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Two-dimensional Holstein-Hubbard model:
Critical temperature, Ising universality, and bipolaron liquid
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The two-dimensional Holstein-Hubbard model is studied by means of continuous-time quantum Monte Carlo
simulations. Using renormalization-group-invariant correlation ratios and finite-size extrapolation, the critical
temperature of the charge-density-wave transition is determined as a function of coupling strength, phonon
frequency, and Hubbard repulsion. The phase transition is demonstrated to be in the universality class of the
two-dimensional Ising model and detectable via the fidelity susceptibility. The structure of the ground-state phase
diagram and the possibility of a bipolaronic metal with a single-particle gap above Tc are explored.
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I. INTRODUCTION

Phase transitions in two-dimensional (2D) fermionic sys-
tems are a central topic of theoretical and experimental con-
densed matter physics. Correlated quasi-2D materials with rich
phase diagrams include high-temperature superconductors [1]
and transition-metal dichalcogenides [2]. Dirac fermions in
two dimensions can be investigated in graphene [3]. Strongly
correlated 2D fermions exhibit exotic phases [4] and phase
transitions [5], and can support long-range order at T > 0
[6]. While magnetism originates from short-range Coulomb
repulsion, the main mechanism behind the numerous charge-
density-wave (CDW) phases found experimentally is electron-
phonon coupling. In addition to polaron effects, the latter leads
to a phonon-mediated, retarded electron-electron interaction
and an intricate interplay of spin, charge, and lattice fluctua-
tions.

Quantum Monte Carlo (QMC) simulations are a key tool
to investigate correlated 2D quantum systems. Although sim-
ulations are significantly harder for fermions than for spins or
bosons, QMC methods have been very successfully applied
to fermionic models. However, whereas the phase diagram
and critical behavior of, e.g., the 2D honeycomb Hubbard
model is known in detail [7–10], the same is not true even
for the simplest Holstein molecular-crystal model of electron-
phonon interaction. Most notably, simulations with phonons
are often severely restricted by long autocorrelation times
also away from critical points [11]. Currently, reliable critical
temperatures, convincing analysis of critical behavior, and the
ground-state phase diagram remain key open problems. In fact,
even the simpler 1D case had until recently been discussed
controversially [12], with earlier claims of dominant pairing
correlations refuted by direct calculations of the correlation
functions and traced back to spin-gap formation [13].

Here, we use large-scale continuous-time QMC simulations
to investigate the CDW transition in the 2D Holstein-Hubbard
model. Although the latter has been extensively studied in
the past, important open questions remain. At strong coupling
and half filling, the ground state is either a CDW insulator or
an antiferromagnetic Mott insulator. Recent variational QMC

studies [14,15] argue in favor of a third phase (metallic or
superconducting), seemingly in contradiction with theoretical
arguments based on weak-coupling instabilities of the Fermi
liquid [16,17]. We use finite-size scaling to determine Tc of
the CDW transition, show that the latter can also be detected
by the fidelity susceptibility, and provide evidence for its Ising
critical behavior. Moreover, we present arguments and data
for the existence of a metallic bipolaron phase at T > Tc and
address the possibility of a metallic or superconducting ground
state.

Section II introduces the relevant models, Sec. III gives a
brief review of the numerical methods, Sec. IV discusses the
results, and Sec. V contains our conclusions.

II. MODELS

The Holstein-Hubbard Hamiltonian [18] reads

Ĥ = −t
∑
〈i,j〉σ

ĉ
†
iσ ĉjσ +

∑
i

[
1

2M
P̂ 2

i + K
2 Q̂2

i

]

− g
∑

i

Q̂i ρ̂i + U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
. (1)

The first two terms describe free electrons and free phonons,
respectively. Here, ĉ

†
iσ creates an electron with spin σ at

lattice site i and electrons hop with amplitude t between
nearest-neighbor sites on a square lattice. The phonons are
of the Einstein type with frequency ω0 = √

K/M; their dis-
placements Q̂i couple to local fluctuations ρ̂i = n̂i − 1 of the
electron occupation n̂i = ∑

σ n̂iσ where n̂iσ = ĉ
†
iσ ĉiσ . The last

term describes a Hubbard on-site repulsion of strength U . We
simulated L × L lattices with periodic boundary conditions
at half filling (〈n̂i〉 = 1, chemical potential μ = 0). A useful
dimensionless coupling parameter is λ = g2/(WK ) with the
free bandwidth W = 8t . We set h̄, kB, and the lattice constant
to one and use t as the energy unit.

For U = 0, Eq. (1) reduces to the Holstein model. Its
relative simplicity has motivated numerous QMC investiga-
tions of CDW formation and superconductivity [17,19–26].
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FIG. 1. Critical temperature of the Holstein model (U = 0) from
finite-size scaling. Here and in subsequent figures, lines are guides
to the eye. Statistical errors are smaller than the symbols; see text.
The inset illustrates the CDW order at T < Tc for L = 4, with filled
(open) symbols representing occupied (empty) sites.

Equation (1) with g = 0 corresponds to the repulsive Hubbard
model on the square lattice. At half filling, the ground state of
the latter is an antiferromagnetic Mott insulator for any U > 0
[27]. However, in contrast to CDW order, antiferromagnetism
is restricted to T = 0 in two dimensions by the Mermin-
Wagner theorem [6]. The full Holstein-Hubbard Hamiltonian
(1) captures the competition between Mott and CDW ground
states [14,28–33]. Whereas early work unanimously agreed on
the absence of a disordered or a superconducting ground state
at half filling, such a phase has recently been advocated by
numerical results [14,15].

Because it is sufficient to address many of the open ques-
tions of interest, we will mainly consider the case U = 0.
However, selected results for the impact of the Hubbard repul-
sion will also be reported. For Eq. (1) with U = 0, mean-field
theory (exact for ω0 = 0 and T = 0) predicts a CDW ground
state with a checkerboard pattern for the lattice displacements
and the charge density [ordering vector Q = (π, π ); see inset
of Fig. 1] at half filling [17,19,21]. Here, we systematically
explore the impact of quantum and thermal fluctuations.

An important limiting case is the antiadiabatic limit ω0 →
∞, in which the Holstein-Hubbard model maps to a Hubbard
model with Hamiltonian

Ĥ = −t
∑
〈i,j〉σ

ĉ
†
iσ ĉjσ + U∞

∑
i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
(2)

and effective interaction U∞ = U − λW . For U = 0, interac-
tions are purely attractive and give rise to coexisting CDW
and superconducting order for any λ > 0 at T = 0. However,
at half filling, this order is minimal in the sense that Tc = 0
[34], which is related to a perfect degeneracy of CDW and
pairing correlations and an associated continuous SO(3) order
parameter for which the Mermin-Wagner theorem applies [6].

III. METHODS

Extending previous applications to 1D electron-phonon
models [35–37], we use the continuous-time interaction ex-
pansion (CT-INT) method [38]. To this end, we express the

partition function as a functional integral

Z =
∫
D(c̄, c) e−S0[c̄,c]−S1[c̄,c]

∫
D(b̄, b) e−Sep[c̄,c,b̄,b] (3)

using coherent states. Splitting the action into the free-fermion
part S0, the Hubbard interaction S1, and the remainder Sep that
contains the free-phonon contribution and the electron-phonon
coupling, the phonons are integrated out analytically to arrive
at a fermionic model with both an instantaneous Hubbard
interaction (S1) and a retarded, phonon-mediated interaction
(S2) [39]. This model can be simulated by the CT-INT method
by sampling both types of vertices [39] to stochastically sum
the weak-coupling Dyson expansion [38] around S0. Because
the latter converges for fermionic systems in a finite spacetime
volume, CT-INT is exact apart from statistical errors. Technical
reviews can be found in Refs. [40,41].

In contrast to the determinant QMC (DetQMC) method
[42] used in almost all previous works on Holstein-Hubbard-
type models, CT-INT has significantly smaller autocorrelation
times [11]. CT-INT simulation times scale as O(n3), where
n [≈ O(λβL2) for U = 0] is the average expansion order and
β = 1/T . Although DetQMC formally has a better O(βL6)
scaling, CT-INT benefits from reduced expansion orders at
weak coupling and seems to outperform DetQMC for most
parameters considered despite being limited for ω0 � t by
a sign problem. Whereas even the noninteracting case is
challenging for DetQMC, CT-INT trivially gives exact results
for λ = 0 and can in principle simulate the entire range of
phonon frequencies, including the experimentally important
adiabatic regime ω0 < t . We used up to 5000 single-vertex
updates and 8 Ising spin flips per sweep. The classical case
ω0 = 0 was simulated using the method of Ref. [43] combined
with parallel tempering [44].

IV. RESULTS

Since the effect of electron-electron repulsion on a half-
filled square lattice—namely, an antiferromagnetic Mott state
at T = 0—is well understood [27] the focus of our work
will be the electron-phonon interaction, i.e., Eq. (1) with
U = 0. Coulomb interactions of the Hubbard or even long-
range type can be simulated with unbiased QMC methods on
systems large enough to extract critical exponents [7–10]. In
contrast, the electron-phonon interaction is significantly more
challenging to describe due to the resulting, retarded electron-
electron interaction. This is true both for QMC methods but
also for, e.g., the functional renormalization group [30,31].
Consequently, even fundamental aspects such as the existence
of a nonzero critical value for the CDW transition are still under
debate. From the 1D Holstein-Hubbard model, it is known that
the phases at U = 0 (Luther-Emery liquid and CDW insulator)
are stable against a nonzero Hubbard repulsion so that they
and the phase transition between them can be fully understood
in the simpler Holstein model [12]. In particular, the metallic
phase arises from quantum lattice fluctuations rather than from
a competing Hubbard interaction [12]. In the 2D case, recent
predictions of an extended metallic region suggest that the
latter is largest at U = 0 [14,15]. A nonzero but sufficiently
small Hubbard repulsion merely shifts the critical value for the
CDW transition [14,28–33]. Moreover, because the long-range
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FIG. 2. (a) Determination of the critical value λc from (a) the
crossing of the correlation ratiosRc for different system sizesL and (b)
the maximum in the fidelity susceptibility. Here, ω0/t = 0.1, U = 0,
and (a) T/t = 0.05, (b) T/t = 0.2.

antiferromagnetic order is restricted to T = 0, the possible
phases at T > 0 (the focus of this work) remain the same.

A. Critical values

To obtain the critical values shown in Fig. 1, we calculated
the correlation ratio [45]

Rc = 1 − Sc( Q − δq )

Sc( Q)
(4)

(with |δq| = 2π/L) from the charge structure factor

Sc(q ) = 1

L2

∑
ij

ei(r i−rj )·q〈n̂i n̂j 〉 (5)

either at fixed λ or at fixed T . Here, Q = (π, π ). By definition,
a divergence of Sc( Q) with L in the CDW phase implies
Rc → 1 for L → ∞, whereas Rc → 0 in the absence of
long-range CDW order. Moreover, because Rc is a renormal-
ization group invariant [45], the critical point can be estimated
from the crossing of curves for different L, as illustrated in
Fig. 2(a) for ω0/t = 0.1 and T/t = 0.05. While the correlation
ratio (4) is expected to exhibit smaller finite-size corrections
than the structure factor (5), a shift of consecutive crossing
points is observed on the accessible system sizes, making it
necessary to extrapolate to L = ∞. To this end, we used a fit
function

f (L) = a + bLc. (6)

Examples for such extrapolations are shown for ω0/t = 0 in
Fig. 3(a) and for ω0/t = 0.1 in Fig. 3(b). For classical phonons,
we can access significantly larger system sizes up to L = 28.
The points in Fig. 3(a) correspond to crossing points of Rc for
L, L − 2 (i.e., �L = 2) and L, L − 4 (�L = 4), respectively.
Fitting to Eq. (6), these two choices yield identical results
for Tc within error bars. The errors take into account the
statistical errors of the QMC results as well as the errors in
determining the crossing points using parabolic fits (obtained
from a bootstrap analysis) and extrapolating to L = ∞. They
are smaller than the symbol size in Fig. 1 but naturally do not
capture possible variations due to the choice of fit function or
observable. For quantum phonons, we systematically used L =
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FIG. 3. Finite-size extrapolation of the crossing points of Rc(L),
Rc(L − �L) using the fit function (6). Here, (a) ω0 = 0, λ = 0.1,
Tc = 0.0506(1) and (b) ω0/t = 0.1, T/t = 0.2, λc = 0.244(1).

4, 6, 8, 10, 12 and hence �L = 2, as illustrated in Fig. 3(b). A
similar extrapolation gives λc = 0.101(1) for the parameters
of Fig. 2(a).

The phase transition can also be detected using the fidelity
susceptibility χF [46], an unbiased diagnostic to detect critical
points without any knowledge about the order parameter. It
essentially relies on calculating the overlap of the ground states
of (in the present case) Holstein Hamiltonians with couplings
λ and λ + δλ. A finite-temperature generalization has been
given in Refs. [47–49] and CT-INT estimators in Refs. [50,51].
Although these estimators have rather large statistical errors at
low temperatures, χF /L2 for T/t = 0.20 in Fig. 2(b) shows
the expected peak at a position that is consistent with Fig. 1
and λc = 0.244(1) from Fig. 3(b).

Figure 1 shows Tc(λ) for different ω0, covering the entire
adiabatic regime 0 � ω0 � t . The mean-field result Tc ∼
e−1/

√
λ for the 2D Holstein model—compared to Tc ∼ e−1/λ

in dynamical mean-field theory (DMFT) [52]—is expected
to overestimate Tc even at ω0 = 0 and does not capture the
expected maximum at λ < ∞ [52]. The latter is outside the
range of couplings considered here. Quantum lattice fluctua-
tions suppress Tc at a given λ. For ω0/t = 0.1, Tc shows only
minor deviations from the result for classical phonons, whereas
for largerω0 quantum fluctuation effects are clearly visible over
the entire parameter range shown. The systematic suppression
of Tc with increasing ω0 is perfectly consistent with the fact that
Tc = 0 for the attractive Hubbard model [34], to which the Hol-
stein model maps in the limit ω0 → ∞ [53]. This connection
and a possible metallic phase at low temperatures as a result
of quantum fluctuations will be discussed below. At T > 0, a
metallic region is naturally expected in the phase diagram of
the 2D Holstein-Hubbard model because the antiferromagnetic
Mott state arising from the Hubbard interaction is confined
to T = 0. In contrast to previous DMFT results [52], the
critical temperatures in Fig. 1 were obtained by taking into
account all (spatial and temporal) fluctuations on the square
lattice.

The Hubbard repulsion suppresses CDW order [14,28–33].
This is already apparent from the effective Hubbard model
(2) in the limit ω0 → ∞ where a nonzero U reduces the
effective, attractive interaction and thereby the CDW gap at
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FIG. 4. Critical temperature of the CDW transition in the
Holstein-Hubbard model. (a) Suppression of Tc with increasing U

at λ = 0.25 from finite-size scaling; (b) comparison of Holstein
and Holstein-Hubbard results in terms of the effective coupling
λeff = λ − U/W . The points labeled “Holstein” correspond to λc at
different temperatures from Fig. 1. The points labeled “Hol-Hub”
(Holstein-Hubbard) are for Tc at λ = 0.25 and U/t = 0, 0.25, 0.50
from (a). Here, ω0/t = 0.1.

T = 0. Whereas CDW order is restricted to T = 0 in this limit,
here we consider the Holstein-Hubbard model in the oppo-
site, adiabatic regime. Specifically, we take ω0/t = 0.1 and
λ = 0.25.

To quantify the effect of U , we show in Fig. 4(a) the
suppression of Tc as a function of U . Starting from Tc/t =
0.204(1) at U = 0, Tc decreases by about 15 percent in the
range U ∈ [0, 0.5t]. In principle, in the spirit of an effective
Holstein model, we can try to capture this effect by a coupling
λeff = λ − U/W . However, Fig. 4(b) reveals that for the
parameters considered this overestimates the effect of the
Hubbard repulsion because Tc at a given λeff in the Holstein
model (U = 0) is significantly lower than in the Holstein-
Hubbard model (U > 0). We attribute this finding to (i) the
stronger suppression of the antiferromagnetic correlations
(long-range magnetic order only exists at T = 0) compared
to the CDW correlations (CDW order exists also at T > 0)
at the temperatures considered, and (ii) retardation effects.
A DMFT analysis of the Holstein-Hubbard model revealed
that Tc is suppressed with increasing U at weak electron-
phonon coupling but initially enhanced at strong coupling. This
behavior was explained in terms of a reduction of the bipolaron
mass due to the on-site repulsion [29].

B. Critical behavior

In the thermodynamic limit, the long-range CDW order at
T < Tc spontaneously breaks the sublattice symmetry. The two
possible CDW patterns (cf. Fig. 1) imply the same critical
behavior as the 2D Ising model and hence critical exponents
β = 1/8 and ν = 1. Here, we demonstrate consistency with
Ising universality for ω0/t = 0.1 and λ = 0.25.

As the order parameter, the charge structure factor (5)
should obey the finite-size scaling relation [21]

Sc( Q)/L2 = L−2β/νfS[L1/ν (T − Tc )/Tc]. (7)
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FIG. 5. Scaling collapse of (a) the structure factor and (b) the
correlation ratio for ω0/t = 0.1, λ = 0.25, and U = 0 using the
critical exponents of the 2D Ising model. The critical temperatures
Tc were determined from the best scaling collapse and are given in
the text.

Therefore, plotting Sc( Q)L2β/ν−2 as a function of L1/ν (T −
Tc )/Tc should produce a collapse of the data onto the curve
described by the scaling function fS . The best collapse [54]
over the interval [−1, 1] in Fig. 5(a) gives Tc/t = 0.195(1),
smaller than the value Tc/t = 0.204(1) (Fig. 4) determined
from finite-size scaling.

A similar analysis can be carried out for the correlation ratio,
which is expected to obey

Rc = fR[L1/ν (T − Tc )/Tc], (8)

involving only the correlation length exponent ν. Hence, we
expect a collapse onto fR by plotting Rc as a function of
L1/ν (T − Tc )/Tc. The best collapse on [−1, 1] is obtained for
Tc/t = 0.205(1) and shown in Fig. 5(b). This critical value
is consistent with the previous estimate Tc/t = 0.204(1) in
Fig. 4. However, the collapse exhibits stronger scattering than
for the structure factor, even though the correlation ratio is
generally expected to be less affected by finite-size corrections
[45].

C. Phase diagram

Figure 1 gives the finite-temperature phase diagram of the
Holstein model in terms of Tc(λ), which separates the low-
temperature phase with long-range CDW order from the high-
temperature disordered phase. However, since accurate values
of Tc at very small λ are currently not accessible, Fig. 1 does
not settle the question of whether or not the ground state has
CDW order for any λ > 0.

There are two well-understood limits. The classical Hol-
stein model (ω0 = 0) has a CDW ground state for any λ > 0
and Tc > 0 (see Sec. IV A). This follows from mean-field
theory, which becomes exact at T = 0. In the opposite,
antiadiabatic limit ω0 → ∞, the Holstein model maps to
the attractive Hubbard model, whose ground state has coex-
isting CDW and superconducting order but Tc = 0. Hence,
as a function of ω0, the Holstein model interpolates be-
tween two limits that both exhibit long-range CDW order at
T = 0.
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FIG. 6. The two possible scenarios for the phase diagram of the
Holstein model. In scenario (I), we have CDW order with Tc > 0 for
any λ > 0. In scenario (II), Tc = 0 for λ < λc(ω0).

Between these limiting cases (i.e., for 0 < ω0 < ∞), there
appear to be two distinct scenarios for the shape of the phase
boundary Tc(λ), as illustrated in Fig. 6. In scenario (I), Tc > 0
for any λ > 0, so that the ground state is always a CDW
insulator. By contrast, in scenario (II), Tc = 0 for λ < λc(ω0)
and Tc > 0 for λ > λc(ω0). Case (II) can further be divided into
(IIa) where CDW order exists at T = 0 for any λ, and (IIb) with
a disordered phase at T = 0 below λc(ω0). In scenario (I), the
adiabatic (classical) fixed point determines the behavior for
any finite ω0. On the other hand, in scenario (IIa), the physics
is determined by the antiadiabatic fixed point for λ < λc(ω0)
and by the adiabatic fixed point for λ > λc(ω0). Note that
CDW order with Tc = 0 requires an emergent continuous
order parameter, as realized for the attractive Hubbard model
(ω0 = ∞). However, the corresponding symmetry is broken
for ω0 < ∞ by retardation effects in the Holstein model [53].

A CDW ground state for any λ > 0 may be expected
based on the instability of the Fermi liquid. For the half-
filled square lattice with nearest-neighbor hopping, the non-
interacting charge susceptibility χ (0)

c ( Q) ∼ ln2 βt due to the
combined effect of nesting and Van Hove singularities [16,17].
In the Hubbard model, such divergences underlie the existence
of an antiferromagnetic Mott insulator for any U > 0, and co-
existing CDW and superconducting order for any U < 0 [34].
For the Holstein model that does not have a symmetry-imposed
degeneracy of CDW and pairing correlations, superconducting
correlations were found to be weaker than CDW correlations
at half filling [17], consistent with the weaker divergence of
the Q = 0 pairing susceptibility χ (0)

p ( Q) ∼ ln βt .
Despite these theoretical arguments, metallic and super-

conducting ground states were recently suggested for the
half-filled Holstein and Holstein-Hubbard models based on
variational QMC simulations [14,15]. A metallic phase is also
found within DMFT [55–57], where a Van Hove singularity
is absent. For ω0 � t , the results of Fig. 1 appear consistent
with CDW order even at T = 0 for any λ > 0. On the other
hand, the phase boundary Tc(λ) in Fig. 1 undergoes an increas-
ingly strong shift to larger λ with increasing ω0, in principle
compatible with Tc = 0 at sufficiently weak coupling [scenario
(II)]. In the significantly better understood 1D case, numerical
results show that for ω0 > 0 the ground state remains metallic
for λ < λc despite a ln βt nesting-related divergence of the
charge susceptibility [12]. Since Tc = 0 in the 1D case, this
corresponds to scenario (IIb) above and is consistent with the
ω0 = ∞ limit, the 1D attractive Hubbard model. The latter has
a metallic but spin-gapped Luther-Emery liquid [58] ground
state and no long-range order. Functional renormalization
group calculations for the 2D Holstein-Hubbard model exclude
metallic or superconducting behavior at half filling except for
an extremely small region where Tc is essentially zero [31].
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FIG. 7. (a) Charge and (b) pairing correlation ratios for different
phonon frequencies. Here, βt = 2L, λ = 0.075, U = 0.

To address the ground-state phase diagram directly, we
calculated the correlation ratios

Rχ
c = 1 − χc( Q − δq )

χc( Q)
, Q = (π, π ), (9)

Rχ
p = 1 − χc( Q − δq )

χc( Q)
, Q = (0, 0), (10)

for CDW and s-wave pairing based on the susceptibilities

χc( Q) = 1

L2

∑
ij

ei(r i−rj )· Q
∫ β

0
dτ 〈n̂i (τ )n̂j 〉, (11)

χp( Q) = 1

L2

∑
ij

ei(r i−rj )· Q
∫ β

0
dτ 〈�̂†

i (τ )�̂j 〉, (12)

where �̂i = ci↑ci↓. The susceptibilities generally exhibit bet-
ter finite-size scaling behavior than the corresponding static
structure factors [cf. Eq. (5)]. We take a coupling λ = 0.075,
for which Refs. [14,15] suggest the absence of CDW order at
U = 0 over a large range of phonon frequencies. The inverse
temperature was scaled as βt = 2L (with 4 � L � 16), which
is at the current limit of the CT-INT method due to the sign
problem.

The correlation ratios shown in Figs. 7 and 8 have the
same properties as discussed in Sec. IV A; long-range order is
revealed by Rχ

α → 1 for L → ∞, and a larger correlation ratio
indicates stronger correlations in the corresponding channel.
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FIG. 8. (a) Charge and (b) pairing correlation ratios for different
Hubbard repulsions. Here, βt = 2L, λ = 0.075, ω0/t = 1.

085405-5



MANUEL WEBER AND MARTIN HOHENADLER PHYSICAL REVIEW B 98, 085405 (2018)

For ω0 = 0.1, the results in Fig. 7(a) suggest long-range
CDW order, consistent with Fig. 1. At the same time, the
pairing correlation ratio in Fig. 7(b) is strongly suppressed.
Upon increasing ω0, CDW correlations are suppressed and
pairing correlations enhanced, but R

χ
c > R

χ
p for any ω0 < ∞.

Degenerate CDW and pairing correlations are only observed
for the attractive Hubbard model (ω0 = ∞). The fact that
CDW correlations at ω0 < ∞ are stronger than for ω0 = ∞
suggests a CDW ground state also for the Holstein model and
likely no superconducting order since Tc is already minimal
for ω0 = ∞. As demonstrated in Fig. 8, a nonzero Hubbard
repulsion suppresses both CDW and pairing correlations while
enhancing antiferromagnetic correlations (not shown).

Figure 7 also reveals that in the weak-coupling regime
where an absence of CDW order was predicted [14,15],
it is challenging to unequivocally detect the known T = 0
long-range order of the attractive Hubbard model in terms of
R

χ
c , R

χ
p → 1 for L → ∞. The same should be true for the

Holstein and Holstein-Hubbard model in the regime where Tc

is small. Therefore, leaving aside the approximations inherent
to variational QMC methods, the reported absence of CDW
order [14,15] should also be taken with care.

While we are unable to provide a definitive T = 0 phase
diagram, the results of Fig. 7 together with the observation
that long-range CDW order is known to exist at T = 0 for
both ω0 = 0 and ω0 = ∞ are consistent with CDW order but
no superconductivity in the half-filled Holstein model at T =
0. Furthermore, in the absence of a higher symmetry relating
CDW and superconducting order as in the attractive Hubbard
model, we expect Tc > 0 (although potentially exponentially
small) and hence scenario (I) depicted in Fig. 6.

D. Bipolaron liquid

A final interesting point is the nature of the metallic phase
at T > Tc. In the CDW phase, spin, charge, and hence also
single-particle excitations are gapped. For 1D electron-phonon
models, the spin gap persists in the metallic phase [12] and
the T = 0 CDW transition occurs at the two-particle level
via the ordering of preformed pairs (singlet bipolarons) and
the opening of a charge gap. The same is true for the 2D
attractive Hubbard model for which the spin gap can be made
arbitrarily large by increasing U while keeping Tc = 0. Hence,
the disordered phase at low but finite temperatures is not
a Fermi liquid but a metal with gapped single-particle and
spin excitations [59,60], the 2D analog of a Luther-Emery
liquid [58]. Singlet bipolarons in principle also form for any
λ > 0 in the 2D Holstein model, although their binding energy
(∼ λ) can be small [61]. Nevertheless, we expect a spin-
gapped metallic phase for suitable parameters. At sufficiently
high temperatures, bipolarons undergo thermal dissociation
[62].

To detect signatures of a spin-gapped metal, we consider
the static charge and spin susceptibilities

χc = β(〈N̂2〉 − 〈N̂〉2), χs = β(〈M̂2〉 − 〈M̂〉2) (13)

with N̂ = ∑
i n̂i , M̂ = ∑

i Ŝ
x
i . Figure 9(a) shows results for

λ = 0.1 and ω0/t = ∞. Whereas χs/L
2 diverges with de-

0
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8

10

0 0.05 0.1

(a) ω0/t = ∞

0

1

2

3

4

5

0 0.05 0.1

(b) ω0/t = 0.5

0

1

2

3

0 0.05 0.1

(c) ω0/t = 0.1

T/t T/t

χst/L
2

χct/L
2

T/t

FIG. 9. Local spin and charge susceptibilities [Eq. (13)] for λ =
0.1, U = 0, and L = 8. Open symbols in (a) are for λ = 0; arrows
indicate maxima.

creasing temperature in a Fermi liquid (open symbols), it is
strongly suppressed as T → 0 by the spin gap. The charge
susceptibility is also suppressed at very low T , but χc/L

2

approaches a finite value determined by the density of T = 0
charge fluctuations. The distinct temperature scales reflected
by the maxima of χs/L

2 and χc/L
2 reveal the spin-gapped

metallic phase at T > 0 in the attractive Hubbard model. For
the Holstein model, χs/L

2 is cut off by the spin gap, whereas
χc/L

2 is cut off by the charge gap that appears at the CDW
transition at T = Tc. The distinct maxima visible even in the
adiabatic regime [Figs. 9(b) and 9(c)] are consistent with a
spin-gapped phase at T > Tc. The extent of the latter appears
to decrease with decreasing ω0/t and the phase is expected
to be absent in the classical or mean-field limit (ω0 = 0)
where charge and spin gaps become equal. An immediate and
important corollary of the existence of a spin-gapped metal of
bipolarons above Tc would be that, contrary to expectations in
previous work [24,25], the appearance of a gap in the density
of states does in general not imply CDW order. The additional
spin-gap component is also compatible with experimentally
observed large gap to Tc ratios [52].

In principle, a spin-gapped phase without long-range order
(CDW or superconductivity) could also exist at T = 0, but
the discussion in Sec. IV C provided arguments against a
disordered phase. While well established in 1D electron-
phonon models in terms of a Luther-Emery liquid [12], it would
correspond to a so-called Bose metal [63] in higher dimen-
sions. An interesting question regarding the recent findings of
Refs. [14,15] is whether the variational wave functions used
can distinguish between spin-gap formation and superconduc-
tivity. To this end, it would be useful to test this method for the
intricate but well understood 1D Holstein model.

V. CONCLUSIONS

We applied exact, continuous-time QMC simulations to the
half-filled Holstein-Hubbard model on the square lattice. The
critical temperature for the CDW transition was determined as
a function of phonon frequency, electron-phonon coupling, and
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Hubbard repulsion from finite-size scaling. We also demon-
strated the expected 2D Ising universality of this transition and
addressed the ground-state phase diagram, providing data and
theoretical arguments for the likely absence of a metallic or
superconducting phase at weak coupling. Finally, we discussed
the possibility of a spin-gapped metallic phase of bipolarons
above Tc. The quantitative ground-state phase diagram remains
an important open problem.
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