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The nitrogen-vacancy (NV) center in diamond is of high importance in quantum information processing
applications. The operation of the NV center relies on the efficient optical polarization of its electron spin.
However, the full optical spin-polarization process, which involves the intersystem crossing between the shelving
singlet state and the ground-state triplet, is not understood. Here we develop a detailed theory of this process which
involves a combination of pseudo- and dynamic Jahn-Teller interactions together with spin-orbit interaction. Our
theory provides an explanation for the asymmetry between the observed emission and absorption spectra of
the singlet states. We apply density functional theory to calculate the intersystem crossing rates and the optical
spectra of the singlets, and we obtain a good agreement with the experimental data. Since the NV center serves
as a template for other solid-state-defect quantum bit systems, our theory provides a toolkit to study them that
might help optimize their quantum bit operation.
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I. INTRODUCTION

The best-known point defect in diamond is the nitrogen-
vacancy (NV) center [1], which acts as a quantum bit for
solid-state quantum information processing applications [2–
6]. The NV center is a negatively charged complex which
consists of a substitutional nitrogen next to a vacancy in
diamond [see Fig. 1(a)]. The defect has an S = 1 ground
state with milliseconds coherence time at room temperature
in 12C-enriched diamond samples [7] and can be optically
excited in the visible [1]. Under illumination, the electron spin
is preferentially populated at the ms = 0 spin state over the
ms = ±1 states [8–12]. The robust spin-selective fluorescence
[2] and photocurrent [13] are the most important features of
this center that can be used for quantum bit initialization and
readout schemes.

Group-theory considerations [14–16] together with lumi-
nescence [17] and absorption [18] measurements imply that
two singlet levels, 1A1 and 1E, which are separated by 1.19 eV,
reside between the 3A2 ground-state and 3E excited-state triplet
levels. In the optical spin-polarization cycle, both singlet states
play a role [see Fig. 1(c)]. In the upper branch, a highly
spin-selective intersystem crossing (ISC) occurs between the
3E triplet and 1A1 singlet caused by the phonon-mediated
spin-orbit interaction. Combined photoluminescence excita-
tion (PLE) measurements [19,20] and perturbation theory on
the ISC rates have been used to analyze this process in detail.
We note here that the observed multiple rates between the 3E

triplet substates and the singlet 1A1 go against the selection
rules [15,16] that would allow only a single scattering channel
[�A1 ; i.e., purple dotted arrow in Fig. 1(c)]. The multiple rates
can be naturally explained by invoking the dynamic Jahn-Teller
effect on the 3E state, which can account well for the ratio
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of the observed ISC rates at cryogenic temperatures [21]. The
dynamic Jahn-Teller effect is a special description of a strongly
coupled electron-phonon system that mixes the pure electronic
substates of 3E with each other that results in vibronic states,
which are labeled with a tilde in Fig. 1(c). The mixture of A1

into Ẽ1,2 by phonons results in ISC from Ẽ1,2 toward 1A1 [�E1,2 ;
i.e., green dotted arrow in Fig. 1(c)].

However, the ISC process in the lower branch, i.e., between
1E and 3A2, is still not understood. By considering the single
determinant 1E state built up from the e orbitals (see Fig. 1(b)
and Refs. [15,16]), group theory indicates that no ISC is
allowed between this singlet and the 3A2 triplet. On the other
hand, the measured lifetime of the 1E state is TE = 371 ± 6 ns
at cryogenic temperatures [12] and ISC toward the ms = 0 of
3A2 [�z; blue dotted arrow in Fig. 1(c)] should be effective to
observe spin polarization in the NV center. The measured TE is
temperature dependent and decreases down to ∼165 ns at room
temperature [12]. The temperature dependence could be well
understood by a stimulated phonon-emission process with an
energy of 16.6 ± 0.9 meV [12]. By means of spin control and
pulsed optical excitation of the NV center, the spin-dependent
ISC rates of 1E were extracted at room temperature [12].
Interestingly, it was deduced that the ISC rates from 1E to
ms = 0 and ms = ±1 [�± and �∓; red and orange dotted
arrows in Fig. 1(c), respectively] are comparable. As the ISC is
dominantly spin selective in the upper branch, this conclusion
is not contradictory to the measured >90% optical spin po-
larization in the triplet ground state. From these experimental
data, we may conclude that 1E is linked to the ms = ±1 in
the 3A2 state by spin-flipping transitions (rates of �± and �∓)
and to the ms = 0 by the rate of �z, where T −1

E = �z + �± +
�∓ = 2.70 MHz at cryogenic temperatures. In a previous
measurement [22], a similar value of T −1

E = 2.16 MHz was
deduced. We emphasize that understanding the mechanisms
governing the ISC between 1E and 3A2 is very important as this
ISC is responsible for closing the optical spin-polarization loop
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FIG. 1. Properties of the NV center in diamond. (a) Geometry structure showing the symmetry axis of the C3v symmetry. The vacancy is
the dotted circle, whereas the solid circles depict carbon atoms in the diamond lattice. (b) Calculated HSE06 Kohn-Sham levels in the diamond
band gap between the valence (VB) and conduction (CB) bands. (c) Many-electron states are expressed in two-particle Slater determinants in the
parentheses [see Eqs. (1)–(6)]. The many-electron levels are also depicted with the measured zero-phonon lines (ZPL). The zero-field splittings
in the triplet manifolds are artificially scaled up by five orders of magnitude for the sake of clarity. We label the possible intersystem crossing rates
(�’s) with colored dotted arrows that participate in the spin-polarization cycle. We label the radiative transitions in the aforementioned cycle with
solid black arrows. We refer to the vibronic states (coupled electron-phonon wave functions) with tilde labels above the many-electron states.
The nature of the vibronic

1
Ã1 and

1
Ẽ states is explained (blue and red solid curves and text) where ee, PJT, and DJT stands for electron-electron,

pseudo-Jahn-Teller, and dynamic Jahn-Teller interactions, respectively.

of the NV center which is the base of quantum bit initialization
and readout.

In this study, we derive the electron-phonon-assisted spin-
orbit interaction between the 1E state and the 3A2 state. We
show that the nature of |1E〉 is highly complex as it involves
significant electron-phonon coupling to the |1A1〉 and electron-
electron interaction to the |1E′〉 manifold. The former interac-
tion can be described in the frame of the pseudo-Jahn-Teller
(PJT) effect [23,24] and is responsible for closing the optical
spin-polarization loop of the NV center. Consequently, the |1E〉
and |1A1〉 are polaronic states and were labeled with a tilde
in Fig. 1(c). The electron-electron correlation between |1E〉
and |1E′〉 brings a dynamic Jahn-Teller (DJT) character to the
|1E〉, and explains the observed ISC rate toward the mS = ±1
states of the 3A2 ground state. We identify an interplay between
PJT and DJT interactions that determine the phonon sideband
of the photoluminescence (PL) spectrum of the singlets [17].
Our results also explain the appearance of a feature in the PL
phonon sideband upon the applied uniaxial stress [25] and
the asymmetry in the phonon sidebands of the PL [17] and
absorption [18] spectrum of the singlets. We use ab initio wave
functions and adiabatic potential-energy surfaces (APES) to
quantify the strength of interactions and the corresponding
temperature-dependent ISC rates, where the latter ones show
good agreement with the experimental data.

The paper is organized as follows. Section II describes
the electronic structure of the NV center and establishes the
nomenclature of the paper. Then we describe the ab initio
methods in Sec. III. We present the theory of the pseudo-Jahn-
Teller effect and the dynamic Jahn-Teller effect brought by
electron-electron correlation on the shelving singlet state in
Sec. IV, which contains the main idea of the paper. Section V
contains the main results of the paper, where we apply ab initio
calculations to calculate the optical spectra and ISC rates based
on the developed theories in Sec. IV. Finally, we summarize
and conclude our results in Sec. VI.

II. METHODOLOGY FOR ATOMISTIC SIMULATIONS

We apply ab initio wave functions and APES for deter-
mining the electron-phonon couplings, calculating the optical
spectra and ISC rates in the framework of spin-polarized
density functional theory (DFT) as implemented in the VASP

5.4.1 code [26]. We use the HSE06 hybrid functional [27,28]
within DFT technique that reproduces the experimental band
gap and the charge transition levels in group-IV semiconduc-
tors within 0.1 eV accuracy [29]. We converge the electronic
structure with self-consistent cycles on Kohn-Sham orbitals
with a low-energy cutoff (370 eV) within the applied projector
augmented wave (PAW) method [30,31]. The total energies of
the excited states were calculated within the � self-consistent
field (�SCF) method [32] that provides accurate zero-phonon-
line (ZPL) energy and Stokes shift for the optical excitation
spectra of the triplets of the NV center.

The negatively charged NV defect is modeled in a 512-atom
supercell and the � point is applied to sample the Brillouin
zone. We determine the equilibrium position of ions by mini-
mizing the quantum mechanical forces acting on them below
the threshold of 10−2 eV/Å. In the APES, the C1h distorted ge-
ometries exhibit the deepest energy configurations. The APES
around high-C3v symmetry configurations toward the low-C1h

symmetry configurations is calculated. The corresponding
normal modes of the E-symmetry phonons participating in the
distortion are calculated in the 3A2 ground state by using the
quasiharmonic approximation and finite-difference method on
the quantum mechanical forces.

In the calculation of ISC, the spin-orbit coupling should be
determined between the corresponding states. In our previous
work, we determined the z component of the spin-orbit cou-
pling (λz) accurately by our DFT method [21], which resulted
in λz = 15.78 GHz. We also found that the calculation of
the perpendicular component of the spin-orbit coupling (λ⊥)
requires approximations (see Ref. [21] for discussion) that lead
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to a significant overestimation in λ⊥. Therefore, we use λ⊥ here
as a parameter which should be greater than the calculated λz.

The phonon sideband in the absorption spectrum is de-
scribed by Huang-Rhys (HR) theory [33] that was previously
implemented for DFT supercell methodology [34]. The con-
tribution of the a1 and e phonons in the phonon sideband of
the PL spectrum for the triplets of the NV center was obtained
by this methodology [21], where the latter is responsible for
the DJT effect in the 3E excited state.

Finally, we note that our HSE06 DFT method cannot
directly calculate the many-body 1A1 and 1E singlet states.
Therefore, the energy gap between the 1E and 3A2 states
(�) is a parameter. The full ab initio description requires
one to go beyond Kohn-Sham DFT that can describe strong
correlation between localized electrons [35–37]. On the other
hand, we will show that HSE06 DFT singlet states within the
�SCF framework can be employed to derive the parameters
for the Jahn-Teller Hamiltonians and estimate the strength of
correlation between the 1E′ and 1E states.

III. PRELIMINARIES

Here we define the basic nomenclature of the paper. We
note that the orbitals and levels of the NV center from DFT
calculations have already been published in several papers [35–
43]. Furthermore, the corresponding many-body states and
the spin-orbit couplings between them were also thoroughly
analyzed [15,16]. Instead of frequently referring to these
papers, we rather explicitly write the corresponding wave
functions and interactions that we use in the entire paper.

A. Electronic structure

The NV defect introduces an a1 and a double-degenerate e

level in the gap [a and e orbitals in Fig. 1(b)] that are occupied
by four electrons in the relevant negatively charged state. In
the hole picture, two holes are left on the e orbital in ground-
state electron occupation that we simply label as (ee). The
many-body ground-state triplet state with labeling the mS =
{+, 0,−} spin projections can be described as

|3A+
2 〉∣∣3

A0
2

〉
|3A−

2 〉

⎫⎪⎬⎪⎭= |e+e−〉 − |e−e+〉√
2

⊗

⎧⎪⎨⎪⎩
| ↑↑〉

1√
2
(| ↑↓〉 + |↓↑〉),

| ↓↓〉
(1)

where we introduced the |e±〉 = 1√
2
(|ex〉 ± i|ey〉) complex

combination of the e{x,y} real orbitals. In the (ee) electronic
configuration, a double-degenerate 1E and a nondegenerate 1A1

state appear as

|1E∓〉 = |e+e+〉
|e−e−〉

}
⊗ 1√

2
(|↑↓〉 − |↓↑〉) (2)

and

|1A1〉 = 1√
2

(|e+e−〉 + |e−e+〉) ⊗ 1√
2

(|↑↓〉 − |↓↑〉). (3)

The optically allowed triplet 3E excited state can be de-
scribed as an electron promoted from the a to the e orbital in
the spin minority channel [see the inclined arrow in Fig. 1(b)],

which can be given an (ae) configuration in the hole picture,

|3E±〉 =
1√
2
(|e+a〉 − |ae+〉)

1√
2
(|e−a〉 − |ae−〉)

}
⊗

⎧⎨⎩
|↑↑〉

1√
2
(|↑↓〉 + |↓↑〉).

|↓↓〉
(4)

Beside the triplet state, a double-degenerate 1E′ state can be
constructed as

|1E′
±〉 =

1√
2
(|e+a〉 + |ae+〉)

1√
2
(|e−a〉 + |ae−〉)

}
⊗ 1√

2
(|↑↓〉 − |↓↑〉). (5)

Both states are Jahn-Teller unstable because a single hole is
left in the double-degenerate e orbital. We note that 1E in the
(ee) electronic configuration is not a Jahn-Teller system as
closed-shell singlet states are formed in Eq. (2).

We note that a high-energy A′
1 may also exist as follows:

|1A′
1〉 = |aa〉 ⊗ 1√

2
(|↑↓〉 − |↓↑〉). (6)

We particularly focus on the interactions between the singlet
states in which an alternative description of the states is useful.
The three-dimensional |1E〉 ⊕ |1A1〉 can be also expressed by
these singlet wave functions,

|xx〉 = |exex〉
|xy〉 = 1√

2
[|exey〉 + |eyex〉]

|yy〉 = |eyey〉

⎫⎪⎬⎪⎭ ⊗ 1√
2

(|↑↓〉 − |↓↑〉), (7)

where |xx〉 is a single Slater determinant and can be calculated
by our HSE06 DFT method. Finally, the |1E〉 and |1A1〉 in this
basis are

|1Ex〉 = 1√
2

(|xx〉 − |yy〉),

|1Ey〉 = |xy〉,

|1A1〉 = 1√
2

(|xx〉 + |yy〉), (8)

which are equivalent to Eqs. (2) and (3).
The order of the corresponding levels can be correctly

computed by means of configurational interaction or Hubbard
Hamiltonian numerical methods [35–37] that result in 3A2, 1E,
1A1, 3E, and 1E′ levels in ascending order. The 1A′

1 level resides
far above that of 1E′. This agrees well with the experimental
data [17,18] and previous group-theory considerations [14–16]
too. The ZPL energies between the triplets and in-between
singlets are at 1.945 and 1.19 eV, respectively, as known from
PL experiments [17,44]. The energy gap between the 3E and
1A1 levels [� in Fig. 1(c)] is estimated to be ∼ 0.4 eV from the
combination of experimental data and theory on ISC [19,20].
That would result in � ≈ 0.4 eV energy gap between the
1E and 3A2 levels. Hubbard Hamiltonian calculations within
the supercell method [37], which could nearly reproduce
the visible and near-infrared ZPL energies, indeed yielded
about 0.4 eV gap between the singlet-triplet levels both in
the upper and lower branches. This has been confirmed in
a very recent study parallel to our work by means of a
configurational interaction method embedded into the hybrid
DFT framework [45].
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B. Spin-orbit coupling between the states

We introduce the spin-orbit coupling (SOC) between the
electronic states that is responsible for ISC. The SOC matrix
elements between the possible two-particle many-body states
can be derived by combining the group theory and the two-
component spin-orbit operator on the Slater determinants of
orbitals, where the λz and λ⊥ components of SOC correspond
to the spin-projection conserving and flipping mechanisms,
respectively. By following the convention in Ref. [16], the 3A2

states are linked to the 1A1 and 1E′ states as follows:

Ŵ = 2λz|1A1〉
〈3
A0

2

∣∣
+ λ⊥[|1E′

+〉〈3A+
2 | + |1E′

−〉〈3A−
2 |] + c.c., (9)

where the triplet ms = {0,+,−} manifolds are labeled as a
subscript in 3A2. The most important conclusion is that 1E in
the (ee) electronic configuration is not linked to 3A2. Thus, we
seek a possible mechanism that mixes |1A1〉 and |1E′〉 characters
into |1E〉; otherwise there would not be any allowed ISC from
|1E〉 to |3A2〉.

IV. THEORY OF THE NATURE OF THE SHELVING
SINGLET STATE

In the next sections, we derive an approximate wave
function of the |1E〉 including the effects from electron-phonon
coupling and many-body electron interaction. First, we derive
the pseudo-Jahn-Teller effect between the 1A1 and 1E states in
Sec. IV A. Next, we determine the dynamic electron-electron
correlation between |1E〉 and |1E′〉 in Sec. IV B that induces
a small but non-negligible dynamic Jahn-Teller effect in |1E〉.
We combine the two effects in Sec. IV C. Despite the small DJT
effect, we will demonstrate in Sec. V that only the combination
of PJT and DJT accounts for the near-infrared PL line shape
of the NV center.

A. Pseudo-Jahn-Teller effect between the lowest-energy
singlet states

Since the lowest-energy 1E and 1A1 states have different
irreducible representations, only the symmetry-distorting E

vibration modes may couple the two states. This effect is known
as the pseudo-Jahn-Teller (PJT) effect in the literature [23,24].
We work out the PJT Hamiltonian in the basis of |xx〉, |xy〉,
and |yy〉 wave functions [see Eqs. (7) and (8)]. By assuming
an electronic gap of �e between the 1E and 1A1 before turning
on the electron-phonon interaction and setting the energy of
1E to zero, we arrive at

Ĥ = �e

2

⎛⎝1 0 1
0 0 0
1 0 1

⎞⎠
︸ ︷︷ ︸

= Ĥe

+ h̄ωE

⎛⎝ ∑
α∈{x,y}

a†
αaα + 1

⎞⎠
︸ ︷︷ ︸

= Ĥosc

+ F̃ (σ̂zx̂ − σ̂x ŷ)︸ ︷︷ ︸
= ĤPJT

, (10)

where Ĥe, Ĥosc, and ĤPJT are the electronic, harmonic os-
cillator, and linear PJT Hamiltonian, respectively. Parameter
F̃ is the cumulative electron-phonon coupling strength that
induces the PJT instability to the system. We note that �e is
not exactly the ZPL energy (�) between the singlets because
that will be corrected by the vibronic energies coming from
the electron-phonon interaction. The σ̂z and σ̂x operators

σ̂z =
⎛⎝1 0 0

0 0 0
0 0 −1

⎞⎠, σ̂x = 1√
2

⎛⎝0 1 0
1 0 1
0 1 0

⎞⎠, (11)

are a matrix representation of the L = 1 angular momentum
pointing to the electronic degree of freedom in the PJT
interaction. The E vibration mode is described by a

†
x,y creation

and ax,y annihilation operators with ωE frequency. For the
sake of simplicity, we use dimensionless coordinates where
x̂ = (a†

x + ax )/
√

2 and ŷ = (a†
y + ay )/

√
2. We show below

that other states contribute to the electron-phonon interaction
in the 1E state.

B. Dynamic electron-electron correlation between the |1E〉 and
|1E′〉 states and the appearance of dynamic Jahn-Teller effect

The electron-electron correlation is possible among the
many-body states with the same irreducible representation
as described in Eqs. (1)–(5). Thus it might be possible that
the |1A1〉 and |1A′

1〉 correlate at a certain degree, as well as
the |1E〉 and |1E′〉 similarly. We focus on the mixture of |1E〉
and |1E′〉 as this would allow the �⊥ = �± + �∓ ISC process
between |1E〉 and |3A±

2 〉. The mixing coefficient C describes a
multideterminant singlet state (|1Ē〉) as

|1Ē〉 = C|1E〉 +
√

1 − C2|1E′〉, (12)

where C can be chosen to be real without losing the generality.
Since |1E′〉 is an E ⊗ e DJT system, |1Ē〉 carries a DJT
character by the extent of (1 − C2). We note that we will
discuss the C mixing ratio further in Sec. V A and compare
to the results from a very recent multiconfigurational DFT
study [45]. The DJT Hamiltonian of |1E′〉 is

ĤJT = F (σ̄zX̂ − σ̄x Ŷ ), (13)

where the electronic degree of freedom is expressed by σ̄z

and σ̄x Pauli matrices spanning the two-dimensional |1E′〉
space that can be written as σ̄z = |1E′

x〉〈1E′
x | − |1E′

y〉〈1E′
y |

and σ̄x = |1E′
x〉〈1E′

y | + |1E′
y〉〈1E′

x |. F is the electron-phonon
coupling or Jahn-Teller interaction strength. The effective
DJT Hamiltonian in the basis of Eq. (7) used for the PJT
Hamiltonian is

Ĥ eff
JT = (1 − C2)F (σ̄zX̂ − σ̄x Ŷ ), (14)

with

σ̄z = 1

2

⎛⎝ 1 0 −1
0 0 0

−1 0 1

⎞⎠, σ̄x = 1√
2

⎛⎝0 1 0
1 0 −1
0 −1 0

⎞⎠.

(15)
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C. The effective electron-phonon Hamiltonian for the shelving
singlet state and the vibronic wave functions

The PJT effect was developed for |1E〉; however, we learned
in Sec. IV B that the lowest-energy singlet is rather |1Ē〉, which
will reduce ĤPJT by C2. Furthermore, one can estimate that
the electron-phonon coupling in PJT (F̃ ) and in DJT (F ) has
a relation of F̃ ≈ 2F . This relation can be envisioned from
the two-particle |xx〉 singlet wave function associated with
its electron-phonon coupling F̃ in which both orbitals are
Jahn-Teller unstable, whereas only a single orbital is Jahn-
Teller unstable in (ae) electronic configuration associated with
its electron-phonon coupling F . As a consequence, the Jahn-
Teller effect is twice as strong in the |xx〉 than that in the (ae)
electronic configuration. The final effective electron-phonon
Hamiltonian of the shelving singlet state is

Ĥ eff
el−ph = C22F (σ̂zX̂ − σ̂x Ŷ ) + (1 − C2)F (σ̄zX̂ − σ̄x Ŷ ).

(16)
The full Hamiltonian for the

1
Ẽ ⊕ 1

Ã1 system is

Ĥ = Ĥe + Ĥosc + Ĥ eff
el−ph, (17)

which results in the following �̃ vibronic wave functions in
the expansion of E phonon modes:

|�̃〉 =
∞∑
n,m

(
cxx
nm|xx〉 ⊗ |nm〉 + cxy

nm|xy〉 ⊗ |nm〉

+ cyy
nm|yy〉 ⊗ |nm〉), (18)

where we limit the expansion in the Born-Oppenheimer basis
[|nm〉 = 1√

nm
(a†

x )n(a†
y )m|00〉] up to a 10 phonon limit, n +

m � 10, which is numerically convergent in our particular
case. We span the electronic degrees of freedom with |xx〉,
|xy〉, |yy〉 as we defined in Eq. (8). In this form, one can express
the combined |1Ã1〉 ⊕ |1Ẽ±〉 states which may transform as E,
A1, and A2. The Ã2 vibronic states do not play a significant
role, and thus we only show the expressions for the

1
Ẽ± and

1
Ã1 vibronic states as follows:

|1Ẽ±〉 =
∞∑
i=1

[ci |1Ē±〉 ⊗ |χi (A1)〉 + di |1A1〉 ⊗ |χi (E±)〉

+ fi |1Ē∓〉 ⊗ |χi (E∓)〉 + gi |1Ē±〉 ⊗ |χi (A2)〉],
(19a)

|1Ã1〉 =
∞∑
i=1

[
c′
i |1A1〉 ⊗ |χi (A1)〉 + d ′

i√
2

(|1Ē+〉 ⊗ |χi (E−)〉

+ |1Ē−〉 ⊗ |χi (E+)〉)

]
, (19b)

that govern the shape of the phonon sideband in the optical
spectra. We label the symmetry-adapted vibrational wave
functions, e.g., |χ1(A1)〉 = |00〉, or, in general, by |χi (. . . )〉
in the rest of the paper.

We note that the gi coefficients are generally tiny and will
be ignored. On the other hand, the nonzero di and c′

i (fi and d ′
i)

coefficients drive the �z (�⊥) ISC process, and they are also
responsible for the shape of the PL spectrum of the singlets.

We further note that the analysis of strain dependence of
the singlet states requires one to extend the effective electron-
phonon Hamiltonian [Eq. (16)] with a strain Hamiltonian that
has similar matrix elements, such as the effective electron-
phonon Hamiltonian that may explain the significant strain
interaction of the

1
Ẽ± level [46]. A detailed investigation of

the interaction of the
1
Ẽ± ⊕ 1

Ã1 vibronic levels with the strain
is out of the scope of this study, and we rather concentrate
on understanding the role of the singlet vibronic states in the
intersystem crossing processes of the NV center.

V. APPLICATION OF AB INITIO RESULTS ON THE
THEORETICAL MODELS

We first estimate the parameters in the developed electron-
phonon Hamiltonian from ab initio DFT calculations for the
singlet shelving state in Sec. V A, in order to calculate the
vibronic electronic structure. We then apply the resulting
vibronic wave functions to calculate the PL and absorption
spectra for the singlets that will verify our methodology in
Sec. V B. Finally, we determine the ISC rates between |1Ẽ〉
into |3A2〉 in Sec. V C that show good agreement with the
experimental data, including the temperature dependence.

A. Derivation of the parameters of the electron-phonon
Hamiltonian of the singlet states from DFT calculations and the

resulting vibronic levels

The true many-body singlet eigenstates of the NV center
cannot be exactly described by Kohn-Sham DFT methods.
Nevertheless, the closed-shell |xx〉 state can be expressed. Fur-
thermore, the open-shell |a↑a↓ey↑ex↓〉 can also be calculated
by the �SCF Kohn-Sham DFT method. We calculated these
singlet states by constraining the symmetry into C3v starting
from the optimized 3A2 ground-state geometry. We found
that the geometry did not practically change in the geometry
optimization procedure of these singlet states, which strongly
hints that the A1 phonons do not contribute to the change of the
geometry of the true 1A1 and 1E states with respect to that of
3A2 ground state, and thus the symmetry-breaking E phonons
play a role.

In particular, the |xx〉 is useful to derive the electron-
phonon Hamiltonian of the singlet states as this state appears
in Eq. (16). By allowing free movement of atoms in the
geometry optimization procedure, the |xx〉 state spontaneously
reconstructs to C1h symmetry with EJT Jahn-Teller energy
of 316 meV and an effective phonon mode h̄ωE = 66 meV,
where the latter is the solution of the quasiharmonic oscillator
in the APES of |xx〉. This |xx〉 state does not contain the
strong electron-electron correlation, e.g., the electronic gap
�e ≈ � = 1.19 eV between the 1E and 1A1 states. It can be
easily shown by perturbation theory (see Appendix A) that
EJT will be damped by �e in the 1E state [cf. Figs. 2(a) and
2(b)]. The exact results come from solving the full electron-
phonon Hamiltonian in Eq. (16). That requires one to identify
parameter C2 which is associated with the contribution of the
1E′ state in the 1

Ē state.
We estimate parameter C2 from the character of the Kohn-

Sham wave functions of |xx〉 in the C1h APES global min-
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FIG. 2. (a) Jahn-Teller nature of the |1A1〉 ⊕ |1E〉 states as can be calculated by means of Kohn-Sham DFT, which corresponds to �e = 0 eV.
The resulting Jahn-Teller energy EJT = 316 meV. (b) After �e ≈ 1.13 eV is switched on, the resulting Jahn-Teller energy is EPJT ≈ 30 meV
according to the solution of Eq. (17) that results in � = 1.19 eV ZPL energy. (c) The vibronic levels of |1Ẽ〉 and |1Ã1〉. The selection rules for
the photoluminescence spectrum are indicated. Here the ZPL energy of 1.19 eV between |1Ẽ〉 and |1Ã1〉 is not scaled for the sake of clarity. (d)
Experimental photoluminescence spectrum of the singlets at low (black solid line) and room (dotted black line) temperatures compared to the
simulated spectrum from the ab initio solution (red curve). We note that the experimental spectra show a substantial and minor background at
room and cryogenic temperature, respectively. The simulation curve does not include background signal. The ZPL energy is now set to zero in
order to easily read out the position of vibration features in the spectrum. We used 2, 5, and 10 meV Gaussian smearing for the linewidth of
the ZPL, first, and second vibronic emissions, respectively, where the width of the ZPL and vibration bands are read out from the experimental
spectrum recorded at cryogenic temperature.

imum. Although we calculated |xx〉 by non-spin-polarized
DFT, the symmetry distortion may result in the contribution of
the a Kohn-Sham orbital in the two-particle wave functions.
By labeling the Kohn-Sham orbital in the distorted geometry
by ξ , and the contribution of ex and a orbitals by p and s,
respectively, one arrives at

|ξξ 〉 = [p|ex〉 + s|a〉][p|ex〉 + s|a〉]
= p2|exex〉 +

√
2ps

|aex〉 + |ea〉√
2︸ ︷︷ ︸

|1E′
x〉

+ s2 |aa〉︸︷︷︸
|1A′

1〉
, (20)

where (1 − C2) = 2p2s2 can be read out. By using projector
operators such as s = 〈ξ |a〉, we find that the contribution of
1A′

1 is minor and can be neglected; however, (1 − C2) = 0.10
is significant and explains the �⊥ ISC processes (see Sec. III B).
We note that our DFT results are in good agreement with the
results in a very recently published multiconfigurational DFT
approach (see Supplemental Information in Ref. [45]) that
yields (1 − C2) = 0.08 . . . 0.13 depending on the distortion
from the C3v ground-state geometry.

This correlation effect also brings a DJT effect to the
electron-phonon Hamiltonian. Thus, the calculated APES of
|xx〉 contains both PJT and DJT effects that should be sepa-
rated. This is established in Eq. (16) where the corresponding
Jahn-Teller energy can be approximated by the sum of linear
Jahn-Teller interaction terms as follows:

EJT = [C22F + (1 − C2)F ]2

2h̄ωE

. (21)

By using the previously determined EJT, C2, and h̄ωE from
DFT APES calculations of |xx〉, we obtain F = 102 meV.
Thus, we have all the parameters but �e to build up the full
electron-phonon Hamiltonian of the singlet states.

The measured ZPL energy between the singlet states is
1.19 eV, which is the energy difference between the vibronic
ground states of the singlets. We fit the value of �e to

obtain the experimental ZPL energy after diagonalizing the
full electron-phonon Hamiltonian which resulted in �e =
1129.4 meV. The vibronic levels are depicted in Fig. 2(c),
where the corresponding coefficients of the vibronic states are
listed in Table I in Appendix B. One can see interesting features
in the calculated vibronic spectra: (i) the vibronic levels of |1Ẽ〉
are very far from the solution of a quasiharmonic oscillator and
show a very complex feature; (ii) the vibronic levels of |1Ã1〉 are
equidistant; however, the PJT effect will increase the effective
phonon mode (h̄ωeff) of 66 to 91.8 meV.

It is important to highlight the complex interplay between
the PJT and DJT effects in the final vibronic spectrum of |1Ẽ〉.
Although the DJT effect is damped by the (1 − C2)2 factor,
it still changes the spectrum at ≈ 45 meV, and results in two
split E levels that would not be there otherwise. In addition,
it changes the character of these vibronic wave functions so
that it increases the optical transition dipole moments with the
ground-state vibronic state of |1Ã1〉. Our results demonstrate
that the electron-electron correlation effect combined with
electron-phonon couplings of different nature and involving
three electronic states can only fully describe the electron-
phonon system of the singlet states in the NV center. We
will show that this complex nature can only account for the
measured optical spectra and ISC rates.

B. Vibronic sideband of the 1.19 eV photoluminescence and
absorption spectrum

We discuss now the PL and absorption spectra of the
singlets. Several features of these spectra can be understood
by our vibronic wave functions that verify our method in the
calculation of the ISC rates. The relative optical transition
dipole strength between the vibronic

1
Ẽ and

1
Ã1 ground states

is derived in Appendix C.
We first discuss the luminescence spectrum at low temper-

atures, which is a radiative decay between the
1
Ã1 ground state
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and the vibronic nth states of
1
Ẽx [see Eq. (C6)], i.e.,

I (
1
Ã1 → 1

Ẽ
(n)

) = |〈1
Ã1|d̂x |1Ẽ(n)〉|2. (22)

We found from direct calculation of the intensities in Eq. (22)
that the optical transition to the first vibronic A1 state of

1
Ẽ

state is not allowed. However, there is a significant optical
transition dipole toward the split E vibronic states around
45 meV. After switching off the small DJT effect in the
electron-phonon Hamiltonian, only a single E mode appears
with a smaller optical transition dipole moment. This clearly
demonstrates that the small DJT effect does play an important
role in understanding the optical features of the singlet states.
The simulated PL spectrum from ab initio wave functions is
shown in Fig. 2(d), which can be directly compared to the
low-temperature experimental PL spectrum [17]. Clearly, the
broad feature with the maximum intensity at ≈ 43 meV can be
reproduced (red curve). We find that the broad feature consists
of two vibronic excited levels [see red text in Fig. 2(c)]. The
experimental intensity and the shape of this broad feature
can be well reproduced by invoking our electron-phonon
Hamiltonian (red curve). Our theory does not account for the
features at 133 and 221 meV. These features seem to disappear
at the room-temperature PL spectrum, and thus we conclude
that they may not belong to the NV center. Our theory is further
supported by a uniaxial stress experiment on the PL spectrum
which showed the existence of a forbidden state at ≈ 14 meV
[25]. This can be naturally explained by our calculated A1

vibronic excited state [see green text in Fig. 2(c)]. This A1 state
will play an important role in the temperature dependence of
the ISC rate where the ≈ 16 meV phonon mode was deduced
from the temperature-dependent ISC rate measurements in
nonstressed diamond samples [12] that should be identical with
the optically forbidden vibronic mode.

Now we turn to the absorption spectrum which is very
different from the PL spectrum [cf. Figs. 2(d) and 3(b)]. We
can explain this feature by the presence of simultaneous PJT
and DJT effects. The PJT and the DJT effects separately
create an axial symmetric APES about the symmetry axis
of the defect; however, the DJT will create a barrier energy
for the free rotation about the symmetry axis in the PJT
APES. This can be readily observed by comparing Eqs. (11)
and (15) corresponding to PJT and DJT effects, respectively,
which differently combine the wave functions upon the same
distortion. In the absorption process, we assume that the photon
absorption is a faster process than the quantum mechanical
tunneling between the global minima of APES. This can be
described as the Y axis is frozen in Fig. 2(b) which leads
to the APES in Fig. 3(a). The ground-state vibronic wave
function becomes localized in one of the APES valleys at
a distance of about 1.3 from the C3v-symmetry position in
the unit of the reduced coordinate of the harmonic oscillator.
For the |1Ã1〉 excited state, the DFT APES predicted h̄ωE =
66.1 meV; however, the solution of the full electron-phonon
Hamiltonian revealed that the PJT effect increases this energy
to 91.8 meV. Therefore, we also created the corresponding
harmonic APES [see Fig. 3(a)] and employed the Huang-Rhys
theory, where R = 1.3 results in an S ≈ 0.84 Huang-Rhys
factor. This 91.8 meV is the separation energy of vibronic
features in Fig. 3(a).

FIG. 3. (a) Calculated APES of singlet states of the NV center
including the pseudo- and dynamic Jahn-Teller effects simultaneously
but with Y = 0 constraint. Zero value at the configuration coordinates
corresponds to C3v symmetry. The configuration coordinates and
distances are given in the unit of the reduced coordinate of the
harmonic oscillator. The localization of the wave functions is depicted.
We note that the potential energy is not axial symmetric, as explained
in the text. (b) Low-temperature experimental absorption spectrum
(black solid curve) and the deduced spectral function (black dotted
curve) from Ref. [18] are compared with the calculated absorption
spectra (solid blue and red curves) and spectral functions (dotted blue
and red curves) using the Huang-Rhys theory based on the APES of
singlet states. We applied 1.5 meV Gaussian smearing on the ZPL
and 7.5 meV Gaussian smearing on the vibronic sideband.

Finally, the absorption spectrum is produced [Fig. 3(b)]
with the h̄ωE = 66.1 meV (blue curve) and also with h̄ωeff =
91.8 meV (red curve). We shifted the one-phonon spec-
tral function (dotted red and blue curves) by h̄ωeff -h̄ωE =
25.7 meV, then generated the HR spectrum exactly the same
way that we used for the nonshifted blue curve, in order to
take into account the increase in the effective frequency caused
by PJT. We emphasize that the 66.1 and 91.8 meV phonon
frequencies, respectively, create high peaks at 55 and 81 meV
in the absorption spectrum near ZPL. The latter is much closer
to the experimental [18] peak at 71 meV [see Fig. 3(b)]. It
can be concluded that the electron-phonon Hamiltonian-based
effective phonon frequency is slightly overestimated, but the
calculated broad features in the absorption phonon sideband
are in agreement with the observed ones. The corresponding
spectral functions [dotted curves in Fig. 3(b)], either deduced
from the experimental spectrum (black dotted line) or calcu-
lated (blue and red dotted lines), are also shown. We note
that the very sharp feature at high energy in the experimental
spectrum is associated with the quasilocal nitrogen-carbon
vibration modes [18]. Our theory does not account for that
feature that would require the exact calculation of APES of
the singlet states. On the other hand, the PJT-DJT theory (red
curve) brings the results close to the experimental values and
explains the upward shift in the first characteristic phonon peak
with respect to that of the triplets (≈ 64 meV). We note here
that the first peak positions (55 and 71 meV) in Fig. 3(b) are
smaller than the effective (h̄ωE and h̄ωeff ) frequencies since
one-phonon spectral functions have significant strength even
at 160 meV because the spectral functions are asymmetric
towards the higher phonon energies.

We conclude from these results that the combination of PJT
and DJT effects accounts for the observed asymmetry in the
line shape of the emission and absorption spectrum. In the PL
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process, the selection rules are dictated by the dynamic motion
of ions combined with the electron wave function which results
in an optically forbidden transition that becomes visible under
uniaxial stress. On the other hand, this dark vibronic state of the
shelving singlet can play an important role in the ISC process.
In the absorption process, the dynamics of ions is frozen, and
thus it shows in the optical spectrum, and optical transition to
all of the vibronic states of the upper singlet state is allowed.
The dynamics of ions can be slower than the absorption of the
photons because of the small but non-negligible DJT effect
which produces an energy barrier for the motion of ions. This
leads to the large asymmetry in the corresponding phonon
sidebands. Furthermore, PJT explains the enhanced effective
phonon energy in the absorption spectrum of the singlets with
respect to that in the optical spectrum of the triplets. These
results verify our theory on the singlets and serve as a good
base to study the ISC process between the shelving singlet
state and the triplet ground state.

C. Theory and ab initio results of the ISC process toward the
ground state

We determine the ISC rates from |1Ẽ〉 to |3A2〉 based on the
vibronic states calculated from DFT wave functions and po-
tentials. The ISC process is a spin-orbit-driven scattering of the
electron that is mediated by phonons for energy conversation,
as the expected energy difference between

1
Ẽ to 3A2 levels is

several orders of magnitude larger than the spin-orbit energy.
In other words, the electron is scattered to the vibration levels
(〈...|) of the 3A2 ground state. As we discussed previously,
the emission or absorption of A1 phonons is a minor effect
in the process, and thus we rely on the contribution of the E

phonons that are responsible for the PJT and DJT effects. The
ISC rate can be calculated using the Fermi golden rule and
assuming the strength of spin-orbit coupling does not change
significantly upon the motion of ions in the process. This theory
was developed for the ISC process between 3E and 1A1 states in
the upper branch by Goldman and co-workers [19,20] that we
developed further to take into account the vibronic nature of
the 3E state, i.e.,

3
Ẽ caused by the DJT effect [21]. By applying

this theory to the �z ISC rate between |1Ẽ〉 and the vibration
state of 3A2, we arrive at

�z = 2πC2

h̄

∑
|...〉

∣∣〈...| ⊗ 〈3A0
2

∣∣Ŵ |1Ẽ〉∣∣2
δ(� − E(|...〉))

= 2πC2

h̄

∞∑
i

4λ2
zd

2
i |〈...|χi (E±)〉|2δ(� − ni h̄ωE )︸ ︷︷ ︸

≈ S
(ni )
E (�)

≈ 8πλ2
zC

2

h̄

∞∑
i

d2
i S

(ni )
E (�) = 8πλ2

zC
2

h̄
FE (�), (23)

where the summation over all vibration wave functions of 3A2

collapses to the number of |χi (E±)〉 vibration modes in the
phonon overlap integral. Here, the di coefficient is responsible
for the contribution of the electronic 1A1 state in |1Ẽ〉 that
is connected to 3A0

2 by λz (see Sec. III B). We used λz =
15.78 GHz, as discussed in our previous study [21]. Now the

energy conservation law is � = ni × h̄ωE for some ni (ni is the
phonon index of the ith |χi (E±)〉 vibronic function). Here, SE

is the phonon overlap spectral function and FE is the modulated
phonon overlap function caused by the PJT effect. � is the ZPL
energy between |1Ẽ〉 and 3A2 [see Fig. 1(c)]. So far we have
used effective phonon energies with discrete quantum levels,
but this would often lead to a zero overlap in FE . In reality,
the diamond phonons interact with the quasilocal vibration
modes found in PJT and DJT effects that can be described as
a smearing of the energy spectrum of the quasilocal vibration
modes. In order to incorporate this effect, we autoconvolute
the electron-phonon modes ni times by defining the following
recursive formula:

S
(n)
E (x) = (

S
(n−1)
E ∗ SE

)
(x), S

(0)
E (x) = δ(x), (24)

where ∗ labels the convolution, and δ(x) is the Dirac delta
function. Similar considerations have been applied recently
(see the Supplemental Material in Ref. [18]).

Besides �z ISC processes, the �± and �∓ ISC processes
can take place governed by λ⊥ because of the contribution of
1E′ in |1Ẽ〉. By applying the Fermi golden rule again, we arrive
at

�± = 2π (1 − C2)

h̄

∑
|...〉

|〈...| ⊗ 〈3A±
2 |Ŵ |1Ẽ〉|2δ(� − E(|...〉))

= 2π (1 − C2)

h̄

∞∑
i

λ2
⊥c2

i |〈...|χi (A1)〉|2δ(� − ni h̄ωE )

≈ 2π (1 − C2)λ2
⊥

h̄

∞∑
i

c2
i S

(ni )
E (�)=2π (1 − C2)λ2

⊥
h̄

F ′
E (�)

(25)

and

�∓ = 2π (1 − C2)

h̄

∑
|...〉

|〈...| ⊗ 〈3A±
2 |Ŵ |1Ẽ〉|2δ(� − E(|...〉))

= 2π (1 − C2)

h̄

∞∑
i

λ2
⊥f 2

i |〈...|χi (E∓)〉|2δ(� − ni h̄ωE )

≈ 2π (1 − C2)λ2
⊥

h̄

∞∑
i

f 2
i S

(ni )
E (�)

= 2π (1 − C2)λ2
⊥

h̄
F ′′

E (�), (26)

where F ′
E and F ′′

E are the corresponding phonon overlap
spectral functions caused by the DJT effect.

We previously calculated all the parameters from ab initio
wave functions required to calculate the ISC rates that are
plotted in Fig. 4 and compared to the observed inverse lifetime
of the singlet [12,22]. We find that the energy gap between the
shelving singlet state and the triplet ground state is ≈ 0.4 eV.
This is very reasonable as the sum of the previously deduced
� (Refs. [19,21]), the observed � (Ref. [17]), and our deduced
� approximately equals the ZPL energy between the triplets
[cf. Fig. 1(c)]. With the present choice of the λ⊥ = 1.2 λz,
the �z ISC rate (blue curve) is about 6× larger than the
�⊥ = �± + �∓ rate (green curve) at that energy gap that
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FIG. 4. Calculated low-temperature ISC rates [�z, �±, �∓ from
Eqs. (23)–(26)] as a function of the energy gap (�) between the
shelving state singlet state and the triplet ground state. Here we
applied λ⊥ = 1.2λz by following Ref. [19]. Two experimental data
about the lifetime of the singlet state (TE) are applied from Ref. [22]
with T −1

E ≈ 2.16 MHz (yellow horizontal line) and Ref. [12] with
T −1

E ≈ 2.70 MHz (purple horizontal line). The crossing point between
the simulated inverse lifetime (black curve) and the experimental ones
is depicted by a circle that results in � = 402 and � = 386 meV,
respectively.

would further strengthen the spin-polarization process besides
the strictly spin-selective process in the upper branch. On
the other hand, Robledo and co-workers deduced a smaller
�z/�⊥ ≈ 1.1 . . . 2 from experimental data on two single NV
centers at room temperature [12] where the common value
was 1.20 by taking the uncertainty in the measurements into
account. By using the low-temperature simulation data, we
varied the λz/λ⊥ and plotted �z/�⊥ in Fig. 5 to analyze this
issue, as there is uncertainty in the value of λ⊥. We conclude
that λ⊥/λz ≈ 2 is required to obtain the experimentally de-
duced ratio between the ISC rates. Since the experimental
values for the ratio between the ISC rates scattered about
100% in the two individual NV centers, we conclude that the
accurate ratio of ISC rates should be further investigated in the

FIG. 5. �z/�⊥ is plotted as a function of λ⊥/λz, where λz =
15.78 GHz is our accurate DFT value. The λ⊥ = 56.31 GHz value
approximated from DFT wave functions is an overestimation. λ⊥ =
39.76 GHz yields �z/�⊥ = 1.2.

FIG. 6. The calculated lifetime of the singlet shelving state is
plotted as a function of the temperature with the observed lifetimes for
two single NV centers (dot and triangle data points with uncertainties)
taken from Ref. [12].

experiments, and thus we do not rely on these experimentally
deduced data. Indeed, a very recent measurement parallel to
our study [47] found �z/�⊥ = 4 ± 0.5, which agrees well with
our conclusion. Thus, we used the λ⊥ = 1.2λz in the study of
the temperature dependence of the ISC rates that we plot in
Fig. 6 (red curve) and compare to previous experimental data
taken on two single NV centers. Here we used the calculated
vibronic states of the |1Ẽ〉 with the Boltzmann occupation of
vibronic levels at the given temperature, in order to compute
ISC rates as defined in Eqs. (23)–(26). We found a very good
agreement with the experimental data [12] as the calculated
lifetime is reduced from 370 ns at cryogenic temperatures
down to 171 ns at room temperature to be compared to
371 ± 6 and 165 ± 10 ns, respectively. Our calculations reveal
that the vibronic state associated with the optically forbidden
phonon feature at ≈ 14 meV in the PL spectrum plays a
key role in the temperature dependence of the ISC rates.
The calculated �z/�⊥ is only reduced by ∼ 5% going from
cryogenic temperature to room temperature in our simulations,
which means that the spin-polarization efficiency per single
optical cycle does not degrade significantly as a function of
temperature. These results demonstrate that our theory can
account for the intricate details of the ISC processes in the
NV center and reproduce the basic experimental data.

VI. SUMMARY AND CONCLUSIONS

In this work, we developed a theory of the nature of the
singlet states including electron-electron correlation coupled
with phonons. We identified the strong electron-phonon cou-
pling between the singlet states that can be described as a
combination of the pseudo-Jahn-Teller effect and damped
dynamic Jahn-Teller effect. We extended the theory of ISC
rates of the NV center to account for this complex nature of
the singlet shelving state that is responsible for the ISC process
toward the ground state. Our theory can explain several features
in the optical spectra of singlets. In particular, the presence
of an optically forbidden state in unstressed diamond and the
features in the phonon sideband of the PL spectrum were well
reproduced, which are based on the vibronic nature of the
singlet shelving state. The calculated ISC rates and the deduced
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energy gap between the shelving singlet-state level and the
triplet ground-state level are consistent with the previous
experimental data. The calculated temperature dependence
of the lifetime of the singlet shelving state is in very good
agreement with the experimental data. Our results complete the
theoretical description of the entire optical spin-polarization
loop of the NV center.

Our results may have an impact in the field, as the NV center
is a template for similar defects that act as solid-state qubits.
The most obvious example is the neutral divacancy in silicon
carbide [48,49] for which the first step for understanding the
underlying mechanisms has been recently taken [50]. Our ab
initio toolkit can be extended to other defect systems, including
point defects in two-dimensional (2D) materials such as boron
nitride, transition-metal dichalcogenides, and dioxides that
have attracted great attention. Computing the ISC rates of these
defects can contribute to understand their optical properties and
optimize their quantum bit operation.
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APPENDIX A: PSEUDO-JAHN-TELLER EFFECT FROM
PERTURBATION THEORY

We derive the PJT effect between 1E and 1A1 from pertur-
bation theory that provides an insight about the strength of
the interaction where we concentrate on the vibronic ground
state of the resulting |1Ẽ〉. The vibronic wave function from
1A1 coupled to the 1E should transform as E, and thus the
E phonon state should be occupied in the 1A1 state with an

effective h̄ωE phonon energy. The energy difference between
the corresponding states will be �e + h̄ωE , where �e is the
energy gap between the electronic levels of 1E and 1A1. Now
by choosing the x representation from the double-degenerate
states and labeling the |ExEy〉 vibration wave function by the
occupation representation, we arrive at

|1Ẽx〉 = |1Ex〉 ⊗ |00〉 + χPJT

� + h̄ωE

|1A1〉 ⊗ a†
x |00〉, (A1)

with the χPJT is the coupling parameter and a
†
x is the creation

operator of the Ex phonon. In the Kohn-Sham DFT calcula-
tions, �e = 0 for the |xx〉 singlet state, resulting in relatively
large Jahn-Teller energy; however, it can be seen in Eq. (A1)
that the strength of the interaction is significantly damped by
�e ≈ 1.19 eV for the true singlet eigenstates. The coupling
parameter can be calculated as

χPJT = 〈1Ex | ⊗ 〈00|ĤPJT|1A1〉 ⊗ a†
x |00〉, (A2)

where ĤPJT is the PJT Hamiltonian from Eq. (10). By substi-
tuting the ĤPJT into Eq. (A2), we arrive at

χPJT = F̃√
2
〈1Ex |σz|1A1〉, (A3)

where we used 〈00|aya
†
y |00〉 = 0 and 〈00|axa

†
x |00〉 = 1 rela-

tions. As a next step, we use the two-particle expression of 1A1

in Eq. (8) to arrive at

χPJT = F̃√
2

[〈xx| − 〈yy|]σz[|xx〉 + |yy〉], (A4)

and finally solve it in the matrix representation as

χPJT = F̃√
2

1

2
(1 0 −1)

⎛⎝1
0

−1

⎞⎠⎛⎝1
0
1

⎞⎠ = F̃√
2

.

(A5)
This completes the perturbation theory on the PJT effect, which
gives insight about the nature of this interaction. We note that
we obtained our results by direct diagonalization of the full

TABLE I. Coefficients are defined in Eqs. (19a) and (19b) for the
1
Ẽ and

1
Ã1 vibronic states, respectively. The first column defines the

phonon index (n). The “repr. of phonons” column shows the irreducible representation of states that can be constructed from n phonons. The
A2 modes are negligible and labeled in the parentheses. We determined the coefficients up to a n = 10 phonon limit, but we present the rows
only up to n = 6 since all of the n > 6 coefficients are below 0.001. We refer to the summation of all the individual coefficients with n phonons
by

∑
ni=n. The ground vibronic state of

1
Ẽ that transforms as E is expressed by c2

1, d2
1 , and f 2

1 . The first excited vibronic wave function of
1
Ẽ

that transforms as A1 is expressed by c′2
1 and d ′2

1 .

1
Ẽ

1
Ã1

n
∑

ni=n c2
i

∑
ni=n d2

i

∑
ni=n f 2

i

∑
ni=n c′2

i

∑
ni=n d ′2

i repr. of phonons

0 c2
1 = 0.645 c′2

1 = 0.017 A1

1 d2
1 = 0.029 f 2

1 = 0.063 d ′2
1 = 0.618 E

2 c2
2 = 0.090 d2

2 = 0.004 f 2
2 = 0.089 c′2

2 = 0.045 d ′2
2 = 0.042 A1 + E

3 c2
3 = 0.011 d2

3 = 0.012 f 2
3 = 0.012 c′2

3 = 0.004 d ′2
3 = 0.194 A1 + (A2) + E

4 c2
4 = 0.015 d2

4 + d2
5 = 0.002 f 2

4 + f 2
5 = 0.016 c′2

4 = 0.016 d ′2
4 + d ′2

5 = 0.018 A1 + 2E

5 c2
5 = 0.002 d2

6 + d2
7 = 0.003 f 2

6 + f 2
7 = 0.002 c′2

5 = 0.002 d ′2
6 + d ′2

7 = 0.032 A1 + (A2) + 2E

6 c2
6 + c2

7 = 0.002 d2
8 + d2

9 = 0.000 f 2
8 + f 2

9 = 0.002 c′2
6 + c′2

7 = 0.003 d ′2
8 + d ′2

9 = 0.003 2A1 + (A2) + 2E

... ... ... ... ... ... ...
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electron-phonon Hamiltonian in the main part of the paper,
which goes beyond this perturbation theory.

APPENDIX B: VIBRONIC WAVE FUNCTIONS

Here we show the calculated coefficients of the
1
Ẽ ⊕ 1

Ã1

vibronic wave functions in Table I.

APPENDIX C: TRANSITION DIPOLE MOMENT
BETWEEN THE SINGLET STATES

Here we determine the optical transition strengths between
|1A1〉 and |1E〉. Following the derivation of Hepp et al. in Eq.
(13) in the Supplemental Material of Ref. [51], the transition
dipole moments between the single-particle orbitals in C3v

symmetry with polarization x are the following:

“x” |ex〉 |ey〉
〈ex |
〈ey |

[
d⊥

−d⊥

] “y” |ex〉 |ey〉
〈ex |
〈ey |

[ −d⊥
−d⊥

]
. (C1)

By using the relations in Eq. (C1), the dipole moment for the
two-particle wave functions can be expressed and applied to
get

P (1A1
“x”↔ 1Ex ) = ∣∣〈1A1|︸︷︷︸

A1

d̂ (1)
x + d̂ (2)

x︸ ︷︷ ︸
E

|1Ex〉︸︷︷︸
E

∣∣2 = 4d2
⊥, (C2)

where we introduced the transition optical dipole operator
(d̂ (1)

x and d̂ (2)
x ) acting on particles 1 and 2, respectively. Our

result is in agreement with a previous result [see Table A.4
in Ref. [16], where the 2Ob,x matrix element is the transition
dipole moment, and thus the transition strength is 4O2

b,x that
corresponds to our 4d2

⊥ in Eq. (C2)]. The three other possible
transitions are

P (1A1
“y”↔ 1Ey ) = 4d2

⊥ (C3)

and

P (1A1
“x”↔ 1Ey ) = P (1A1

“y”↔ 1Ex ) = 0. (C4)

The dipole operator can be expressed in a similar form as the
PJT Hamiltonian [see Eq. (10)],

d̂x = 2d⊥σ̂z, d̂y = 2d⊥σ̂x , (C5)

where the σ̂z,x matrices are defined in Eq. (11). As an example,
we explicitly write the intensity of the ZPL transition between
the vibronically coupled singlet states as follows:

IZPL = |〈1Ẽx |d̂x |1Ã1〉|2 = 4d2
⊥

( ∞∑
i=1

cic
′
i +

∞∑
i=1

did
′
i

)
, (C6)

where the corresponding expansion coefficients (ci, c
′
i , di, d

′
i)

are defined in Eqs. (19a) and (19b).
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