energy and a mode that acquires a finite gap.

well-separated Majorana modes that live at either end of the
wire. Since the wire is fairly short, there are some visible
oscillations in the ZBP even in this regime. The second state
is a bulk state having most of its weight near the middle of
the wire, with very little weight at the ends, which makes
it nearly invisible in the tunneling conductance. Going into
the intermediate regime couples the lowest-energy states, both
having finite weight at all four edges of the active regions, i.e.,
region one and the strongly coupled segments two and three.
Note that even though the lowest-energy mode starts to lose
protection, it still generates a visible ZBP (although having
significant splitting oscillations). Furthermore, both states are
clearly visible in the differential conductance because both
have weight at the end of the wire. Finally, in the decoupled
regime, the lowest-energy state is practically contained inside
regions two and three and has negligible weight at the left
end of the wire, therefore losing most of its visibility in the
conductance. On the other hand, the second state, which is
clearly visible, has shifted all its weight to the edges of the
first covered region. As the first region is short, the Majorana
modes that it hosts are highly overlapping, which results in a
(finite energy) ABS that does not generate a ZBP, but disperses
with the Zeeman field.

The results shown in Fig. 7 suggest that the pinning of the
ZBP increases as the lowest two energy states become more
coupled. To better understand this behavior, we consider once
again a two-island system having a single barrier region that
cuts the wire in half and we calculate the spectrum as a function
of the Zeeman field, as well as the probability distribution of
the lowest-lying states. The results are shown in Fig. 8. The
left panels show the probability distribution for the lowest-
and second-lowest-energy modes, while the right panels show
the dependence of the energy levels on the magnetic field.

FIG. 9. Low-energy states in a six-island device. Left: Differential
conductance as a function of magnetic field and bias potential. Right:
Probability distribution as a function of position for the lowest-energy
(fermionic) mode. All five barriers are tuned to the intermediate
regime. Notice that the extended ZBP is not associated with the
presence of well-separated MZMs. Instead, the wave function of the
lowest-energy mode has significant weight at the edges of each of
the six covered regions.

When the barrier is in the uncoupled regime (bottom) the
energy levels are uncorrelated. The lowest state consists of
highly overlapping pairs of Majorana modes that live at the
edges of the two covered regions. On the other hand, when
the barrier is in the intermediate regime the two lowest-energy
levels anticross and split. The splitting of these levels pushes
one of them down toward zero energy, while the other acquires
a finite gap. It is this “splitting” effect that is responsible for the
apparent increase in protection of the ZBP in the conductance
calculations. However, examining the probability distribution
reveals that the lowest-energy mode, although relatively well
pinned to zero energy, is an overlap of four MBSs localized at
the ends of the covered regions. The major practical problem
is that, in certain parameter regimes, the presence of the MBSs
localized near the middle of the wire cannot be inferred based
on charge tunneling measurements at one end of the system. In
other words, in a chain of coupled superconducting islands one
could easily obtain an apparent exponential protection of the
ZBP by turning off the potential barriers, but the observation
of a robust ZBP does not guarantee the presence of a single
pair of MZMs localized at the ends of the chain.

The fact that a well-pinned ZBP does not guarantee well-
separated edge modes is dramatically demonstrated in wires
with many uncovered regions. In Fig. 9 we consider six covered
segments separated by five barrier regions. In the left panel
we show the tunnel conductance and in the right panels we
plot the spatial profile of the lowest-energy mode (i.e., the
mode responsible for the ZBP visible in the left panel) at four
different magnetic fields. Notice that the conductance shows
a very well-pinned ZBP even though the wave function does
not represent two Majorana modes separated by the length of
the wire. It is important to note that the lowest-energy mode
has the strongest conductance response of the lowest-energy
states, hence, it would be easy to mistake it for well-separated
end modes. Quantitatively, we note that the lowest state pins
to zero around 0.4 meV, which is a Zeeman field larger than
the predicted critical field for the topological phase transition.
However, the actual g factor of the wire is unknown and it
is extracted from the slope of the lowest-energy mode as a
function of the external field. In other words, the Zeeman
energy is related to the external magnetic field by assuming that
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the ZBP emerges at a Zeeman splitting equal to the induced
gap. In addition, the chemical potential could be shifted away
from the bottom of the band. This makes it extremely difficult
to conclude, based on experimental data, that the ZBP does not
emerge at the predicted critical field.

It is clear that a well-pinned ZBP does not guarantee
well-separated MZMs. In order for the hybrid structure to be
useful as a platform for topological quantum computation, one
has to be sure that the lowest-energy fermionic mode consists
of a single pair of MZMs localized at the ends of the system.
This could be realized in the strongly coupled regime, when the
effective potential is (approximately) uniform throughout the
wire. However, practically turning off the potential barriers can
be challenging, as we show explicitly in the next section. The
previous discussion, based on a simplified tight-binding model
that assumes certain profiles for the gate potentials, raises two
important questions: (i) How can one discriminate between a
low-energy mode that is robustly pinned to zero, but consists
of several overlapping MBSs, and a pair of well-separated
MZMs? (ii) How should one tune the gate potentials in order
to eliminate the unwanted additional low-energy states that
can hybridize with the MZM pair? The first question has been
addressed in several previous works [50,51,71–73]. Here, we
focus on the second question. To properly answer it, we use a
more detailed model of the hybrid device, capable of capturing
the position dependence of the effective potential both along
the wire, as well as across its transverse profile.

B. Effective potential calculations

To gain a better understanding of how much control over
the effective potential one can actually have in an experimental
setting, we investigate the chain of coupled superconducting
islands using the effective model described in Sec. II C. A
schematic representation of the cross section of the device
is shown in Fig. 2 and we focus on a two-island system
(see Fig. 1). The system parameters are chosen to be R = 50
nm, d = 30 nm, εSM = 17.7, εdiel = 8.0, m∗ = 0.014, α =
250 meV Å, a‖ = 10 nm, and a⊥ = 5 nm, where a‖ and a⊥ are
the lattice constants parallel and perpendicular to the length
of the wire. Note that the potential on the two gates beneath
the covered regions are always set to the same value. Laplace’s
equation was solved using the FENICS software package [74].

In Fig. 10(a) we show the spatial profile near the uncovered
(barrier) region of the effective potential of the three lowest-
energy bands for various device parameters. The effective
potential of the lowest band is set to zero in the bulk of
the covered region. Note that the effective potential deep inside
the covered region is assumed to be constant and equal to the
potential calculated using an infinite wire. One can easily see
that the effective potential is band dependent. Figure 10(b)
provides a zoom-in view of the lowest-energy band. The barrier
gate voltage V1 was chosen such that the effective potential is
as flat as possible for the given values of the work function
difference VSC and gate potentials V ′

j . Note that a positive gate
potential is attractive. Also, note that the flatness of the effective
potential depends strongly on the specific device geometry and
on the gate potential/work function values. This is reflected in
the energy spectrum as a function of Zeeman energy show in
Figs. 10(c)–10(f). For these spectra, the chemical potential is
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FIG. 10. (a) The effective potential profiles of the first three bands
for a two-island chain with different sets of system parameters. The
length of the wire is L = 1.2 μm and VSC = 150 mV, while the other
parameters are are set to (blue dotted lines) V ′

1 = V ′
2 = 0, V1 = 255

mV, Lu = 0.15 μm, (black solid lines) V ′
1 = V ′

2 = 0, V1 = 450 mV,
Lu = 0.05 μm, (orange dashed lines) V ′

1 = V ′
2 = 100 mV, V1 = 240

mV, Lu = 0.05 μm. (b) A zoom-in on the lowest-energy band in (a).
(c)–(f) Energy spectrum as a function of Zeeman energy for a system
with the chemical potential tuned to the effective potential of first
band in the bulk of the covered region. Colors of lines correspond to
those in (a) and (b). The (effective) induced gap is assumed to be 0.2
meV after gating in panels (c)–(e), whereas in (f) the induced gap is
assumed to be 0.2 meV before gating.

assumed to be equal to the effective potential of the lowest-
energy band in the bulk of the covered region and only the first
band is incorporated into the low-energy effective Hamiltonian
(15) since it is well separated (≈10 meV) from the other bands.
In Fig. 10(c) (i.e., for a system with a 150 nm uncovered
region), one can see that there are two low-energy states
throughout the relevant magnetic field range. This is due to
the large potential inhomogeneity of the barrier region [dotted
blue line in Fig. 10(b)], which leads to the emergence of an “un-
wanted” low-energy states. The situation is slightly improved
in Fig. 10(d), where the barrier length is reduced to 0.05 μm.
However, even in this case a second low-energy state is present
for Ez < 0.7 meV. The effective potential can be made suffi-
ciently flat to completely remove the second low-energy state
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FIG. 11. (a)–(c) Probability distributions along the wire for the
lowest-energy mode. The states correspond to the parameters in
Fig. 10 with Ez = 0.6 meV and panels (a), (b), and (c) matching (f),
(e), and (d), respectively. Note that in (a) the reduced gap in Fig. 10(f)
results in a more extended Majorana mode, as compared to (b). (d),
(e) Transverse probability distributions of the lowest-energy states.
The profile in panel (d) corresponds to the modes shown in (a) and
(b), while the profile in (e) corresponds to panel (c).

by applying an attractive voltage on the gates below the covered
regions of the wire, as shown in Fig. 10(e). However, there are
a few undesirable consequences of increasing the bottom gate
voltage. First of all, it reduces the proximity-induced gap due
to the reduced weight of the states near the SM-SC interface, as
shown in Figs. 10(d) and 10(e). In Fig. 10(e) we have increased
the SM-SC coupling to maintain a value of the induced gap
similar to that in Figs. 10(c) and 10(d). On the other hand, if
the coupling is maintained constant, we obtain the spectrum
shown in Fig. 10(f) when the bottom gate voltage is applied.
Here, the induced gap has been reduced to about half of its
initial value, resulting in less protection for the Majorana mode.
A second problem arising from the application of the bottom
gate potential is a reduction in the energy separation between
certain bands [see orange dashed lines in Fig. 10(a)]. These
nearly degenerate bands are due to the sixfold symmetry of the
hexagon nanowires, which is lifted in the presence of a large
work function difference, VSC, and no counterbalancing gate
potential. The symmetry is partially restored when the applied
gate potential V ′

j approaches VSC. If the chemical potential
happens to be close to these nearly degenerate bands, it may
be more difficult to obtain an odd number of occupied bands,
i.e., to stabilize the topological phase.

The probability distributions for the lowest-energy mode
in the presence gating, as well as for V ′

j = 0, are shown
in Figs. 11(a)–11(c). Note that these profiles correspond to
the spectra in Fig. 10. One can clearly see that the reduced
induced gap in Fig. 10(f) results in a highly overlapping pair
of Majorana modes [Fig. 11(a)]. Also note that the MBSs

in Fig. 11(c) are slightly less well separated than in those
in Fig. 11(b) as a result of the effective potential being less
flat. However, the effect is quite small at the chosen value
of the magnetic field (Ez = 0.6 meV). Nonetheless, as shown
in Fig. 10(d), the potential inhomogeneity in the uncovered
region induces a second low-energy state that hybridizes with
the MBS pair localized at the ends of the system destroying its
protection.

The key message here is that one must be extremely careful
when dealing with the electrostatic potentials created in the
uncovered regions of a semiconductor-superconductor struc-
ture and, more generally, when characterizing and engineering
regions with significant variations of the system parameters.
Typically, such regions support (trivial) low-energy states that
can compromise the topological protection of the Majorana
modes, as exemplified by the calculations discussed above. If
one is interested in creating a flat effective potential in the
barrier region (to prevent the emergence of such unwanted
low-energy states), the uncovered segment should be made
as short as possible. In addition, one may have to apply gate
potentials in the proximitized regions, which could generate
secondary adverse effects. Hence, the natural question follows:
Is it really necessary to have a flat effective potential (i.e.,
to be in the strongly coupled regime) in order to realize
well-protected MZMs in a quantum dot array?

The answer to this question is provided by the analysis
of the potential well regime. Indeed, although the potential
profile cannot always be flattened so that there is a single
pair of well-separated MZMs, it turns out that decreasing
the potential into the well regime can produce the desired
outcome within a significant range of control parameters.
Figure 12 captures the basic features of the potential well
regime. The top left panel shows the profile of the effective
potential for a well depth of about 10 meV, which is rather
large compared to the induced gap. Although this leads to the
formation of a subgap ABS, the component MBSs are trapped
in the potential well, which results in a strong overlap and
in the ABS acquiring a finite-energy gap. Of course, these
trivial ABS modes are characterized by discrete zero-energy
crossings. However, when the uncovered region is short and
the potential well is deep, the separation (in energy) of these
ABS crossings is large enough so that the gate potential can
be tuned to values for which there is a significant magnetic
field range characterized by the presence of well-separated
MZMs localized at the ends of the system and separated from
all other states by finite-energy gap. Note that the characteristic
energy scale of the bound states hosted by the uncovered
segment can be estimated by assuming a harmonic potential
and vanishing induced pairing. For the parameters used in
the calculation we have h̄ω =

√
2h̄2V (x = 0)/mL2

u≈0.6 meV.
We conclude that the bound states will move away from
zero energy, above the induced gap, for a significant range of
Zeeman fields. An example is provided in the top right panel
of Fig. 12, which covers a large Zeeman energy range. Note
that for EZ < 2.2 meV the spectrum remains gapped above a
well-protected Majorana mode. Moreover, this behavior does
not rely on fine tuning of the gate potential, as one can see
in the middle left panel, which shows the dependence of the
low-energy spectrum on the applied gate voltage. There are
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FIG. 12. Top left: Effective potential profile near the uncovered
region for a two-island system with VSC = 150 mV, V ′

j = 0, V1 = 295
mV, Lu = 0.15 μm, and L = 2.5 μm. Top right: Energy spectrum
as a function of Zeeman energy with the chemical potential tuned
to the effective potential of first band in the bulk of the covered
region. The second lowest-energy level joins the continuum except
at ABS crossings. Middle left: Energy spectrum as a function of
barrier gate voltage at Ez = 1.0 meV. Middle right: Energy spec-
trum as a function of gate voltage at Ez = 2.2 meV. Bottom left:
Probability distributions for the two lowest-energy states in the top
right panel at Ez = 1.0 meV. Bottom right: Probability distributions
for the two lowest-energy states at Ez = 2.2 meV, where there is an
ABS crossing.

regions of V1 of width of the order 40 mV for which the
spectrum remains gapped separated by narrower regions where
zero-energy crossings occur. We note that the depth of the well
should not exceed certain values, as other bands may become
close to zero energy and lead to the formation of additional
bound states that could ruin the Majorana protection. In the
calculations shown in Fig. 12 we include only a single band
to illustrate the oscillatory behavior of the low-energy states.
The inclusion of multiple bands results in the observation
of only a few oscillations with respect to V1, while above a
critical value of V1 the system has gapped low-energy bound
states for parameters that are not fine tuned. Nonetheless,
in the weak potential well regime the low-energy physics
is well described by the single-band approximation used in
the calculation. Finally, to clearly demonstrate the nature of
the low-energy states, we calculate their spatial profile for
representative values of the Zeeman field. The bottom left
panel of Fig. 12 shows a typical probability distribution for
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FIG. 13. Energy spectrum as a function of Zeeman energy for a
system with increasing number of “active” superconducting islands.
The parameters are the same as in Fig. 12(a), with each superconduct-
ing island having a length Lc = 1 μm. As the number of potential
barriers that are “turned off” increases, one obtains both exponential
pinning of the lowest-energy mode and the opening of a significant
gap between the lowest and second lowest state.

the two lowest-energy states corresponding to Ez = 1.0 meV,
i.e., when the second-lowest state is strongly gapped and the
Majorana mode is well protected. Indeed, the lowest-energy
fermionic state consists of a pair of well-separated MZMs
localized at the ends of the system, while the second-lowest
mode is a bulk state. By contrast, for Ez = 2.2 meV (which
corresponds to an ABS crossing) we notice that the ABS
localized in the uncovered region hybridizes strongly with the
MBSs localized at the ends of the system, destroying their
protection.

The final step of this analysis involves considering an
increasing number of (short) superconducting islands sepa-
rated by uncovered regions with applied gate potentials in the
potential well regime. Our goal is to show that one can create
an effectively long wire that hosts a single pair of MZMs (at
its ends) by using multiple small superconducting islands with
potential wells between them. We test this idea by repeating the
single barrier structure multiple times for islands with length
Lc = 1 μm. The corresponding spectra are shown in Fig. 13
as a function of Zeeman splitting. Notice that in all of these
spectra the second lowest-energy level is strongly gapped. In
addition, there is a clear increase of the zero-energy pinning
of the Majorana mode as the number of barriers is increased,
i.e., as the total length of the wire increases. Hence, one can
create an effectively long wire by coupling multiple short
superconducting islands through (relatively shallow) potential
wells. This construction circumvents the issue of creating a
flat effective potential and eliminates the difficulties associated
with fine tuning the gate potential in the uncovered regions.
Furthermore, since the potential wells act as traps for the the

085407-11



STENGER, WOODS, FROLOV, AND STANESCU PHYSICAL REVIEW B 98, 085407 (2018)

nearby low-energy states, this construction could be a useful
solution for improving the protection of the Majorana mode in
hybrid structures that contain (possibly unknown) sources of
trivial subgap states.

IV. EXPERIMENTAL DESIGN

The findings of this theoretical study are relevant for recent
experiments on hybrid semiconductor-superconductor devices
with several (1–4) gate electrodes underneath a proximitized
semiconductor wire [14,25]. In such devices, generic settings
of the gates can lead to the localization of MBSs underneath
just a single gate, though, as was shown previously, the MBSs
will typically leak out into other regions of the device [25].
This wave-function leakage reduces the MBS overlap, so that
the corresponding low-energy mode appears pinned to zero
energy in tunneling spectroscopy.

There are also ongoing experiments in which chains of
superconducting quantum dots are defined along the nanowire.
So far, these chain devices were limited to two superconductors
and two quantum dots between them [75], but the fabrication
of multidot devices should not pose fundamental challenges.
These devices can be used for the quantum simulation of the
Kitaev chain model [76–78]. We point out that if quantum
dots have dimensions similar to the islands studied here,
spin-orbit interaction can lead to the formation of partially
separated MBSs within each dot. A chain then would consist
of preformed MBS pairs, and the goal would be to hybridize
MBSs located left and right of each interdot barrier, while
leaving one outermost pair at the chain ends uncoupled.

The primary challenge with multidot systems is finding the
correct gate settings that would lead to well-separated MZMs.
It has already been stressed that one has to carefully tune
the gates under the quantum dots [77]. Here, we demonstrate
that it is additionally necessary to carefully tune the barrier
regions between the superconducting dots. Not only does one
have to be careful to tune away from potential values that
support Andreev states bound to the barrier regions, but also to
avoid barrier heights that allow for multiple low-energy modes
spanning across multiple dots. We propose shallow potential
wells in the barrier region as the optimal regime to be realized
experimentally.

A crucial experimental task is to test whether the system
does indeed host well-separated MZMs localized at the ends
(and no other low-energy state, including MBSs localized
away from the ends of the chain). Accomplishing such a
task clearly requires nonlocal probes. Recent proposals for
measuring Majorana nonlocality include the use a quantum
dot as a spectroscopic tool in a local transport measurement
[56], as well as two-terminal setups that measure the current
noise correlations [79] or the spin blocking effect of MZMs
[80]. While this type of scheme can certainly distinguish
well-separated MBSs from trivial low-energy modes localized
at the ends of the system, it is not clear that they can guarantee
the absence of “false negatives” in certain (rather generic)
conditions. As a specific example, let us consider a system
supporting two (nearly degenerate) low-energy states which
are superpositions of four MBSs, two localized at the ends of
the chain and two deep inside the system (see Fig. 14). The
annihilation operators corresponding to the low-energy states

FIG. 14. Probability distribution as a function of position for the
MBSs corresponding to the two lowest-energy states in a L = 2 μm,
three-island device with V1 = 0.0 and V2 = 0.8 meV (left), and a
L = 6 μm, six-island device with all gates off except V3 = 0.8 meV
(right). In both cases, the Zeeman energy is greater than the critical
field (EZ > �).

can be expressed in terms of the Majorana operators

γw = cos(φ)
(
ψε1 + ψ−ε1

) − sin(φ)
(
ψε2 + ψ−ε2

)
,

γx = sin(φ)
(
ψε1 + ψ−ε1

) + cos(φ)
(
ψε2 + ψ−ε2

)
,

iγy = cos(θ )
(
ψε1 − ψ−ε1

) − sin(θ )
(
ψε2 − ψ−ε2

)
,

iγz = sin(θ )
(
ψε1 − ψ−ε1

) + cos(θ )
(
ψε2 − ψ−ε2

)
, (19)

where ψ±εi
are the ith positive and negative energy eigen-

values, and φ and θ are some parameter-specific rotations
that decouple the MBSs. The left panel of Fig. 14 shows
the probability distribution for the two lowest-energy states
in a three-dot device when the second barrier is tuned to the
intermediate regime (V2 = 0.8 meV), while the first remains
off (V1 = 0.0). Although there are four MBSs, three of which
are highly coupled, the only state which has significant weight
at the left end of the wire is a single, well-separated MBS
that has negligible overlap with all other low-energy states. A
tunneling probe involving a quantum dot at the right end of the
device [56] will likely signal the presence of a ps-ABS [56]
(since there will be finite coupling to both the “green” and the
“red” MBSs). By contrast, the same type of probe will signal
the presence of a well-separated MBS at the left end of the
system (as it only couples significantly to the “blue” Majorana).
Consequently, this type of local probe can detect the presence
of certain ps-ABSs, but a signal indicating their absence (i.e.,
well-separated MBSs) could very well be a false negative.
More generally, no local probe at the left end of the wire can
distinguish the scenario illustrated in the left panel of Fig. 14
from a single low-energy state composed of a pair of MZMs
localized at the two ends of the wire. Turning now to nonlocal
probes [79,80], they can certainly distinguish between a system
having a pair of MZMs and one having two (trivial) ABSs at
the ends. In fact, this can also be done by performing two local
measurements (one at each end of the chain). However, the key
question is whether or not such a measurement is sensitive to
the presence of low-energy modes hidden deep inside the wire
(in addition to the well-separated MZMs localized at the ends),
a situation illustrated in the right panel of Fig. 14. In principle,
this type of “hidden” low-energy modes could be coupled to
the end modes through charging effects. However, in a system
characterized by a very small charging energy, this coupling
may not be measurable. In general, any detection scheme that
aims to demonstrate the realization of MZMs localized at the
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ends of the system (which are separated by a finite-energy
gap from any other low-energy state) must be able to detect
the presence of MBSs localized away from the ends of the
wire (including deep inside the system). This would ensure
the absence of false negatives. For the structure studied in this
work, a chain of coupled superconducting islands, we propose
that tunnel probes be attached to each island, more specifically
to the uncovered (barrier) regions separating the islands. This
would provide position-dependent spectroscopy, which clearly
satisfies the requirement discussed above, provided the islands
are short enough (as compared to the MBS characteristic
lengthscale) so that no spurious low-energy state can “hide”
inside an island (i.e., have negligible coupling to probes
attached to the ends of the island).

V. CONCLUSION

We have studied the low-energy states that emerge in a one-
dimensional array of proximitized, gate controlled quantum
dots. By performing extensive numerical calculations, we have
shown that the realization of well-separated MZMs localized
at the ends of the system by tuning the back gate potentials
is possible, but is not necessarily straightforward. Generically,
a chain of coupled superconducting islands supports multiple
low-energy states, which can be viewed as pairs of partially
overlapping MBSs. However, the existence of multiple MBSs
throughout the system is not inconsistent with the observation
of a robust zero-bias conductance peak (ZBCP) in a charge
tunneling measurement at the end of the system. Therefore,
a single local measurement at the end of the system (where
a MZM is expected to emerge) is insufficient for establish-
ing the presence of well-separated MZMs. This conclusion
has important practical implications regarding the interpre-
tation of charge tunneling experiments on semiconductor-
superconductor hybrid structures because the presence of de-
fects, impurities, or other nonhomogeneities could effectively
make the system a chain of proximitized quantum dots. Since
such a system is generically expected to support multiple MBSs
(some of which can be well localized) and because the presence

of this type of low-energy states is not inconsistent with the
observation of a robust ZBCP, such observations cannot be
interpreted as demonstrating the presence of well-separated
MZMs. Hence, using nonlocal probes represents a critical
requirement for further progress in this field.

We have found that, in order to realize well-separated,
topologically protected MZMs localized at the ends of a
quantum dot chain, it is optimal to create potential wells inside
the uncovered regions between the superconducting dots.
These potential wells trap the nearby MBSs, which overlap
strongly and acquire a finite gap. We have found that a sizable
gap protecting the MZMs persists over a significant range of
Zeeman fields and gate potentials. To optimize the stability
of the MZMs, the regions separating the superconducting
islands should be narrow (tens of nanometers). Realizing a
flat effective potential is rather difficult, requires fine tuning,
and may even be impossible if the uncovered region is too long.
This observation has direct consequences for understanding the
effective potential inside tunnel barrier regions, where (unin-
tentional) quantum dots can form within a significant range of
applied gate potentials. A quantitative theoretical description
of the effective electrostatic potential requires solving a 3D
Schrödinger-Poisson problem that incorporates the details of
the device, including its geometry. On the other hand, from the
experimental point of view, engineering arrays of proximitized
quantum dots represent a promising possible solution for
realizing more controllable Majorana devices, provided one
ensures that the gate regions, which act as traps for the
nearby low-energy states, are narrow enough and the detection
scheme, which should be able to demonstrate the presence of
well-separated MZMs, is based on nonlocal probes.
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