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Valley-dependent current generation in nanotubes by twisted light
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Each electronic band of a nanotube is associated with a specific crystal orbital angular momentum, in analogy
to crystal momentum. We develop the semiclassical equations of motion of electrons in such twisted Bloch
bands perturbed by electric and magnetic fields. These equations demonstrate that the absorption of twisted light
generates valley-dependent current along the nanotube in the presence of an external inhomogeneous magnetic
field. We show that the valley-dependent current provides a venue to detect valley polarization in twisted Bloch
bands.
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The extremely small reorganization energy of carbon nan-
otubes (CNTs) [1] makes them promising building blocks of
optoelectronic circuits through which orbital angular momen-
tum (OAM) [2–4] can be transported and processed in the form
of twisted exciton wave packets [5,6]. CNTs can be mapped
to graphene, a monolayer of carbon atoms with a honeycomb
structure, using the lattice vector n1�e1 + n2�e2 (�e1 and �e2 being
the primitive lattice vectors) [see Fig. 1(a)], characterized by
the pair of parameters (n1, n2). By means of the helical and
rotational symmetries [7], however, they can also be viewed as
spirals of N -arm sites [see Fig. 1(b)], with N being the number
of arms per site (greatest common divisor of n1 and n2). As
each Bloch band is thus associated with a specific integer OAM
within the domain [−N−1

2 , N−1
2 ] (see Fig. 2), it is referred to

as a twisted Bloch band. When N is even, there is an extra
Bloch band with OAM = N/2 [8,9], which has no specific
circularity and therefore will not be considered. On the other
hand,

∑N
n=1 ei2π (n−1)q/N |n〉 is the wave function of a twisted

exciton with OAM = q on anN -arm molecular ring. The phase
variation ei2π (n−1)q/N is characteristic of twisted excitons and
is responsible for the absorption and emission of twisted light
[10–12]. Using the quantum current operator for a molecular
ring [13], the circular current due to the eigenstates of the
ring is 2Nτd sin(2πq/N ), with τ being the coupling and d

being the distance between nearest-neighbor atoms. Therefore,
excitations of twisted Bloch states of CNTs will result in a
circular current, and naturally the question arises about the
consequences of the force that the charge carriers experience
in an external inhomogeneous magnetic field.

The transport properties of electrons in Bloch bands can be
described by the semiclassical equations of motion [14]

�̇r = ∂ε(�k)/h̄∂ �k, (1)

h̄�̇k = −e �E − e�̇r × �B, (2)

where ε(�k) is the Bloch band energy, �k is the momentum, �E
is the electric field, and �B is the magnetic field. This one-band
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approximation neglects interband tunneling and therefore is
only valid when the electric and magnetic fields are weak.
On the other hand, for two-dimensional materials within
a perpendicular magnetic field, the equations of motion of
electrons in magnetic Bloch bands are given by [15,16]

�̇r = ∂ε(�k)/h̄∂ �k − �̇k × �(�k)ẑ, (3)

h̄�̇k = −e �E − e�̇r × �B, (4)

where the magnetic field has been separated into a weak part
and a strong part [17]. The second term on the right-hand side
of Eq. (3) describes the effect of the strong magnetic field, with
�(�k) being the Berry curvature. The valley dependence of the
Berry curvature gives rise to a valley Hall effect, which can
be exploited to detect valley polarization in two-dimensional
materials [18,19]. In this paper, we generalize this concept
by developing the equations of motion of electrons in twisted
Bloch bands perturbed by electric and magnetic fields. Instead
of a dependence on �k (due to the translational symmetry),
the twisted Bloch band energies, ε(κ, q ), will depend on the
quantum numbers due to the helical (κ) and rotational (q)
symmetries. We will show that the κ dependence gives rise
to both a linear velocity along the CNT and a circular velocity
around the CNT, whereas the q dependence only gives rise to
a circular velocity. The two circular velocities, not appearing
in Eq. (2), result in a valley-dependent current along the CNT
(assuming that the magnetic field is strong enough to dissociate
the excitons), which provides a new venue to generate current
and detect valley polarization in CNTs.

The dynamics of electrons in a twisted Bloch band can be
described by a wave packet, i.e., a linear superposition

|�(t )〉 =
∫ κ+�κ/2

κ−�κ/2
dκ C(κ, q, t ) |�κ,q〉 (5)

of twisted Bloch states with coefficients C(κ, q, t ), where each
twisted Bloch state has the general form

|�κ,q〉 = 1√
LN

L∑
l=1

N∑
n=1

ei2π (l−1)κ/Lei2π (n−1)q/N |ψl,n〉 , (6)
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FIG. 1. (a) Mapping of the (5,10) CNT to graphene by means
of the lattice vector 5�e1 + 10�e2 (�e1 and �e2 being the primitive lattice
vectors). On the other hand, the CNT can be decomposed into spirals
of arms 1 (red), 2 (green), 3 (blue), 4 (pink), and 5 (orange), each
consisting of two inequivalent carbon atoms, denoted as A and B.
Black dashed lines indicate the five-arm sites. (b) Top and side views
of the spirals.

with L being the number of sites. The wave function |ψl,n〉
of the electron in arm n at site l is a linear combination of
molecular orbitals of the two inequivalent carbon atoms of
each arm; see Fig. 1(a). While physical results do not depend
on the choice of quantum numbers to describe the system,
choosing κ and q instead of the usual linear and angular
momenta simplifies the construction of wave packets and the
subsequent derivations, as the CNTs are excited by twisted
light with conserved OAM. We define the helical coordinate
�χ = zẑ + r0φχ φ̂ as illustrated in Fig. 3. The relations

z = χ sin(α), r0φχ = χ cos(α) (7)

indicate that the helical momentum operator, Pκ = −ih̄ ∂
∂χ

,
can be decomposed into a linear momentum operator along
the ẑ coordinate, Pκz

= Pκ/ sin(α), and a circular momentum
operator along the φ̂ coordinate, Pκφ

= Pκ/ cos(α). The wave
packet defined in Eq. (5) then has a mean linear velocity of

ż = 〈�(t )| d

dt

(
i

∂

∂κz

)
|�(t )〉

= 〈�(t )| i

h̄

[
H0, i sin(α)

∂

∂κ

]
|�(t )〉
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FIG. 2. Twisted Bloch bands of the (5,10) CNT associated with
OAM = −2 (red), OAM = −1 (green), OAM = 0 (black), OAM =
1 (blue), and OAM = 2 (orange). The band structure is calculated by
a tight-binding model considering only the pz orbitals and nearest-
neighbor coupling. Dashed lines mark the band gaps.

=
∫ κ+�κ/2

κ−�κ/2
dκ |C(κ, q, t )|2 sin(α)

∂ε(κ, q )

h̄∂κ

= sin(α)
∂ε(κ, q )

h̄∂κ
, (8)

where H0 is the Hamiltonian without electric and magnetic
fields. In the last step, the assumption that the wave packet is
narrow in κ has been applied.

The part of the mean circular velocity originating from the
helical symmetry, which is referred to as helical circular veloc-
ity in the following, can be calculated in a similar way, yielding

r0φ̇κ = cos(α)
∂ε(κ, q )

h̄∂κ
. (9)

The part originating from the rotational symmetry, referred to
as rotational circular velocity in the following, however, is not
well defined in terms of ∂

∂q
because of the discontinuity

of q space. Instead, the circular momentum operator,
Pq = −ih̄ ∂

r0∂φq
, gives

r0φ̇q = 〈�(t )|Pq/m|�(t )〉

= 〈�κ,q | − ih̄
∂

r0m∂φq

|�κ,q〉 . (10)

Electric and magnetic fields do not affect Eqs. (8)–(10), but
solely determine the dynamic equations for κ . Considering a
homogeneous electric field along the CNT, H ′ = −e�(z), we
have

h̄κ̇zẑ = i

h̄
〈�(t )|[H0 − e�(z), Pκz

]|�(t )〉

= −e 〈�(t )|
[
�(z),

∂

∂z

]
|�(t )〉 = −e �E. (11)

Modeling the external inhomogeneous magnetic field by
a radial magnetic field of the form �B = Brr̂ , which is
generated by the vector potential �A = −Brzφ̂, we have
H ′ = eBrzPφ/m with Pφ = Pκφ

+ Pq . Since H ′ commutes
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FIG. 3. Definition of the helical coordinate �χ = zẑ + r0φχ φ̂ in
cylindrical coordinates (left) and unfolded into the φz plane (right).

with Pφ but not with Pκz
, we have Ṗφ = 0 and

h̄κ̇zẑ = i

h̄
〈�(t )|[H ′, Pκz

]|�(t )〉 = −e 〈�(t )|BrPφ/m|�(t )〉

= −eBr0|�vφ|ẑ = −e�vφ × �B, (12)

where �vφ = (r0φ̇κ + r0φ̇q )φ̂ and it is assumed that the
magnetic field at the wall of the CNT is Br0. The dynamics
of electrons in twisted Bloch bands is thus given by

żẑ + r0φ̇φ̂ = [sin(α)ẑ + cos(α)φ̂]
∂ε(κ, q )

h̄∂κ
+ r0φ̇q φ̂, (13)

h̄κ̇zẑ = −e �E − e�vφ × �B. (14)

Equation (13) resembles Eq. (1) except for the extra velocity
term around the CNT. Equation (14) resembles Eqs. (2) and
(4), but �vφ is a circular velocity and the magnetic-field points
along the r̂ coordinate.

A direct consequence of the circular velocity term in
Eq. (14) is current generation when the CNT is illuminated
by twisted light and exposed to a magnetic field with a radial

e-

V

NS

FIG. 4. Setup for the measurement of a valley-dependent current.
A magnetic field with a radial component is provided by the magnet
on the right side of the CNT and a twisted light beam is applied from
the left side of the CNT. The measured voltage depends on the OAM
of the twisted light.

FIG. 5. Excitation in twisted Bloch bands by (a) twisted light with
OAM = 0 in an electric field, (b) twisted light with OAM = 1 or −1
in a magnetic field with radial component, and (c) twisted light with
OAM = 2 or −2 in a magnetic field with a radial component. The
valleys κ2, κ3, κ4, and κ5 are defined in Fig. 2. The shaded areas
represent the distribution function f (κ ).

component, as shown in Fig. 4. To demonstrate this new mech-
anism of current generation, we employ Boltzmann theory. The
distribution function in the relaxation-time approximation is

f (κ ) = f0(κ ) + e

h̄
τ (κ )( �E + �vφ × �B ) · �κf0(κ ), (15)

where f0(κ ) is the Fermi distribution function and τ is the
relaxation time. Then the current along the CNT is given by

Jz = −e

∫
dκ f (κ )ż(κ ) (16)

Jz = 0 without electric and magnetic fields, since f (κ ) is
symmetric and ż(κ ) is antisymmetric around the valleys (see
κ2, κ3, κ4, and κ5 in Fig. 2). There will be a net current when an
electric field is applied along the CNT (without magnetic field),
since now f (κ ) is no longer symmetric around the valleys
[see Fig. 5(a)] for any OAM of the twisted light. Electrons
in conventional Bloch bands will have the same distribution
function and therefore result in a net current, i.e., nothing is
special for electrons in twisted Bloch bands so far. New physics
is introduced when a magnetic field with a radial component
couples to the velocity; see Eq. (15).

Using Eqs. (8) and (9), we examine how the linear velocity
and the helical circular velocity vary with κ . As Eq. (10) tells
us only how to calculate the rotational circular velocity, we
apply a tight-binding model restricted to coupling between the
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FIG. 6. Velocity along the CNT (dashed curves), helical circular
velocity (dotted curves), and rotational circular velocity (solid curves)
for OAM = 0. Green refers to the valence band, red to the conduction
band.

pz orbitals of nearest-neighbor carbon atoms,

H0 =
∑

〈l,n;l′,n′〉
τa

A†
l,na

B
l′,n′ + H.c., (17)

where 〈l, n; l′, n′〉 indicates nearest neighbors, a
A†
l,i is the

creation operator for an electron on carbon atom A in arm
i at site l, aB

l′,n′ is the annihilation operator for an electron on
carbon atom B in arm n′ at site l′, and the coupling τ is set to a
value of −2.77 eV [20]. The velocity operator can be derived
from the polarization operator [21]

�P =
∑
l,n

( �RA
l,na

A†
l,na

A
l,n + �RB

l,na
B†
l,na

B
l,n

)
(18)

as

�v = ∂ �P
∂t

= −i[H0, �P ]/h̄

= − iτ

h̄

∑
〈l,n;l′,n′〉

[( �RA
l,n − �RB

l′,n′
)
a

B†
l′,n′a

A
l,n

+ ( �RB
l,n − �RA

l′,n′
)
a

A†
l′,n′a

B
l,n

]
, (19)

where �R denotes the positions of the carbon atoms, taking the
carbon-carbon bond length as 1.44 Å [20]. It turns out that the
same linear velocity and the same helical circular velocity are
obtained from Eq. (19) and from Eqs. (8) and (9), which verifies
the validity of Eq. (19) for calculating the rotational circular
velocity. Figure 6 shows the results obtained from Eq. (19)
for the conduction and valence bands with OAM = 0. The
linear velocity and the helical circular velocity are zero when
∂ε(κ )/∂κ = 0, as expected. The zeros of the rotational circular
velocity, however, are shifted, which, as will be explained later,
is the source of net current generation when the CNT is exposed
to a magnetic field with a radial component. More specifically,
for the conduction band the zeros shift left (right) at the band
minimum and right (left) at the band maximum for κ > 0 (κ <

0), and in the opposite directions for the valence band. The shift
gets larger as |κ| grows. Note that these shifts apply to all the
bands in Fig. 2. With the rotational circular velocity at hand, we
calculate f (κ ) and show in Fig. 7 results for different values
of B, assuming τ = 5 ps [22]. The curves for B �= 0 are not

-2
-1.5
-1
-0.5
0
0.5
1
1.5
2

FIG. 7. Distribution function for an electron excited into the
conduction-band valley at κ4.

symmetric due to the different symmetries of the helical and
rotational circular velocities.

Assume that ε(κ ) is symmetric at the valleys shown in
Fig. 2. Then the linear velocity and the helical circular velocity
would be antisymmetric at the valleys, i.e., they cannot break
the symmetry of f (κ ) and therefore cannot introduce any
net current. The rotational circular velocity, however, is not
symmetric at the valleys, such that f (κ ) is not symmetric.
Figures 5(b) and 5(c) indicate that opposite current will
be generated and, consequently, opposite potentials can be
measured across the setup of Fig. 4 when twisted light with
opposite OAM is applied. In Fig. 5(c) the tilts of the shaded
areas illustrate the effects of the shifts of the zeros of the
rotational circular velocity at the different valleys. Assuming
that the same amount of electrons are excited at each valley, the
excitation by twisted light with OAM = −2, for example, will
generate a smaller current than the excitation by twisted light
with OAM = −1. Excitation by twisted light with OAM = 0
will generate no net current, as the electrons in the valence
and conduction bands will be moving in opposite directions.
We note that the valley-dependent current, therefore, makes
it possible to detect the valley polarization in the twisted

FIG. 8. Current along the CNT generated by twisted light
with OAM = −2 (red), OAM = −1 (green), OAM = 1 (blue), and
OAM = 2 (orange).
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Bloch bands of CNTs by means of a magnetic field with
a radial component. Figure 8 gives numerical results for Jz

obtained from Eq. (16), showing that observable currents can
be generated by reasonable magnetic fields.

In conclusion, the semiclassical equations of motion of
electrons in twisted Bloch bands have been derived, which
has enabled us to analyze the transport properties by means
of Boltzmann theory. Generation of valley-dependent current
is predicted when a CNT is exposed to an external inho-
mogeneous magnetic field and excited by twisted light with
OAM �= 0. All excitations generating valley-dependent current
are indirect, which requires phonons to be involved in order
to compensate for the difference in linear momentum and

OAM between the valleys. However, it turns out that the
valleys approach each other for growing N . The extremely
low reorganization energy of CNTs, which is reported to be
on the order of tens of meV [1], makes it possible to keep the
moving electrons coherent and thus the OAM constant. The
introduced mechanism of current generation can be used to
detect valley polarization in the twisted Bloch bands of CNTs.
While we have used CNTs to demonstrate our ideas, the derived
conclusions apply to nanotubes in general.

The research reported in this publication was supported
by funding from King Abdullah University of Science and
Technology (KAUST).
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