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In this work we design and train deep neural networks to predict topological invariants for one-dimensional
four-band insulators in AIII class whose topological invariant is the winding number, and two-dimensional
two-band insulators in A class whose topological invariant is the Chern number. Given Hamiltonians in the
momentum space as the input, neural networks can predict topological invariants for both classes with accuracy
close to or higher than 90%, even for Hamiltonians whose invariants are beyond the training data set. Despite
the complexity of the neural network, we find that the output of certain intermediate hidden layers resembles
either the winding angle for models in AIII class or the solid angle (Berry curvature) for models in A class,
indicating that neural networks essentially capture the mathematical formula of topological invariants. Our work
demonstrates the ability of neural networks to predict topological invariants for complicated models with local
Hamiltonians as the only input, and offers an example that even a deep neural network is understandable.
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I. INTRODUCTION

Machine learning has achieved huge success recently in
industrial applications. In particular, deep learning prevails
for its performance in several different fields including im-
age recognition and speech transcription [1–8]. In terms
of applications in assisting academic research, aside from
analyzing experimental data in high-energy physics [9,10]
and astrophysics [11–14], progresses have also been made
on recognizing phases of matter [15–45], accelerating Monte
Carlo simulations [46–52], and extracting relations between
many-body wave functions, entanglement, and neural net-
works [53–58]. Among these progresses, one challenging and
interesting problem is to extract global topological features
from local inputs, for instance, by supervised training a neural
network, and to understand how the neural network works.

In Ref. [15] a convolutional neural network is trained
to predict the topological invariant for band insulators with
high accuracy. The highlights of that work are twofold. First,
only local Hamiltonians are used as the input and no human
knowledge is used as a prior. Second, by analyzing the neural
network after training, it is found the formula fitted by the
neural network is precisely the same as the mathematical
formula for the winding number. However, the limitations
of Ref. [15] are also twofold. Only one-dimensional models
in AIII class whose topological invariants are the winding
numbers are considered. Moreover, only two-band models are
considered.

In this work we extend the realm of the previous
work to more sophisticated scenarios, including (i) one-
dimensional models in AIII class with more than two bands and
(ii) two-dimensional two-band models in A class. We find
that in both cases, the neural network can predict topological
invariants with high accuracy, even for testing Hamiltonians

whose topological numbers are beyond those in the training
set. Similar to Ref. [15], we use local Hamiltonians as the
input and do not feature engineer the input data with any
human knowledge. Also, the design of the neural network
architecture follows general principles, without specifically
making use of the prior understanding of topological invariants.
The only knowledge we explicitly exploit about these models is
the translational symmetry, as we choose convolutional layers
as the building blocks of our neural networks. Convolutional
layers respect the translational symmetry by construction and
reduce the redundancy in the parametrization [59].

Learning topological invariants of these two models is
significantly harder than that in Ref. [15], as the mathematical
formula of topological invariants in these models are intrinsi-
cally more complicated [see Eqs. (2) and (7)] and the sizes of
the input data are much larger. Consequently, to guarantee a
good performance, neural networks used in this work are much
deeper than the one used in Ref. [15]. As shown in Fig. 1,
there are more than nine hidden layers in each neural network.
Because the neural network becomes more complicated, it
becomes more difficult to analyze how the neural network
works. Nevertheless, we show that the intermediate output of a
certain hidden layer is, for case (i) the local winding angle, and
for case (ii) the local Berry curvature—both are the integrands
in the mathematical formula of the corresponding topological
invariant. In this way we demonstrate that the complicated
function fitted by the neural network is essentially the same as
the mathematical formula for the topological invariant.

The paper is organized as follows. In Sec. II we train a neural
network to learn the winding number of one-dimensional
four-band models in AIII class. After introducing the model
Hamiltonian and the mathematical formula of the winding
number, we present our neural network in detail and report
its performance. We then analyze the mechanism of why the

2469-9950/2018/98(8)/085402(7) 085402-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.085402&domain=pdf&date_stamp=2018-08-02
https://doi.org/10.1103/PhysRevB.98.085402


SUN, YI, ZHANG, SHEN, AND ZHAI PHYSICAL REVIEW B 98, 085402 (2018)

FIG. 1. The architecture of neural networks used for learning (a) the winding number of one-dimensional AIII class four-band Hamiltonians,
and for (b) the Chern number of two-dimensional A class two-band Hamiltonians. In both figures, each linear transformation layer is followed
by a subsequent nonlinear ReLU function. The Conv. and F.-C. in the figure denote the convolutional layer and the fully connected layer,
respectively. The label a × b(×c) specifies the dimension of the fully connected (convolutional) layer. H1, H2, and H3 label layers that we will
analyze later.

neural network works. We follow this routine in Sec. III and
show the result for two-dimensional two-band models in A
class.

II. WINDING NUMBER WITH MULTIPLE BANDS

A. Model

Here we study the problem directly in momentum space as
in [15]. Using input data in real space to train a neural network
for distinguishing topological phases is studied in [32,33].

Consider a 2d-band model in one dimension and introduce
�̂

†
k = (ĉ†1,k, ĉ

†
2,k, . . . , ĉ

†
2d,k ), where ĉ

†
ik is the creation operator

for a fermion on i orbital with momentum k. A general one-
dimensional four-band Hamiltonian in AIII class can be written
as Ĥ = ∑

k

�̂
†
kH (k)�̂k , where

H (k) =
(

0 D(k)
D†(k) 0

)
. (1)

Without loss of generality, here D(k) ∈ U (d ) is a d-
dimensional unitary matrix [60] and k ∈ [−π, π ]. The topo-
logical classification of band Hamiltonians in AIII class is the
group Z [61]. When the model is half-filled, the topological
invariant is computed by

w = 1

2π

∫ π

−π

dkTr[D−1(k)i∂kD(k)]. (2)

Since D(k) is unitary, it can be diagonalized as D(k) =
V †(k)M (k)V (k), where M (k) is a d-dimensional diagonal
matrix with diagonal elements {e−iθ1(k), e−iθ2(k), . . . , e−iθd (k)}.
Formally, D(k) can also be uniquely decomposed as D(k) =
e−iα(k)D̃(k), where D̃(k) ∈ SU(d ) is a d-dimensional uni-
tary matrix with determinant 1 and α(k) = ∑

i θi (k)/d ∈
[−π/d, π/d ) is the winding angle at momentum k.

To be concrete, we restrict our discussion to d = 2, which
corresponds to four-band models. The winding number for-
mula of Eq. (2) can then be reduced to

w = 1

π

∫ π

−π

dk∂kα(k), (3)

where α(k) = [θ1(k) + θ2(k)]/2 mod π so that α(k) ∈
[−π/2, π/2). The discretized version of the winding number
formula is

w = 1

π

L∑
l=1

�α(kl )

(4)

= 1

π

L∑
l=1

[α(kl+1) − α(kl )] mod π,

where ki , i = 1, . . . , L are distributed uniformly in the Bril-
louin zone and �α(k) ∈ [−π/2, π/2).
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TABLE I. The accuracy of the neural network prediction on
test Hamiltonians with winding numbers w = 0, ±1, ±2, ±3, ±4,
respectively.

w 0 ±1 ±2 ±3 ±4

Accuracy 97% 96% 96% 95% 93%

B. Neural network performance

Since the neural network can only take discrete input,
we first discretize the entire Brillouin zone uniformly into
L points {kl ∈ [−π, π )|l = 1, . . . , L + 1} by choosing kl =
2π (l − 1)/L. At each point, since the Hamiltonian is deter-
mined by the 2 × 2 matrix D(k), we denote its four elements as
D11,D12,D21,D22. The input data is therefore a 8 × (L + 1)-
dimensional matrix of the following form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Re[D11(0)] Re[D11(2π/L)] · · · Re[D11(2π )]
Im[D11(0)] Im[D11(2π/L)] · · · Im[D11(2π )]
Re[D12(0)] Re[D12(2π/L)] · · · Re[D12(2π )]
Im[D12(0)] Im[D12(2π/L)] · · · Im[D12(2π )]
Re[D21(0)] Re[D21(2π/L)] · · · Re[D21(2π )]
Im[D21(0)] Im[D21(2π/L)] · · · Im[D21(2π )]
Re[D22(0)] Re[D22(2π/L)] · · · Re[D22(2π )]
Im[D22(0)] Im[D22(2π/L)] · · · Im[D22(2π )]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(5)

In the following we set L = 32.
The structure of the deep neural network is shown in

Fig. 1(a). It first contains several convolutional layers with
kernel sizes marked in the figure, which are followed by two
fully connected layers leading to the final output. In each layer,
a linear mapping is followed by a nonlinear ReLU function.
We feed the neural network with a set of 3 × 104 discretized
training Hamiltonians with winding number {0,±1,±2,±3}
for supervised training.

To compute accuracy, the final winding number is taken
as the closest integer of the numerical value predicted by the
network. It is considered as a correct prediction if the rounded
integer matches the value computed by Eq. (4). The accuracy
of this neural network is shown in Table I. After training,
the neural network achieves a prediction accuracy of 96%
on Hamiltonians with winding numbers {0,±1,±2,±3} in
a separate test data set, and an accuracy of more than 90% on
Hamiltonians with winding number of {±4} that are beyond
the training set. The numerical values of the winding number
predicted for each Hamiltonian in the test set are shown in
Fig. 2.

C. Neural network analysis

To see why the neural network excels predicting the topo-
logical winding number, it is illuminating to check whether the
complicated function fitted by the neural network is consistent
with the mathematical formula Eq. (4) introduced above. We
open up the neural network at H1 and H2 marked in Fig. 1
by feeding test Hamiltonians into the neural network and
plotting intermediate outputs at H1 and H2 separately. Notice
that the output of H1 is of dimension (L + 1) × 20, while
the dimension of H2 is L × 10. Each row of H1 can be

FIG. 2. The test data set contains 104 Hamiltonians which are
labeled from 1 to 10 000. Hamiltonians labeled from 2000i to
2000(i + 1) have winding number ±i, with different colors distin-
guishing +i from −i. The vertical axis shows the winding number
(direct output) predicted by the neural network.

interpreted as a vector r ∈ RL+1, and each row of H2 can
be interpreted as vector v ∈ RL. They respectively have the
same dimension as the discretized α(k) and �α(k) defined
in Sec. II A. On the other hand, the exact value of α(k) and
�α(k) of the corresponding Hamiltonian can also be obtained
directly according to the definition in Sec. II A. In Fig. 3(a)
we plot {(α(ki ), ri )|i = 1, . . . , L + 1}, where ri is the ith
component of a selected row of H1, for various ki and input
Hamiltonians. The plot for H2 in Fig. 3(b) is similar where
{(�α(ki ), vi )|i = 1, . . . , L} are plotted.

As can be seen in Fig. 3(a), the intermediate output at H1 is
approximately piecewise linear with α, implying that this row
of neuron successfully extracts the winding angle α within
some range. Other rows of neurons extract winding angles at
different ranges. In Fig. 3(b) the intermediate output at H2 is
approximately linear with �α within some range, and each row
of neurons functions as a �α extractor for different ranges of

FIG. 3. Extracted features of the hidden layers. (a) The intermedi-
ate output ri which is a typical row of the layer marked by H1 in Fig. 1
vs the corresponding exact value of α(ki ) for the input Hamiltonian.
Other rows exhibit similar behavior which is not shown. (b) The
intermediate output vi which is a typical row of the layer marked by
H2 vs the corresponding exact value of �α(ki ). Other rows exhibit
similar behavior which is not shown. In both figures, the results of
five different test Hamiltonians are plotted so that there are 5(L + 1)
and 5L points in total, respectively.
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�α. Although their ranges may overlap with each other or have
different slopes in their linear relations with the exact �α, a
linear combination of these extractors with correct coefficients
in the following fully connected layer can easily lead to a
function proportional to �α at all ranges. In this way, the
winding number is calculated essentially the same way as that
using the mathematical formula Eq. (4).

As emphasized in Sec. II A, it is important to notice the
input Hamiltonian can be written as the product of a phase
factor and a SU(d ) matrix. The SU(d ) matrix does not play
any role in determining the winding number and only the phase
factor matters. It is quite impressive that the neural network
successfully distills the phase factor from the irrelevant SU(d )
part.

III. CHERN NUMBER IN TWO DIMENSIONS

A. Model

Consider a two-band model in two dimensions and in-
troduce �̂

†
k = (ĉ†1,k, ĉ

†
2,k ), where ĉ

†
i,k is the creation operator

for a fermion on i orbital with momentum k = (kx, ky ). A
general two-dimensional two-band Hamiltonian in A class can
be written as Ĥ = ∑

k
�̂

†
kH (k)�̂k, where

H (k) = h(k) · σ = hx (k)σx + hy (k)σy + hz(k)σz. (6)

Here σ = (σx, σy, σz) is a vector of Pauli matrices. Without
loss of generality, we can take |h(k)| = 1 as the normalization
[62]. In two dimensions, the Chern number can be computed
as

C = 1

2π

∫
T 2

d2kFxy (k), (7)

where T 2 is the torus of the Brillouin zone and

Aμ(k) = i〈u(k)|∂μu(k)〉, Fμν (k) = ∂μAν − ∂νAμ. (8)

Here we assume the model is half-filled so that |u(k)〉 is
the energy eigenstate with the lower energy H (k)|u(k)〉 =
−|u(k)〉. The integrand in Eq. (7) is then the Berry curvature
of the lower band. For discretized lattices, the Berry curvature
and the Chern number can be defined through the Wilson-loop
approach, as is elaborated in the Appendix.

B. Neural network performance

The input data are Hamiltonians in the discretized Brillouin
zone, i.e., 3 × (L + 1) × (L + 1) tensors (Hx, Hy, Hz)
with

Hμ =

⎛
⎜⎜⎜⎝

hμ(0, 0) hμ

(
0, 2π

L

) · · · hμ(0, 2π )
hμ

(
2π
L

, 0
)

hμ

(
2π
L

, 2π
L

) · · · hμ

(
2π
L

, 2π
)

...
...

. . .
...

hμ(2π, 0) hμ

(
2π, 2π

L

) · · · hμ(2π, 2π )

⎞
⎟⎟⎟⎠.

(9)

The corresponding Chern numbers are calculated using the
method presented in the Appendix. In the following we take
L = 8.

The structure of the neural network is shown in Fig. 1(b)
which is similar to that used for the winding number. We feed
the neural network with 104 randomly generated Hamiltonians

FIG. 4. The test data set contains 5 × 104 Hamiltonians which
are labeled from 1 to 5 × 104. The data labeled from i + 1 to
(i + 1)104 has Chern number ±i, with different colors distinguishing
+i from −i. The vertical axis shows the Chern number (direct output)
predicted by the neural network.

with Chern numbers limited to {0,±1,±2}. The accuracy here
is computed similarly to before by rounding the final output of
the network to the closet integer. After training, the neural
network can achieve an accuracy of 92% on Hamiltonians
with Chern numbers C ∈ {0,±1,±2}, an accuracy of 84%
on Hamiltonians with Chern numbers ±3, and an accuracy of
85% on Hamiltonians with Chern numbers ±4. These results
are shown in Fig. 4 and are summarized in Table II.

C. Neural network analysis

We feed the neural network with a Hamiltonian in the test
data set and plot the intermediate output of the last convolu-
tional layer [marked by H3 in Fig. 1(b)] in Figs. 5(b)–5(d). The
output consists of three layers of L × L matrices, which are
respectively shown in Figs. 5(b), 5(c) and 5(d). They should be
compared with the exact Berry curvature for the corresponding
Hamiltonian shown in Fig. 5(a). Since the intermediate output
is positive due to nature of the ReLU function while the
Berry curvature are generally positive somewhere and negative
elsewhere, the intermediate output reproduces the positive part
of the Berry curvature in one layer [Fig. 5(b)] and the negative
part in another layer [Fig. 5(c)]. The remaining third layer is
almost irresponsive [Fig. 5(d)]. This result shows the neural
network compute the topological invariant by first computing
local Berry curvatures in the momentum space and then adding
them together, which is essentially the same as Eq. (7).

IV. SUMMARY

In summary, we have trained deep neural networks to predict
the winding number of one-dimensional four-band models in

TABLE II. The accuracy of the neural network prediction on
test Hamiltonians with Chern numbers C = 0, ±1, ±2, ±3, ±4,
respectively.

C 0 ±1 ±2 ±3 ±4

Accuracy 93% 92% 90% 86% 85%
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FIG. 5. (a) The calculated Berry curvature for a test Hamiltonian
in the first Brillouin zone. (b)–(d) The corresponding intermediate
outputs at the layer marked by H3 in Fig. 1(b) before the fully
connected layers. Notice that the output is a three tensor, (b), (c),
and (d) corresponds to three different components of the three tensor.

AIII class and the Chern number of two-dimensional two-band
models in A class. In addition to the high prediction accuracies
after the training, it is understood that deep neural networks
essentially fit the mathematical formula for both topological
invariants. In the first case, the network successfully distills the
U (d ) phase factors of Hamiltonians between two successive
momenta and discards the SU(d ) degrees of freedom that is
redundant in determining the topology. In the second case, the
network successfully extracts the Berry curvature in momen-
tum space. Our work provides an explicit example that even a
complicated deep neural network can be understood. Our work
can be further combined with ab initio calculations, and paves
the way to the direct prediction of topological properties of
real materials using machine learning.

N.S. and J.Y. contributed equally to this work.

APPENDIX: CHERN NUMBER IN DISCRETE SPACES

The continuous version of Chern number and Berry cur-
vature is defined in Eq. (8) in the main text. To introduce the
discrete version of Chern number, it is convenient to first define
the Berry curvature in discrete spaces [63]. The Chern number
is then the summation of Berry curvatures in the space.

The definition of the Berry curvature and the Chern number
in discrete spaces, and the procedure for computing them are
outlined as follows.

1. Discretize a two-dimensional parameter space as L × L

sites. With periodic boundary condition by identifying sites at
the boundary, there are L × L plaquettes in total. In our setting,
sites are labeled as k = (kx, ky ). For uniform discretization, the
area of each plaquette is s(k) = �kx�ky , where �kx and �ky

is the distance of neighboring sites along kx and ky respectively.
2. At each site k = (kx, ky ) in the discretized two-

dimensional parameter space, diagonalize the Hamiltonian

FIG. 6. Schematic of discretized two-dimensional parameter
space and the Wilson loop. Numbers label the ordering of the loop.

H (k) = V (k)D(k)V †(k) to obtain the eigenstates of the nth
band |u(n)(k)〉. D(k) is a diagonal matrix with its diagonal
elements the eigenenergy of each band.

3. All four vertices in each plaquette construct an ordered
loop, called the Wilson loop (Fig. 6).

(a) Compute the ordered inner product of the eigenstates
along the ordered loop in each plaquette. Specifically, define

U12 = V †(k2)V (k1), U23 = V †(k3)V (k2),

U34 = V †(k4)V (k3), U41 = V †(k1)V (k4),

(b) Define Uij = diag(Uij ), where diag(· · · ) means to
extract the diagonal elements and construct a diagonal matrix.
That is, (Uij )mn = δmn(Uij )nn.

(c) Define Tloop(k1) = U41U34U23U12. −i log T (k1) is the
(non-Abelian) Berry curvature at the plaquette labeled k1.
Define θn(k) = −i log[Tloop(ki, kj )]nn and the Berry curvature
of the nth band F (n)

xy ,

F (n)
xy (k) = θn(k)/s(k). (A1)

4. The Chern number is the summation of the Berry
curvature of all plaquettes. Define cn as the Chern number
of the nth band:

cn = 1

2π

L×L∑
i=1

θ (ki )

= 1

2π

L∑
i=1

L∑
j=1

−i log T
(nn)

loop (ki, kj ). (A2)

It can be verified that the Chern number defined above is
quantized and gauge invariant. For a model defined in the
continuous space but whose Chern number is computed only
on discretized points in the continuous space, Eq. (A2) gives
the same result as Eq. (7) if the discretization is dense enough.
Hence Eqs. (A1) and (A2) can be seen as the generalization of
the Berry curvature and the Chern number to discrete spaces.
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