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The conventional first-principles theory for the thermal and thermodynamic properties of insulators is based on
the perturbative treatment of the anharmonicity of crystal bonds. While this theory has been a successful predictive
tool for strongly bonded solids such as diamond and silicon, here we show that it fails dramatically for strongly
anharmonic (weakly bonded) materials, and that the conventional quasiparticle picture breaks down at relatively
low temperatures. To address this failure, we present a unified first-principles theory of the thermodynamic and
thermal properties of insulators that captures multiple thermal properties within the same framework across
the full range of anharmonicity from strongly bonded to weakly bonded insulators. This theory features a new
phonon renormalization approach derived from many-body physics that creates well-defined quasiparticles even
at relatively high temperatures, and it accurately captures the effects of strongly anharmonic bonds on phonons and
thermal transport. Using a prototypical strongly anharmonic material, sodium chloride (NaCl), as an example,
we demonstrate that our new first-principles framework simultaneously captures the apparently contradictory
experimental observations of large thermal expansion and low thermal conductivity of NaCl on the one hand, and
anomalously weak temperature dependence of phonon modes on the other, while the conventional theory fails
in all three cases. We demonstrate that four-phonon scattering due to higher-order anharmonicity significantly
lowers the thermal conductivity of NaCl and is required for a proper comparison to experiment. Furthermore,
we show that our renormalization framework, along with four-phonon scattering, also successfully predicts the
measured phonon frequencies and thermal properties of a weakly anharmonic material, diamond, indicating
universal applicability for thermal properties of insulators. Our work gives new insights into the physics of heat
flow in solids, and presents a computationally efficient and rigorous framework that captures the thermal and
thermodynamic properties of both weakly and strongly bonded insulators simultaneously.
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I. INTRODUCTION

Phonons, which are collective vibrations of a crystal lattice,
are the primary energy carriers in semiconductors and insula-
tors. The anharmonicity of interatomic bonds in these solids
plays a fundamental role in several phonon-driven phenomena
such as structural phase transitions, thermal expansion and re-
sistance to heat flow. Understanding phonon thermodynamics
and thermal transport in materials with strongly anharmonic
bonds has been a topic of intense research interest among the
solid-state physics, materials science, chemistry and geology
communities due to the ubiquitous presence of such materials
and their technological importance. For example, materials
that are strongly anharmonic even at room temperature, like
heavy-metal chalcogenides and complex metallic hydrides,
make excellent thermal insulators, thermoelectric modules [1]
and energy storage devices [2], and anharmonic materials like
alkaline-earth oxides in the earth’s core and mantle operate
at high pressure and temperature [3], and drive the geological
changes occurring underneath the earth’s surface.

While it has been possible to experimentally measure
macroscale collective phonon properties such as thermal ex-
pansion and thermal conductivity of insulators for more than a
century, the recent advances in experimental techniques such
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as inelastic neutron scattering (INS) [4,5] and transient grating
spectroscopy [6] have now enabled accurate measurements of
microscopic phonon-specific properties such as phonon disper-
sions and mean free paths. The theoretical treatment of phonon
properties, both for predicting new thermal phenomena and
for understanding novel observations of the aforementioned
experiments, has evolved from simple models [7,8] to more
sophisticated first-principles quantum-mechanical treatments
of phonons and thermal properties in solids over the past few
decades [9–15]. These conventional first-principles method-
ologies, which are built on the lowest-order perturbative treat-
ment of the bond anharmonicity and on the Peierls-Boltzmann
equation (PBE) treatment of quasiparticle transport described
below, have worked well in capturing the phonon dispersions,
heat capacity, thermal expansion, and thermal conductivity of
weakly anharmonic systems.

However, in the case of strongly anharmonic materials
such as alkali halides and heavy-metal chalcogenides, the
conventional lowest-order perturbative treatment of the bond
anharmonicity can be insufficient [16–25]. Furthermore, the
PBE theory of phonon transport relies on the presence of
well-defined quasiparticles, whose mutual collision frequen-
cies (�) must be significantly smaller than their vibrational
frequencies (ω), i.e., � � ω [25,26]. This condition could
be violated in strongly anharmonic materials. Allen [25]
estimated that it is safe to use the conventional quasiparticle
theory if the thermal conductivity (k) is larger than kmin around
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5�D/300 W m−1K−1, where �D is the Debye temperature
of the material. While for most weakly anharmonic materials
like silicon and diamond this condition is comfortably satisfied
well beyond room temperature, for many strongly anharmonic
materials, the experimentally measured k is close to, or even
lower than, kmin even at room temperature, calling into question
the validity of the conventional PBE treatment of phonon
transport.

In this work, we demonstrate that, in fact, the conventional
theory fails dramatically in describing the thermal properties
of highly anharmonic materials. As an example crystal, we
examine sodium chloride (NaCl), which is a strongly anhar-
monic compound with weak ionic bonds and is representative
of a wide class of similar strongly anharmonic materials. We
show that the conventional first-principles theory significantly
overpredicts bond anharmonicity, and as a result gives phonon
frequencies, thermal expansion, and thermal conductivity that
are in poor agreement with measured data. It also becomes
inapplicable at relatively low temperature due to the complete
breakdown of the quasiparticle picture.

To address these failures, we have developed a unified
first-principles approach using many-body physics to describe
the thermal properties of insulating crystals within the same
theoretical framework. The theory is applicable across the full
range of bonding anharmonicity spanning low to high tem-
peratures, and weakly-bonded to strongly bonded materials.
A central feature of this theory is a new ab initio phonon
renormalization scheme based on many-body perturbation
theory, from which well-defined quasiparticles emerge over the
entire temperature range considered in this work. Furthermore,
we show that higher-order four-phonon interactions, beyond
the conventional lowest-order three-phonon processes, are
required to simultaneously capture both the magnitudes and
the temperature dependence of the experimentally measured
thermal conductivity in NaCl. The new approach demon-
strates good agreement with experiments for phonon disper-
sions, thermal conductivity, and thermal expansion of NaCl
simultaneously, which rigorously confirms the validity of the
quasiparticle theory for the renormalized phonons. Finally, we
show that our renormalization framework, along with four-
phonon scattering, also successfully predicts the measured
phonon properties of a weakly anharmonic material, diamond,
indicating universal applicability for thermal properties of
insulators. The first-principles approach developed here should
have wide applicability to several classes of highly anharmonic
materials, where the conventional quasiparticle theory is likely
to fail.

II. PHONONS, THERMAL EXPANSION, AND THERMAL
CONDUCTIVITY: CONVENTIONAL THEORY

We begin our analysis by briefly describing the conventional
first-principles procedure to calculate phonon and thermal
properties of semiconductors and insulators. Here we use the
word “conventional” to describe widely used approaches in
the literature, which are based on the lowest order perturbative
treatment of the bond anharmonicity, without considering any
higher-order effects, i.e., they do not include phonon renormal-
ization or higher-order phonon-phonon scattering. Phonons,
their temperature dependence, and their mutual interaction are

described through the interatomic potential, �, which can be
separated as � = �0 + �H + �A, where �0 is the energy of
the lattice atoms in their equilibrium positions, and �H and �A

are the harmonic (second-order) and anharmonic (third-order
and beyond) energies for the displacement of atoms from their
equilibrium positions, respectively. �A can be expressed in
a perturbative expansion in successively higher-orders of the
atomic displacement: �A = �3 + �4 + · · · . In a similar way,
the Helmholtz free energy, from which the lattice parameters,
{ai}, are determined, can be separated as F = �0 + FH + FA,
where FH and FA give the harmonic and anharmonic parts,
and FA = F3 + F4 + · · · is also expressed as perturbative
expansion. The procedure to calculate the harmonic (�H ) and
anharmonic (�A) potential energies from first principles, and
explicit expressions for the harmonic (FH ) and anharmonic
(FA) free energies are given in Appendices A and B, respec-
tively.

A. Phonons

The conventional first-principles approach to calculate
phonon modes is accomplished within the harmonic approx-
imation, where � = �0 + �H . Then, �0 alone is minimized
with respect to the lattice parameters for the crystal being
examined, within the framework of density functional theory
(DFT). Second-order interatomic force constants (IFCs) are
calculated and used to construct the dynamical matrix, from
which phonon modes are calculated (see Appendix A). At
this level, there is no thermal expansion, i.e., {∂ai/∂T } = 0,
since �0 does not depend on T . Furthermore, the anharmonic
contribution (�A) to the interatomic potential is ignored
for the calculation of phonon frequencies and eigenvectors.
Henceforth, we call these phonons, the bare phonons.

B. Thermal expansion

In the conventional theory, thermal expansion is typically
included within the framework of the quasiharmonic approx-
imation (QHA) [27]. In the QHA, F is approximated as
FQHA({ai}, T ) ≈ �0({ai}) + FH (ω({ai}), T ), where ω({ai})
are the phonon frequencies calculated from DFT at each of
the lattice parameters, {ai}. Henceforth, we call these phonons
the quasiharmonic (QH) phonons. The lattice parameters are
now functions of T because phonon frequencies are taken to be
functions of the {ai}. Thermal expansion of the lattice, {ai (T )},
is determined by minimizing FQHA at each temperature.

C. Lattice thermal conductivity

Within the conventional theory, the lattice thermal conduc-
tivity is calculated by solving the linearized Peierls-Boltzmann
equation (PBE) for the nonequilibrium distribution function
(nλ) established from an assumed small temperature gradient,
∇T , across a sample:

vλ · ∇T
∂n0

λ

∂T
= ∂nλ

∂t

∣∣∣∣
collisions

. (1)

Here, n0
λ = 1/(eh̄ωλ/(kBT ) − 1) is the Bose distribution

function for phonon mode, λ, with ωλ and vλ being the
frequency and group velocity in that mode, respectively. The
intrinsic thermal resistance is introduced in the collision term
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FIG. 1. (a) Calculated quasiharmonic phonon dispersions compared with measured data from Raunio et al. [32] at 80 K (blue) and 300 K
(red). The circled region shows the transverse optic (TO) branch near �. (b) The rate of thermal expansion calculated in the QHA (dashed black
curve) compared with measured data [33–36]. (c) Three-phonon and 3+4-phonon limited thermal conductivity as a function of temperature
calculated using quasiharmonic phonons compared with measured data from Hakansson et al. [37] (extrapolated from low pressure values),
McCarthy et al. [38] and Yukutake et al. [39].

from bare phonons interacting through the lowest-order term
in �A, i.e., �3, which causes scattering events involving
three phonons [28,29]. Here, the bare phonons and �3 are
calculated at the lattice constant that minimized �0, and thus
thermal expansion is ignored. Temperature enters only in
describing phonon populations and three-phonon scattering
rates. A more consistent approach, including thermal expan-
sion effects, would be to solve the PBE using QH phonons
and �3 obtained within the QHA, although this is typically
not done. Writing the nonequilibrium distribution function as
nλ = n0

λ + n0
λ(n0

λ + 1)Fλ · (−∇T ) gives an equation for the
vector function Fλ [9–15,30,31]:

Fλ = F0
λ + τ

(3ph+iso)
λ

{∑
λ1λ2

[
W

(+)
λλ1λ2

(
Fλ2 − Fλ1

)

+ 1

2
W

(−)
λλ1λ2

(
Fλ2 + Fλ1

)] +
∑
λ1

W iso
λλ1

Fλ1

}
. (2)

In this equation, 1/τ
(3ph+iso)
λ = ∑

λ1λ2
[W (+)

λλ1λ2
+ 1

2W
(−)
λλ1λ2

]
+ ∑

λ1
W iso

λλ1
is the three-phonon scattering rate from mode λ,

W
(±)
λλ1λ2

are scattering probabilities involving the three phonon
modes, λ, λ1, and λ2, W iso

λλ1
are the phonon-isotope scattering

probabilities, and F0
λ = h̄ωλvλτ

(3ph+iso)
λ /kBT 2 with kB being

the Boltzmann constant. Full solution of the PBE properly
accounts for the difference between momentum-conserving
normal and resistive umklapp scattering processes [28,29].
Retaining only the first term in the PBE (just F0

λ) gives the
relaxation time approximation (RTA), which incorrectly treats
the normal processes as directly resistive [28,29]. Expressions
for these quantities are given in the Appendix B. Solution of
the PBE then gives the thermal conductivity tensor kαβ as

kαβ =
∑

λ

CλvλαFλβ, (3)

where α and β are Cartesian components and Cλ =
(1/V )kB (∂n0

λ/∂T ) is the volumetric heat capacity per mode.

III. FAILURE OF CONVENTIONAL THEORY
FOR SODIUM CHLORIDE

The conventional first-principles theory described in the
previous section has done remarkably well at accurately
describing phonon modes and thermal conductivities of dozens
of compounds with no adjustable parameters (see, for example,
Refs. [9–15]). To test the ability of the conventional theory to
capture the thermal properties of highly anharmonic materials,
we have applied it to sodium chloride (NaCl), a weakly bonded
ionic crystal in the class of alkali halides with large thermal
expansion and unusually low thermal conductivity, given its
relatively light atoms. We have calculated the phonon disper-
sions, thermal expansion and lattice thermal conductivity using
the conventional theory described in the previous section. For
consistency in obtaining all three quantities within the same
theory framework, we have used the QHA for all calculations,
rather than (i) calculating phonons and thermal conductivity at
the bare lattice constants and (ii) using the QHA for thermal
expansion only. Furthermore, since our formulation determines
anharmonic IFCs from thermally relevant finite temperature
displacements (see Appendix A), these temperature-dependent
unrenormalized anharmonic IFCs (along with the temperature-
dependent unrenormalized harmonic IFCs from the quasihar-
monic approximation) are included in the thermal conductivity
calculations of the above-described conventional approach.
The results of our calculations using this conventional ap-
proach are shown in Fig. 1.

Figure 1(a) compares the calculated phonon dispersions
to the measured INS data for NaCl [32]. The calculated
optic phonon frequencies at 80 and 300 K lie well below
the corresponding measured values and show a softening
with increasing temperature, while the INS measurements
show almost no temperature dependence. This is particularly
evident for the transverse optic (TO) phonon branch. Also, as
shown in Fig. 1(b), the NaCl lattice parameters calculated in
the QHA increase much faster with temperature than do the
measured values above 300 K [33–36], giving much larger
thermal expansion than measured experimentally. In contrast,
the lattice thermal conductivity calculated in the QHA, limited
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by lowest order three-phonon and phonon-isotope scattering,
k

(QHA)
3 [dashed black curve in Fig. 1(c)], is in reasonably good

agreement with the measured data [37–39]. Similar calcula-
tions in the literature [40,41] also found reasonable agreement
with measured data when including only lowest order three-
phonon scattering. This is consistent with the good agreement
found between the measured thermal conductivities for many
materials and first-principles calculations that included only
three-phonon scattering around and below room temperature
[10–12,14,15].

The failure of the conventional theory to agree with exper-
iments on phonon dispersion, thermal expansion and thermal
conductivity of NaCl simultaneously, presents a problem. A
consistent theory of thermal properties should be able to
capture all of the above quantities within the same framework.
The failure of the conventional theory to do so means that
the QHA is inadequate for NaCl. This suggests that the

perturbative treatment of anharmonicity about the phonons
calculated in the QHA is breaking down, resulting in stronger
apparent anharmonicity than observed experimentally, mani-
fested by excessive phonon softening and too large thermal
expansion.

Although the thermal conductivity calculations within the
QHA including only three-phonon scattering agrees with the
measured data for NaCl, inclusion of higher-order phonon-
phonon scattering—that between four phonons, will necessar-
ily reduce the calculated thermal conductivity below the mea-
sured value. Since the perturbative treatment is breaking down
for NaCl due to the strong apparent anharmonicity described
earlier, inclusion of four-phonon scattering should significantly
worsen the agreement of the calculated thermal conductivity
[k(QHA)

3+4 ] with experiments. To test this proposition, we have
included four-phonon scattering in the solution of the PBE
[Eq. (2)], which transforms into

Fλ = F0
λ + τ

(tot)
λ

∑
λ1λ2

{[
W

(+)
λλ1λ2

(
Fλ2 − Fλ1

) + 1

2
W

(−)
λλ1λ2

(Fλ2 + Fλ1 )

]
+

∑
λ1

W iso
λλ1

Fλ1

+
∑

λ1λ2λ3

[
1

6
Y

(1)
λλ1λ2λ3

(
Fλ1 + Fλ2 + Fλ3

) + 1

2
Y

(2)
λλ1λ2λ3

(
Fλ2 + Fλ3 − Fλ1

) + 1

2
Y

(3)
λλ1λ2λ3

(
Fλ3 − Fλ2 − Fλ1

)]}
. (4)

Equation (4) is changed in two ways compared to
the three-phonon PBE of Eq. (2). First, the scattering
rates now include both three-phonon and four-phonon
scattering, along with phonon-isotope scattering:
1/τ

(tot)
λ = 1/τ

(3ph+iso)
λ + 1/τ

(4ph)
λ where 1/τ

(4ph)
λ =∑

λ1λ2λ3
[ 1

6Y
(1)
λλ1λ2λ3

+ 1
2Y

(2)
λλ1λ2λ3

+ 1
2Y

(3)
λλ1λ2λ3

], with Y
(1)
λλ1λ2λ3

,

Y
(2)
λλ1λ2λ3

and Y
(3)
λλ1λ2λ3

being scattering probabilities for the
different four-phonon processes, as described in Appendix B.
Second, the last term in Eq. (4) is new. It conveys the
distinction between normal and umklapp processes for
four-phonon scattering. Without it, four-phonon scattering
would be treated within the RTA, as has been done previously
[42]. Computation of the four-phonon scattering probabilities
and the iterative solution of Eq. (4) are challenging tasks which
require extremely large computation time and storage memory.
We have developed a number of computational efficiencies to
obtain the 3+4-phonon limited thermal conductivity by fully
solving Eq. (4), as summarized in Appendix D.

We calculated the lattice thermal conductivity of NaCl
including three-phonon scattering, four-phonon scattering, and
phonon-isotope scattering within the QHA, k

(QHA)
3+4 . The result

is shown by the solid black curve in Fig. 1(c). k
(QHA)
3+4 lies

well below the measured data [37–39] over the full range of
temperatures (100–400 K). For example, it is 20% below the
lowest value (extrapolated from low pressure measurements)
from Ref. [37] at 100 K and almost 60% below it at 400 K. We
also calculated the 3+4-phonon and phonon-isotope scattering
limited thermal conductivity from 100–600 K, using the lattice
constants and IFCs (harmonic and anharmonic) calculated at a
low temperature of 80 K, to mimic the conventional approach
without including any temperature dependence for the IFCs,
phonon frequencies or lattice constants. The predicted three-
phonon and 3+4-phonon limited thermal conductivities under

this approximation also agree poorly with experiments both in
magnitudes and temperature-dependent trends (see Sec. S2 in
Ref. [43]).

Thus the apparent success of the QHA with only three-
phonon interactions, in accurately matching the measured
lattice thermal conductivity of NaCl is in fact fortuitous, and the
conventional perturbative treatment of the anharmonic bonds
in NaCl fails to describe the measured phonon frequencies, the
thermal expansion, and the thermal conductivity.

We have traced these failures to the unusually strong
anharmonicity in the ionic bonds of NaCl, which invalidates
the perturbative anharmonic expansion for the quasiharmonic
(QH) phonons and even results in a breakdown of the quasipar-
ticle picture beyond 400 K, on which the PBE relies. In order
for quasiparticles to be well-defined, they must interact weakly,
i.e., their vibrational frequencies (ω) must be significantly
larger than the rates at which they scatter (�). This condition
can be expressed mathematically as � � ω [25,26]. Figure 2
shows �3+4/ω for the QH phonons of NaCl above 400 K,
where �3+4 are the scattering rates including three- and four-
phonon interactions. It is evident from Fig. 2 that in this
temperature range, �3+4 are so large that over almost the
whole frequency range, the condition � � ω is not satisfied
for the QH phonons of NaCl. The breakdown at only 40%
of the melting temperature of NaCl is surprising and is a
signature of the extreme anharmonicity, which invalidates its
perturbative treatment. Additionally, even though �3+4 � ω

is satisfied in the range of 100–300 K, the breakdown of the
quasiparticle picture at about 40% of the melting temperature,
along with the poor experimental agreement of the phonon
dispersion and 3+4-phonon limited thermal conductivity com-
puted using QH phonons, indicates that the QH phonons
overpredict phonon scattering in NaCl even between 100 and
300 K.
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IV. NOVEL PHONON RENORMALIZATION APPROACH

One of the approaches to overcome these problems is
to renormalize the QH phonons into new quasiparticles that
interact more weakly [16–25]. Previous efforts to obtain renor-
malized phonons have either fit effective second-order IFCs
(from which phonons are calculated) to forces calculated using
DFT [17–22] or include renormalization for phonon frequen-
cies, admitting polarization mixing with some approximations

[23,24]. In this work, we have developed a new approach
that explicitly renormalizes the second-order IFCs using a
statistical perturbation-operator renormalization technique and
many-body perturbation theory. Using this procedure, a new set
of renormalized second-order IFCs [�jk (Nν, Pπ )] are created
from the bare (unrenormalized) second-order [�jk (Nν, Pπ )]
and fourth-order [�jklm(Nν, Pπ,Qη,Rρ)] IFCs by solving
the following equation:

�jk (Nν, Pπ )=�jk (Nν, Pπ ) + h̄

4N0

∑
QR

∑
ηρ

∑
lm

∑
qs

�jklm(Nν, Pπ,Qη,Rρ)
Wl (η; qs)W ∗

m(ρ; qs)

�qs

√
MηMρ

eiq·(R(Q)−R(R))(2nqs + 1
)
,

(5)

where �qs and Wl (ν; qs) are the renormalized phonon fre-
quencies and eigenvectors respectively of the phonon mode
with wave vector q and polarization s; N, P, Q, and R

are the lattice sites; ν, π, ζ , and ρ are the basis atom
sites; N0 is the number of lattice sites in the supercell
(commensurate with the number of q points in the Brillouin
zone). The derivation of the renormalization equation (5)
and extension of the renormalization to the anharmonic IFCs
are detailed in Appendix C. Equation (5) shows that the
renormalized second-order IFCs [�jk (Nν, Pπ )] depend on
the renormalized phonon frequencies (�qs and, therefore, the
Bose factors nqs) and the renormalized phonon eigenvectors
[Wl (ν; qs)], which in turn depend back on the renormalized
second-order IFCs [�jk (Nν, Pπ )]. Therefore Eq. (5) has to
be solved self-consistently to obtain �jk (Nν, Pπ ). To solve
Eq. (5), the unrenormalized phonon frequencies (ωqs) and
eigenvectors [wl (ν; qs)] are used as initial guesses and the
renormalized second-order IFCs [�jk (Nν, Pπ )] are updated
at each iteration step.

FIG. 2. Ratio of 3+4-phonon scattering rates to phonon fre-
quency (�(3+4)/ω) calculated using quasiharmonic phonons at three
different temperatures. �(3+4)/ω approaches 1 above 400 K and even
exceeds it beyond ∼500 K, causing the quasiparticle description of
the quasiharmonic phonons to break down.

A critical advantage of this approach is that since we renor-
malize the second-order IFCs directly, the renormalization
seamlessly extends to the phonon frequencies, eigenvectors,
and group velocities. Furthermore, we can connect the changes
to the phonon dispersions due to renormalization explicitly
to one-phonon propagators, unlike some of the fitting ap-
proaches (see Sec. S4 in Ref. [43] for the relation between
our renormalization procedure and the one-phonon propagator
picture frequently used in many-body theory [24,44–47]). Our
approach is also able to capture the effects of zero-point
motion, LO-TO splitting and finite temperature effects on
the IFCs, which are particularly important for a polar, highly
anharmonic material with relatively light atoms, like NaCl.

To apply the renormalization technique for NaCl, we first
determine the unrenormalized IFCs on a two-dimensional grid
of lattice parameters and temperatures, as described earlier.
At each point on this grid, we perform the renormalization of
the second, third, and fourth-order IFCs. Next, we identify the
lattice parameter that minimizes the anharmonic free energy
including contributions out to fourth order (F = �0 + FH +
F3 + F4, where FH , F3, and F4 are defined in Appendix B)
computed using the renormalized IFCs at each temperature,
which also gives the thermal expansion directly. Inclusion of
F3 and F4 is particularly important at elevated temperatures to
accurately capture the thermal expansion, as shown in Sec. S1
in Ref. [43]. Finally, we compute the phonon dispersion, three-
and four-phonon scattering rates, and thermal conductivity
using the renormalized IFCs by solving the 3+4-phonon PBE
[Eq. (4)] as for the QHA calculation.

V. PHONONS, THERMAL EXPANSION, AND THERMAL
CONDUCTIVITY: RENORMALIZATION APPROACH

The computed phonon dispersions obtained using the renor-
malization method show excellent overall agreement with
the INS measurements [32] at both 80 K [Fig. 3(a)] and
300 K [Fig. 3(b)]. In particular, the renormalized dispersions
accurately capture the relative temperature independence of
the optic phonons, consistent with the measured data [32]. In
contrast, the QH phonon dispersions show significant softening
between 80 and 300 K.

As shown in Fig. 4(a), the experimental rate of thermal
expansion [33–36] is also well captured by the renormalized
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FIG. 3. Renormalized phonon dispersions at the fourth-order anharmonic free energy minimum lattice constants (solid curves), and phonon
dispersions at the quasiharmonic lattice constants (dashed curves) compared with measured data from Raunio et al. [32] at (a) 80 K and
(b) 300 K.

anharmonic lattice parameters (solid black curve). In contrast,
the lattice parameters calculated in the QHA (dashed curve)
significantly overpredict the rate of thermal expansion. We
note that the absolute values of the lattice parameters deter-
mined by the minimization of the QH and the renormalized
anharmonic free energies were 0.9% and 0.5% larger than
the room-temperature experimental value of 5.645 ± 0.005 Å
[33]. This is typical of underbonding obtained from generalized
gradient approximation-based PBEsol exchange correlation
functionals used for our DFT calculations. In order to compare
the rate of thermal expansion with the measured data, we
rigidly shifted both calculated curves in Fig. 4(a) to match
the experimental measurement only at 300 K. Interestingly,
although both thermal expansion curves are similar in the range
of 100 to 300 K, the respective phonon dispersions (Fig. 3)
show significantly different temperature-dependent behaviors.

We have confirmed that the renormalized phonons of NaCl
satisfy the necessary condition to describe phonon transport

using the PBE: �3+4 � ω. Figure 4(b) shows that �3+4 is
much less than ω for the renormalized phonons even at a
high temperature of 600 K, thereby enabling the Boltzmann
treatment for phonon transport and thermal conductivity cal-
culations over the entire temperature range considered in this
work. Comparing to Fig. 2 for the QH phonons, a significant
reduction in �3+4 is achieved through the renormalization
process that gives well-defined quasiparticles.

Using the renormalized phonons and corresponding third-
and fourth-order IFCs, we have calculated phonon-phonon
scattering rates and lattice thermal conductivity. Figure 4(c)
shows that the three-phonon limited thermal conductivity
calculated using renormalized phonons, kren

3 (red dashed
curve), is consistently larger than the measured data. The
renormalized phonons have higher frequencies and interact
more weakly than do the QH phonons. Including both three-
and four-phonon scattering, kren

3+4 (solid red curve) gives much
better agreement with both the magnitudes and temperature
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FIG. 4. (a) Rate of thermal expansion calculated in the QHA (dashed black curve) and by the phonon renormalization approach (solid
black curve) compared with measured data [33–36]. (b) Ratio of 3+4 phonon scattering rates to phonon frequency (�(3+4)/ω) calculated using
renormalized phonons at three different temperatures. The weakened scattering rates after phonon renormalization give a significant reduction to
�(3+4)/ω and produce well-defined quasiparticles. (c) Three-phonon and 3+4-phonon limited thermal conductivity as a function of temperature
calculated using the renormalization approach (solid red curve) compared with measured data from Hakansson et al. [37], McCarthy et al. [38],
and Yukutake et al. [39]. The corresponding curves (black) for the quasiharmonic phonons are included for comparison.
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FIG. 5. Evolution of (a) quasiharmonic and (b) renormalized phonon dispersions between 100 and 600 K. (c) Temperature-dependent
phonon frequencies of the TO mode at � and the LO modes at 2π/a(0.1, 0.1, 0.1), 2π/a(0.2, 0.2, 0.2), and 2π/a(0.3, 0.3, 0.3) points in the
Brillouin zone compared with INS [32,48] and infrared emission measurements [49]. The quasiharmonic phonons show significant temperature
driven softening while the renormalized phonon dispersions exhibit weak temperature dependence, consistent with the measured data [32,48,49].

dependence of the three different sets of experimental data
[37–39]. This highlights that even with phonon renormaliza-
tion, higher-order anharmonicity is required to capture the
thermal conductivity of this strongly anharmonic material. We
note that the slightly lower kren

3+4 compared to the data is in
part a consequence of the slightly larger lattice constant in our
calculations compared to the measured value. For example, at
300 K, performing the calculations of kren

3+4 at the measured
lattice constant increases the calculated value by 7%, thereby
improving the agreement with the measurements.

VI. CANCELLATION OF ERRORS

For comparison, Fig. 4(c) also includes the calculated k
QHA
3

and k
QHA
3+4 from Fig. 1(c). Note that by coincidence, k

QHA
3 is

seen to overlap almost exactly with kren
3+4. On the other hand,

the QH phonon dispersions (Fig. 3) and the rates of thermal
expansion [Fig. 4(a)] are significantly different between the
two calculations. The main reason for the agreement between
k

QHA
3 and kren

3+4 is a fortuitous cancellation of errors produced by
strongly temperature dependent softening of the QH phonons
and the neglect of four-phonon scattering processes in the QH
calculation. Figure 5 show the temperature dependence of (a)
QH and (b) renormalized phonons from 100 to 600 K. The
QH phonon modes soften significantly as the temperature is
increased. Most importantly, the TO phonon branch softens
by more than 1 THz between 100 and 600 K, resulting in
a substantial increase in the number of three-phonon scat-
tering processes involving TO phonons as the temperature
is increased, which gives stronger three-phonon scattering
rates, and therefore mimics the measured stronger temperature-
dependent thermal conductivity trend at higher temperatures
[37]. On the other hand, the renormalized phonon dispersions
show a weaker temperature dependence, which results in
weaker three-phonon scattering rates compared to the QHA
calculations from 100–600 K. Experimental measurements
are only recovered by including four-phonon scattering in the
renormalized phonon calculations.

The unusually weak temperature dependence of phonon
modes in NaCl has also been observed in INS [32,48]

and infrared emission measurements [49] for selected
longitudinal optic (LO) and TO modes. As shown in Fig. 5(c),
the calculated renormalized phonons are in very good agree-
ment with the measured weakly temperature-dependent TO
mode frequencies at the � point and with the measured LO
mode frequencies along the [111] direction from 100 to 600 K,
while the QH phonons show large softening and agree poorly
with the experimental measurements [32,48,49].

To test the robustness of our results for NaCl, we have
also performed the phonon renormalization and calculations
of thermal expansion and kren

3+4 for NaCl using a different
pseudopotential with the exchange correlation under the local
density approximation (LDA). We find similarly good agree-
ment between the magnitudes and temperature dependence
of the renormalized phonons with the corresponding mea-
sured values. The calculated thermal expansion rate compares
slightly worse to the measured data, while kren

3+4 is in slightly
better agreement with the data. We note, however, that the
optimized LDA lattice constant is 5.5% lower than the mea-
sured value (see Sec. S5 in Ref. [43] for the results of the LDA
calculations).

VII. TEST FOR UNIVERSALITY: THE CASE OF DIAMOND

To test the universal applicability of our new first-principles
approach, we performed the phonon renormalization, 3+4-
phonon scattering and thermal conductivity calculations for
diamond, a weakly anharmonic compound. We compared the
calculated phonon dispersions [Fig. 6(a)], thermal expansion
[Fig. 6(b)], and thermal conductivity [Fig. 6(c)] with measured
data and we find that (1) the calculated bare and renormalized
phonons are almost identical and give a very good match to
the measured data [52–55]. (2) The rate of thermal expansion
calculated using QH and renormalized phonons are nearly
identical for diamond and match well with the measurements
[51]. The absolute value of the lattice constant at room
temperature from our calculations is 3.5684 Å, which is within
0.1% of the experimental value [56]. The solid curve in
Fig. 6(b) was rigidly shifted to match the experimental value
only at 300 K, similar to NaCl. (3) The calculated thermal

085205-7



NAVANEETHA K. RAVICHANDRAN AND DAVID BROIDO PHYSICAL REVIEW B 98, 085205 (2018)

Γ X U|K Γ L W X
0

5

10

15

20

25

30

35

P
ho

no
n 

fre
qu

en
cy

 (T
H

z)

Quasi-harmonic
Renormalized
Expt. (Warren et al.)

200 300 400 600
Temperature (K)

1000

2000

3000

6000

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
/m

-K
)

Wei et al.
Berman et al.
Olson et al.
Onn et al.
3−phonon (1.1% C )
3+4−phonon (1.1% C )

Olson et al.
Onn et al.
3−phonon (0.07% C )
3+4−phonon (0.07% C )

200 300 400 600
Temperature (K)

1000

2000

3000

6000

Th
er

m
al

 c
on

du
ct

iv
ity

 (W
/m

-K
)

QH 3-phonon
QH 3+4-phonon
Renorm. 3-phonon
Renorm. 3+4-phonon

(a)

100 400 700 1000 1300 1600
Temperature (K)

3.565

3.570

3.575

3.580

3.585

3.590

La
tti

ce
 c

on
st

an
t (
Å)

Expt. (Slack et al.)
QH/Renorm.

(c)

(b)

(d)

FIG. 6. (a) Quasiharmonic (dashed curves) and renormalized phonon (solid curves) dispersions of diamond at 300 K compared with
experiments from Warren et al. [50]. (b) Rate of thermal expansion as a function of temperature for diamond compared with measured data
[51]. Both QH and renormalized phonons produce nearly identical thermal expansion rate. (c) Three-phonon (dashed curves) and 3+4-phonon
(solid curves) limited thermal conductivity of diamond calculated using renormalized phonons and fourth-order free energy minimized lattice
constant compared with experiments. The green curves are calculations for synthetic isotopically purified diamond with 0.07% C13 and the
black curves are for naturally occurring diamond (1.1% C13). The experiments are from Olson et al. [52] (green empty triangles: synthetic
isotopically purified diamond with 0.07% C13, orange filled triangles: naturally occurring diamond with 1.1% C13), Onn et al. [53] (green empty
circles: synthetic isotopically purified diamond with <0.05% C13, green filled circles: naturally occurring diamond with 1.1% C13), Wei et al.
[54] (blue filled squares: naturally occurring diamond with 1.1% C13), and Berman et al. [55] (red filled inverted triangles: naturally occurring
diamond with 1.1% C13). (d) Three-phonon (dashed curves) and 3+4-phonon (solid curves) limited thermal conductivity of diamond with
quasiharmonic (black) and renormalized (red) phonons.

conductivities accurately reproduce the measured data over a
wide temperature range, as found previously [11,42]. (4) The
differences between k

QHA
3 , k

QHA
3+4 , kren

3 , and kren
3+4 are small until

well above room temperature [Fig. 6(d)].
Since the number of four-phonon scattering channels

in diamond is much larger than that for three-phonon
scattering, the obtained null result is a strong confirma-
tion that the phonon renormalization approach and inclusion
of higher-order anharmonicity is being captured accurately
(see Sec. S6 in Ref. [43] for phonon dispersion and ther-
mal conductivity calculations for diamond beyond 600 K).
Thus our renormalization framework, along with four-phonon
scattering, is predictive for both weakly anharmonic (like
diamond) and strongly anharmonic (like NaCl) materials,
indicating universal applicability for thermal properties of
insulators.

VIII. CONCLUSIONS

In conclusion, we show that the conventional first-principles
theoretical approach to calculate the thermodynamic and ther-
mal transport properties for strongly anharmonic insulators
fails because the perturbative treatment of anharmonicity using
unrenormalized phonon modes is invalid. In such materials,
the quasiparticle picture breaks down due to strong interac-
tions between the unrenormalized phonons. In contrast, our
newly developed first-principles approach accurately describes
multiple thermal properties of both weakly anharmonic and
strongly anharmonic insulators within the same theoretical
framework. It features the following critical advantages. (1)
Phonon renormalization. The novel phonon renormalization
technique presented here, based on many-body perturbation
theory, creates new well-defined quasiparticles and accurately
describes the phonon and thermal transport properties of these
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materials. (2) Four-phonon scattering. For highly anharmonic
materials or materials at high enough temperature, inclusion
of higher-order phonon-phonon scattering in conjunction with
phonon renormalization can be essential to accurately describe
the phonon transport. (3) Anharmonic Helmholtz free energy.
Use of the quasiharmonic approximation for the Helmholtz
free energy is inadequate for highly anharmonic materials.
Inclusion of anharmonicity out to fourth order shows improved
agreement with measured thermal properties, particularly at
high temperatures. (4) Temperature-dependent inter-atomic
force constants. Temperature-dependent IFCs, calculated
using thermally relevant displacements of atoms in our ap-
proach, closely represent the potential energy manifold (�(T ))
spanned by the atoms of the lattice at elevated temperatures
(T ). Furthermore, the effects of zero-point motion and polar
LO-TO splitting effects on the displacement of atoms (and
therefore, on the IFCs) is properly accounted for, in our
approach. For highly anharmonic polar materials with light
atoms, these effects become important even around room
temperature.

Using the example of NaCl, a prototypical strongly an-
harmonic material with weak (ionic) bonds, we demonstrate
that our new first-principles approach successfully recovers the
experimentally observed thermal expansion, thermal conduc-
tivity, and weak temperature dependence of phonon modes
in NaCl simultaneously, which cannot be achieved using
the conventional theory. We demonstrate that four-phonon
scattering due to higher-order anharmonicity significantly
affects both the magnitude and temperature dependence of
the thermal conductivity of NaCl. Its inclusion is required
to properly connect to the measured data. Furthermore, by
computing the phonon and thermal properties of a weakly
anharmonic material, diamond, we demonstrate that our first-
principles framework is predictive for both weakly bonded and
strongly bonded materials without any ad hoc adjustments to
the formulation, indicating universal applicability for thermal
properties of insulators.

We expect the first-principles approach developed here to
have wide applicability to several classes of highly anharmonic
materials such as alkali halides, alkali, and rare-earth hydrides
and oxides, lead, bismuth, and antimony chalcogenides, tran-
sition metal compounds and materials at high temperatures,
in which the conventional theory of phonon properties and
thermal transport has failed to serve as a predictive tool
[4,16–22,24,25,57,58].
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APPENDIX A: INTERATOMIC FORCE CONSTANTS
FROM FIRST PRINCIPLES

To calculate the phonon and thermal properties described
in the main text, we begin by expanding the potential energy
as a sum of the equilibrium, harmonic, and anharmonic
contributions, given by

� = �0 + 1

2!

∑
NP

∑
νπ

∑
ij

�ij (Nν, Pπ )Ui (Nν)Uj (Pπ )

︸ ︷︷ ︸
�H

+ 1

3!

∑
NPQ

∑
νπζ

∑
ijk

�ijk (Nν, Pπ,Qζ )Ui (Nν)Uj (Pπ )Uk (Qζ )

︸ ︷︷ ︸
�3

+ 1

4!

∑
NPQR

∑
νπζρ

∑
ijkl

�ijkl (Nν, Pπ,Qζ,Rρ)Ui (Nν)Uj (Pπ )Uk (Qζ )Ul (Rρ)

︸ ︷︷ ︸
�4

+ · · · . (A1)

Here, �ij (Nν, Pπ ), �ijk (Nν, Pπ,Qζ ), and
�ijkl (Nν, Pπ,Qζ,Rρ) are the second-, third-, and
fourth-order interatomic force constants (IFCs), respectively,
�0 is the energy of the system in equilibrium; N, P, Q, R, . . .

are the lattice sites; ν, π, η, ρ, . . . are the labels for the
basis atoms; i, j, k, l, . . . are the Cartesian indices. For
this work, we truncate the Taylor series [Eq. (A1)] at �4.
In the conventional theory, the phonon frequencies and
eigenvectors are obtained by diagonalizing the Fourier
transform of second-order IFCs [�ij (Nν, Pπ )] after
scaling for the appropriate basis atom masses [59], and

the three-phonon scattering probabilities are obtained using
Fermi’s Golden Rule (FGR) using the third-order IFCs
[�ijk (Nν, Pπ,Qζ )]. For this work, we also calculate
fourth-order IFCs [�ijkl (Nν, Pπ,Qζ,Rρ)] to calculate
four-phonon scattering probabilities from FGR.

The second-order IFCs are obtained from density functional
perturbation theory (DFPT) using the QUANTUM ESPRESSO

package [60]. The GBRV ultrasoft pseudopotentials with
PBEsol exchange correlation functional [61] were used for
all calculations in this work, unless otherwise specified. For
NaCl, a kinetic energy cutoff of 45 Ry for wave functions,
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a kinetic energy cutoff of 200 Ry for charge density and
potential, and a 4×4×4 �-shifted electronic k grid were found
to provide total energy convergence of <3×10−4 Ry and total
stress convergence of <0.3 kbar per unit cell. For the DFPT
calculations, a 7×7×7 �-centered q grid provided converged
phonon frequencies and eigenvectors. Similarly for diamond, a
kinetic energy cutoff of 85 Ry for the wave functions, a kinetic
energy cutoff of 340 Ry for charge density and potential, and a
5×5×5 �-shifted electronic k grid were found to provide total
energy convergence of <2×10−5 Ry and total stress conver-
gence of <0.5 kbar per unit cell. For the DFPT calculations
to obtain unrenormalized second-order IFCs and harmonic
phonon properties, a 5×5×5 �-centered q grid for diamond
provided converged bare phonon frequencies and eigenvectors.

To calculate the anharmonic (third and fourth-order) IFCs,
we adopt a thermal stochastic snapshot technique based on
the method described in Ref. [62]. In this technique, a 5×5×5
supercell is thermally populated with displacements according
to the canonical ensemble. The temperature-dependent dis-
placement of an atom at the N th lattice site and the basis site
ν of the supercell is given by

Uj (Nν) = 1√
Mν

∑
qs

√
h̄(2nqs + 1)

ωqs

cos(2πζ(1,qs) )

×√− ln(1 − ζ(2,qs) )wj (qs, ν)eiq·R(N ), (A2)

where Mν is the mass of the atom, nqs is the Bose-Einstein
distribution function, ζ(1,qs) and ζ(2,qs) are random variables
providing mode-dependent “random kicks” to the total dis-
placement of the atom (Nν). The two random numbers are
constrained by ζ(1,qs) = ζ(1,−qs) and ζ(2,qs) = ζ(2,−qs), so that
the displacements Uj (Nν) in Eq. (A2) are guaranteed to be
real numbers. The displacements in Eq. (A2) maintain the
supercell at an average temperature T corresponding to the
Bose factors nqs under the canonical ensemble. Equation (A2)
includes full quantum statistics including the zero-point motion
(ZPM) of the atoms. Furthermore, in this work, we explicitly
include the effects of LO-TO splitting on the displacements
of atoms described in Eq. (A2), which is important for highly
polar materials like NaCl. The forces on atoms [Fj (Nν) =
−∂�/∂Uj (Nν)] due to the displacements Uj (Nν) were com-
puted using density functional theory (DFT) and the Hellman-
Feynman theorem using the QUANTUM ESPRESSO package.

For these force-displacement calculations, the kinetic energy
cutoffs remained the same as before, but a � point and 1×1×1
�-shifted electronic k-grid calculations provided convergences
of <10−5 Ry/au and <5×10−5 Ry/au for the forces in NaCl
and diamond supercells, respectively.

We fit the force-displacement dataset to Eq. (A1) (after trun-
cating to �4) to extract the third and fourth-order IFCs. In prac-
tice, while fitting the IFCs, we subtract the total second-order
contribution to forces (short-range evaluated using the DFPT
second-order IFCs and the long-range as described in Ref. [63])
and only fit the anharmonic IFCs to the remaining forces. By
enforcing point group symmetries and translational invariance
conditions on the third and fourth-order IFCs, we identify and
fit the force-displacement data set to an irreducible set of anhar-
monic IFCs using a least-squares technique. All the reducible
IFCs in Eq. (A1) are replaced by linear combinations of the
irreducible IFCs as determined by the point-group symmetry
and translational invariance conditions. We perform the fitting
procedure on a collection of thermal snapshots simultaneously
and check for convergence of the IFCs with respect to the num-
ber of snapshots at each temperature. For NaCl, we required
75 snapshots at 100 K and 200 snapshots at 600 K to achieve a

convergence of <0.01 eV/Å
3

and <0.01 eV/Å
4

for the third
and fourth-order IFCs, respectively. For the same levels of con-
vergence, we required 50 snapshots at 100 K and 100 snapshots
at 750 K for diamond. The number of unknown irreducible
IFCs to fit is always much smaller than the number of available
force-displacement equations, thereby avoiding any overfitting
errors. For all of the calculations on NaCl, we employed
second-order IFCs up to the eighth nearest neighbor, third-
order IFCs up to the fifth nearest neighbor, and fourth-order
IFCs up to the third nearest neighbor, while for diamond, we
employed second-order IFCs up to the tenth nearest neighbor,
third-order IFCs up to the sixth nearest neighbor, and fourth-
order IFCs up to the third nearest neighbor. We did not observe
any significant change in the specific heat, thermal conductivity
and free energy while including one more shell of nearest
neighbors for either second-, third-, or fourth-order IFCs.

APPENDIX B: EXPRESSIONS FOR FREE ENERGY
AND PHONON SCATTERING PROBABILITIES

The expression for the Helmholtz free energy up to fourth
order is given by [64]

F4th order = �0 +
∑

qs

[
1

2
h̄ωqs + kBT ln[1 − e−h̄ωqs/kBT ]

]
︸ ︷︷ ︸

FH

+ 1

2

∑
qsq′s ′

�qs,−qs,q′s ′,−q′s ′

(
nqs + 1

2

)(
nq′s ′ + 1

2

)
︸ ︷︷ ︸

F4

F3︷ ︸︸ ︷
− 1

2h̄

∑
qq′q′

∑
ss ′s ′′

(
|�qsq′s ′q′′s ′′ |2

[
nqsnq′s ′ + nqs + 1

3

(ωqs + ωq′s ′ + ωq′′s ′′ )p
+ (2nqsnq′′s ′′ − nqsnq′s ′ + nq′′s ′′ )

(ωqs + ωq′s ′ − ωq′′s ′′ )p

]

+ 2�qs,−qs,q′′s ′′�q′s ′,−q′s ′,−q′′s ′′

(
nqsnq′s ′ + nqs + 1

4

)
(ωq′′s ′′ )p

)
, (B1)
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where �λλ1λ2 ≡ �qsq′s ′q′′s ′′ and �λλ1λ2λ3 ≡ �qsq′s ′q′′s ′′q′′′s ′′′ are the third-order and fourth-order matrix elements given by

�λλ1λ2 = �qs,q1s1,q2s2 = (h̄/2)3/2
(
1/N

1/2
0

)[
ωqsωq1s1ωq2s2

]−1/2 ∑
NP

∑
μνπ

∑
αβγ

�αβγ (0μ,Nν, Pπ )(MμMνMπ )−1/2

× eiq1·R(N )eiq2·R(P )wα (qs, μ)wβ (q1s1, ν)wγ (q2s2, π ) (B2)

and

�λλ1λ2λ3 = �qs,q1s1,q2s2,q3s3 = (h̄/2)2(1/N0)
[
ωqsωq1s1ωq2s2ωq3s3

]−1/2 ∑
NPQ

∑
μνπρ

∑
αβγ η

�αβγ η(0μ,Nν, Pπ,Qρ)

× (MμMνMπMρ )−1/2eiq1·R(N )eiq2·R(P )eiq3·R(Q)wα (qs, μ)wβ (q1s1, ν)wγ (q2s2, π )wη(q3s3, ρ). (B3)

Here, ωqs is the frequency of a phonon mode with wave vector q and polarization s, wα (qs, μ) is the αth component of
the eigenvector of a phonon mode (qs) and for an atom at a basis site μ, and N0 is the number of q points in the Brillouin
zone.

The three-phonon scattering probabilities are given by

W
(+)
λλ1λ2

= 2π

h̄2

∣∣�λλ1(−λ2 )

∣∣2(
n0

λ1
− n0

λ2

)
δ
(
ωλ + ωλ1 − ωλ2

)
,

W
(−)
λλ1λ2

= 2π

h̄2

∣∣�λ(−λ1 )(−λ2 )

∣∣2(
1 + n0

λ1
+ n0

λ2

)
δ
(
ωλ − ωλ1 − ωλ2

)
, (B4)

and the four-phonon scattering probabilities are given by

Y
(1)
λλ1λ2λ3

= 2π

h̄2

∣∣�λ(−λ1 )(−λ2 )(−λ3 )

∣∣2 n0
λ1

n0
λ2

n0
λ3

n0
λ

δ
(
ωλ − ωλ1 − ωλ2 − ωλ3

)
,

Y
(2)
λλ1λ2λ3

= 2π

h̄2

∣∣�λλ1(−λ2 )(−λ3 )

∣∣2

(
1 + n0

λ1

)
n0

λ2
n0

λ3

n0
λ

δ
(
ωλ + ωλ1 − ωλ2 − ωλ3

)
, (B5)

Y
(3)
λλ1λ2λ3

= 2π

h̄2

∣∣�λλ1λ2(−λ3 )

∣∣2

(
1 + n0

λ1

)(
1 + n0

λ2

)
n0

λ3

n0
λ

δ
(
ωλ + ωλ1 + ωλ2 − ωλ3

)
,

where �λλ1λ2 and �λλ1λ2λ3 are the three- and four-phonon
matrix elements given by Eqs. (B2) and (B3), respectively,
and −λ represents a phonon mode [(−q)s] when λ represents a
phonon mode (qs). The phonon-isotope scattering probability
is given by [65]

W iso
λλ1

= ω2
λ

4N0

∑
b

g2(b)|w(b, λ) · w∗(b, λ1)|2δ(ωλ − ωλ1 ),

(B6)

where g2(b) = (1/M̄2
b )

∑
a fab(Mab − M̄b )2 is a mass vari-

ance parameter with fab and Mab being the concentration and
mass of the ath isotope of the bth atom, respectively, and M̄b is
the average mass of the bth atom. For all calculations on NaCl
in this work, we used a natural isotopic mix of 75.76% of 35Cl
and 24.24% of 37Cl for chlorine, while sodium is isotopically
pure. For naturally occurring diamond, we used an isotopic
mix of 98.93% of 12C and 1.07% of 13C. Quasimomentum
conservation (q + q1 + q2 = G for �λλ1λ2 and q + q1 + q2 +
q3 = G for �λλ1λ2λ3 , where G is a reciprocal lattice vector) is
implied in the equations for the matrix elements [Eqs. (B2) and
(B3)]. Energy conservation is treated computationally using
the analytical tetrahedron scheme described in Ref. [66].

APPENDIX C: RENORMALIZATION OF BARE IFCS

The phonon renormalization in this work is achieved by
renormalizing the bare second-order IFCs (determined from
DFPT) using the anharmonic IFCs from Eq. (A1). Renor-

malization of the phonon frequencies following the statisti-
cal perturbation operator-renormalization technique has been
described in Ref. [64]. We extend this technique to derive self-
consistent expressions for the renormalized second-order IFCs
in terms of the practically computable quantities: renormalized
phonon frequencies �qs and the renormalized eigenvectors
Wj (μ; qs).

For a system Hamiltonian H = KE + �, where KE is the
kinetic energy and � is the potential energy, we define an
effective harmonic potential � as

H = (KE + �)︸ ︷︷ ︸
HH

+(� − �), (C1)

where HH is the purely harmonic effective Hamiltonian and
(� − �) is a correction term. Following Ref. [64], we can de-
fine renormalized creation and annihilation operators [A†(qs)
and A(qs), respectively], which satisfy the commutation rela-
tions:

[H, A†(qs)] = h̄�qsA
†(qs) + R†(qs), (C2)

where R†(qs) = [� − �, A†(qs)] is a small remainder and
h̄�qs are the renormalized phonon frequencies corresponding
to the effective harmonic potential �.

For any effective harmonic potential (�) and the corre-
sponding phonon energies (h̄�qs), the remaining effective
anharmonic potential (� − �) causes an anharmonic cor-
rection to the phonon energy, given by δ(h̄�qs ). The goal
of the renormalization procedure is to make the correction,

085205-11



NAVANEETHA K. RAVICHANDRAN AND DAVID BROIDO PHYSICAL REVIEW B 98, 085205 (2018)

δ(h̄�qs ), as small as possible, so that the new quasiparticles, �qs , weakly interact. To accomplish this, Ref. [64] constructs
the renormalized effective second-order IFCs [�jk (Nν, Pπ )] so that the contribution to δ(h̄�qs ) coming from the lowest order
correction in (� − �) vanishes. The expression for �jk (Nν, Pπ ) obtained in Ref. [64] is given by

�jk (Nν, Pπ ) =
〈

∂2�

∂Uj (Nν)∂Uk (Pπ )

〉

= �jk (Nν, Pπ ) + 1

2

∑
QR

∑
ηρ

∑
lm

�jklm(Nν, Pπ,Qη,Rρ)〈Ul (Qη)Um(Rρ)〉, (C3)

where 〈·〉 denotes the grand canonical thermal average. The third-order term, which would appear in Eq. (C3), contains a factor
〈Um(Rρ)〉, which vanishes since 〈Um(Rρ)〉 = 0.

Using the normal mode expansion for the displacement field [Uj (Nν)] in terms of the renormalized phonon frequencies �qs ,
the renormalized eigenvectors Wj (μ; qs) and the normal mode coordinate [α(qs)], given by

Uj (Nν) = 1√
N0Mν

∑
qs

α(qs)eiq·R(N )Wj (ν; qs), (C4)

the thermal correlation average 〈Ul (Qη)Um(Rρ)〉 is transformed into

〈Ul (Qη)Um(Rρ)〉 =
∑

qq′ss ′

Wl (η; qs)Wm(ρ; q′s ′)
N0

√
MηMρ

eiq·R(Q)+iq′·R(R)〈α(qs)α(q′s ′)〉. (C5)

The normal mode coordinates (α(qs)) can be written as

α(qs) =
√

h̄

2�qs

[A(qs) + A†(−qs)]. (C6)

Substituting Eq. (C6) in Eq. (C5), we get

〈Ul (Qη)Um(Rρ)〉 = h̄

2N0

∑
qq′ss ′

Wl (η; qs)Wm(ρ; q′s ′)√
MηMρ

√
�qs�q′s ′

eiq·R(Q)+iq′ ·R(R)〈(A(qs) + A†(−qs))(A(q′s ′) + A†(−q′s ′))〉. (C7)

Now, it has been shown in Refs. [64,67] that any arbitrary operator χ satisfies the following relation for the thermal correlation
averages with the renormalized creation operator A(qs):

〈χA(qs)〉 = 〈[A(qs), χ ]〉
eh̄�qs /kBT − 1

. (C8)

Using the creation and annihilation operator commutation relations, we get

〈A†(q′s ′)A(qs)〉 = δqq′δss ′

eh̄�qs /kBT − 1
= nqsδqq′δss ′ ,

〈A(qs)A†(qs)〉 = 〈A†(qs)A(qs)〉 + 1, (C9)

〈A(qs)A(qs)〉 = 〈A†(qs)A†(qs)〉 = 〈A(qs)A†(q′s ′)〉 = 〈A†(qs)A(q′s ′)〉 = 0.

Substituting Eqs. (C9) into Eq. (C7),

〈Ul (Qη)Um(Rρ)〉 = h̄

2N0

∑
qs

Wl (η; qs)W ∗
m(ρ; qs)

�qs

√
MηMρ

eiq·(R(Q)−R(R))(2〈A†(qs)A(qs)〉 + 1)

= h̄

2N0

∑
qs

Wl (η; qs)W ∗
m(ρ; qs)

�qs

√
MηMρ

eiq·(R(Q)−R(R))(2nqs + 1). (C10)

Substituting Eq. (C10) into Eq. (C3),

�jk (Nν, Pπ ) = �jk (Nν, Pπ ) + h̄

4N0

∑
QR

∑
ηρ

∑
lm

∑
qs

�jklm(Nν, Pπ,Qη,Rρ)

× Wl (η; qs)W ∗
m(ρ; qs)

�qs

√
MηMρ

eiq·(R(Q)−R(R))(2nqs + 1). (C11)

Equation (C11) shows that the renormalized second-order IFCs (�jk (Nν, Pπ )) depend on the renormalized phonon frequencies
(�qs , and therefore, the Bose factors nqs) and the renormalized phonon eigenvectors [(Wl (ν; qs)], which in turn depend back on the
renormalized second-order IFCs [�jk (Nν, Pπ )]. Therefore Eq. (C11) has to be solved self-consistently to obtain �jk (Nν, Pπ ).

085205-12



UNIFIED FIRST-PRINCIPLES THEORY OF THERMAL … PHYSICAL REVIEW B 98, 085205 (2018)

To solve Eq. (C11) self-consistently, the bare phonon frequencies (ωqs) and bare eigenvectors [wl (ν; qs)] are used as initial
guesses and the renormalized second-order IFCs [�jk (Nν, Pπ )] are updated at each iteration step. Throughout the self-consistent
iteration process, the bare second order [�jk (Nν, Pπ )] and fourth order [�jklm(Nν, Pπ,Qη,Rρ)] IFCs remain unchanged, for a
given supercell force-displacement data set. Creating new sets of thermal snapshots using renormalized IFCs and going through the
entire cycle of (i) obtaining new sets of forces; (ii) obtaining new sets of renormalized IFCs; and (iii) calculating new kren

3+4, produced
small changes in phonon dispersions, and <2.5% change at 300 K and ≈5% change at 600 K in kren

3+4 (see Sec. S7 in Ref. [43] for
details). Therefore no additional DFT snapshot simulations are required other than the initial set of snapshots that provided the
converged bare third-order and fourth-order IFCs, making this self-consistent solution technique computationally inexpensive. A
critical advantage of this approach is that, since the second-order IFCs are renormalized, the renormalization seamlessly extends
to the phonon frequencies, eigenvectors, and group velocities without any ad hoc adjustments to the formulation.

To obtain the renormalized third-order and fourth-order IFCs, we refit the same force-displacement dataset used earlier to a
renormalized quartic potential energy model of the form

� = �0 + 1

2!

∑
NP

∑
νπ

∑
ij

�ij (Nν, Pπ )Ui (Nν)Uj (Pπ ) + 1

3!

∑
NPQ

∑
νπζ

∑
ijk

�ijk (Nν, Pπ,Qζ )Ui (Nν)Uj (Pπ )Uk (Qζ )

+ 1

4!

∑
NPQR

∑
νπζρ

∑
ijkl

�ijkl (Nν, Pπ,Qζ,Rρ)Ui (Nν)Uj (Pπ )Uk (Qζ )Ul (Rρ), (C12)

Fi (Nν) = − ∂�

∂Ui (Nν)
. (C13)

Here, �ij (Nν, Pπ ) are the renormalized second-order IFCs
determined from Eq. (C11) and �ijk (Nν, Pπ,Qζ ) and
�ijkl (Nν, Pπ,Qζ,Qρ) are the renormalized third-order and
fourth-order IFCs respectively. This final step of refitting the
anharmonic IFCs is essential to ensure that the original set of
force-displacement equations from DFT are still satisfied by
the renormalized IFCs.

APPENDIX D: COMPUTATIONAL EFFICIENCIES
TO MITIGATE COST

We have developed several computational efficiencies to
mitigate the cost of obtaining the anharmonic IFCs and solv-
ing the 3+4-phonon PBE, without compromising accuracy.
Notably, (1) to obtain the third- and fourth-order IFCs, we
have developed a thermal snapshot technique, which requires
only 100–200 DFT supercell calculations for each tempera-
ture. In contrast to this approach, the conventional supercell
displacement technique [42] requires several hundreds to a few
thousand DFT supercell calculations, making it prohibitively
expensive for studying higher-order effects in thermodynamic
and thermal transport properties. Moreover, the conventional
supercell displacement technique cannot capture the effects
of zero-point motion, polar effects/LO-TO splitting or the
temperature dependence of the higher order IFCs, while our
approach captures all of these effects at no additional cost.

(2) The PBE for three and four-phonon scattering [Eq. (4)]
is solved on a grid of q points in the Brillouin zone. The
main challenge in the solution is the computation and storage
of the four-phonon matrix elements (�λλ1λ2λ3 ). For example,

even on a modest 173 q grid, with six phonon polarizations
in NaCl, 175 million three-phonon matrix elements (�λλ1λ2 )
in the irreducible Brillouin zone for λ are calculated, while
5.2 trillion four-phonon matrix elements (�λλ1λ2λ3 ) in the
irreducible λ grid are calculated, a factor of thirty-thousand
larger. Furthermore, as shown in Sec. S3 of Ref. [43], both
three-phonon and four-phonon scattering rates have a large
contribution from Normal processes for NaCl. Since the RTA
incorrectly treats Normal scattering processes as resistive,
the solution of the PBE in the RTA will underestimate the
thermal conductivity of NaCl. To avoid this problem, we
solve the full 3+4-phonon PBE iteratively. Therefore the
four-phonon matrix elements used in Eq. (4) must not only be
computed, but also stored in files for the subsequent iterations.
Fortunately, since the tetrahedron scheme provides higher
accuracy for the energy conservation than the commonly used
adaptive Gaussian smearing scheme (see, e.g., Ref. [13]) or
the nonadaptive Lorentzian scheme in Ref. [42], we obtain
convergence at a much coarser phonon q-grid density. For
example, the 3+4-phonon limited thermal conductivity for
NaCl at 300 K obtained by solving Eq. (4) were different by
only 1.6% between 173 and 213 phonon q grid. Therefore all
the thermal conductivity results presented in this work were
computed on a 173 q grid. We also reduce the computational
and storage costs significantly by first computing the four-
phonon scattering phase space involving the energy conserving
δ functions for each λλ1λ2λ3 combination, and then computing
and storing the matrix elements only for those processes
which have a large enough phase space to contribute to
Eq. (4).
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