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We develop a temperature-dependent theory for singlet exciton hopping transport in disordered semiconductors.
It draws on the transport level concept within a Förster transfer model and bridges the gap in describing the
transition from equilibrium to nonequilibrium time-dependent spectral diffusion. We test the validity range of the
developed model using kinetic Monte Carlo simulations and find agreement over a broad range of temperatures.
It reproduces the scaling of the diffusion length and spectral shift with the dimensionless disorder parameter and
describes in a unified manner the transition from equilibrium to nonequilibrium transport regime. We find that
the diffusion length in the nonequilibrium regime does not scale with the the third power of the Förster radius.
The developed theory provides a powerful tool for interpreting time-resolved and steady state spectroscopy
experiments in a variety of disordered materials, including organic semiconductors and colloidal quantum dots.
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I. INTRODUCTION

The phenomenon of exciton diffusion is found to play a
role in a remarkably wide range of physical systems, includ-
ing disordered organic semiconductors [1,2], nanocrystalline
quantum dots [3–6], semiconducting carbon nanotubes [7–10],
and photosynthetic biological systems [11]. Moreover, there is
a growing interest in describing electronic excitation energy
transfer because exciton dynamics determines function in
many technological applications. For example, in thin-film
organic solar cells, exciton diffusion drives charge separa-
tion [12,13], in organic light emitting diodes it determines
the brightness and color of the device [14], in scintillator
detectors it controls the response function and yield [15],
while in quantum communication systems it facilitates photon
antibunching [16].

In disordered semiconductors that display weak intermolec-
ular interactions, excitations created upon light absorption,
carrier recombination, or annihilation processes are typically
Frenkel excitons that are localized on single chromophore
units (molecule, conjugated segment, quantum dot) and have
a finite lifetime before relaxation to the ground electronic
state occurs by radiative or nonradiative process. In the weak
coupling regime, excitons transfer from one unit to the other
with a Markovian incoherent hopping process and transport
can be described as a simple diffusive motion [17]. However,
chromophore units are not equivalent to each other as they can
have different on-site excitation energies due to the different
local environment, structure, or size as well as different
excitonic couplings with neighbors. As a consequence, the
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energy landscape has a distribution that is often approximated
by a Gaussian [18] and the standard deviation of the distribution
defines the disorder parameter σ . Therefore, in the course
of time, excitations sample the energetic landscape and on
average relax to lower energy sites until they “settle down” to
a steady state and equilibrium is achieved. However, because
excitations have a finite lifetime τ , the relaxation process
might be incomplete and, consequently, the exciton transport
out of equilibrium [19]. It should be emphasized that this
spectral relaxation process is different from the initial rapid
vibronic relaxation [20]. Another consequence of the finite
lifetime is that excitations have a limited spatial diffusion
range, determined by the diffusion length LD [19,21,22]. Spec-
troscopic techniques such as time-resolved and time-integrated
photoluminescence spectroscopy can provide information on
spectral diffusion [23–25] and a number of organic and inor-
ganic systems have been studied over a range of temperatures
[26–31].

A common misconception exists, that in practical device
applications at room temperature, equilibrium transport pre-
vails and the description of transport in terms of normal
diffusion is sufficient. However, the distinction between equi-
librium and nonequilibrium exciton transport is quite a subtle
one and the transport regime is not uniquely defined only
by temperature. Whilst significant progress has been made
on understanding temperature dependent spectral relaxation
and exciton diffusion, including experimental measurements
[26–33] and computational models [19,21,33–44], currently
there is no analytical theory that can describe the transition
from equilibrium to nonequilibrium transport. In contrast, for
charges it has been suggested that the transport problem can
be modeled as a multiple-trapping process and it has been
shown that a unique level in the energy distribution exists,
the transport energy (TE), that plays the same role as the
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mobility edge in the multiple-trapping mechanism [45–47].
Note that in contrast to the long-range nature of the dipole-
dipole interaction facilitating singlet exciton transport [48],
charge transport in disordered semiconductors occurs via a
short-range tunneling mechanism [49].

In this paper, we shall develop and test a theory that can treat
the dynamics of exciton diffusion at both the equilibrium and
nonequilibrium transport regime. In what follows, we develop
a formalism based on the TE concept for the calculation of
singlet exciton transport parameters, such as relaxation energy
and diffusivity, including their temporal dependence. The
validity of the TE level concept for Förster processes has been
demonstrated by Baranovskii and Faber [50]. However, the TE
level concept has not been applied yet to describe temperature
and time dependent singlet exciton transport. In Sec. II, we
repeat the main arguments and equations of Ref. [50] to enable
the reader to follow theoretical consideration in Sec. III based
on these equations. Section III includes the main results (Secs.
III A, B, and E) along with a comparison of the theory to
Monte Carlo simulations (Sec. III C), a discussion on the TE
level concept for short vs long-range transfer and comparison
with experiments (Sec. III D). Section IV summarizes the work
and draws conclusions.

II. TRANSPORT ENERGY LEVEL FOR FÖRSTER
TRANSFER

We consider thermally assisted Förster energy transfer
between localized states described by the rate [19,50,51]

ν(εd → εa ) = 1

τ
S(R)exp

[
−�ε + |�ε|

2kBT

]
, (1)

with

S(R) =
(

RF

R

)6

, (2)

where τ is the intrinsic exciton lifetime,RF is the Förster radius,
determined by the donor-acceptor spectral overlap, and kBT is
the thermal energy. �ε = εa − εd is the difference between
the donor and acceptor energies and R is the corresponding
distance.

We take into account a Gaussian distribution of energy
states g(ε) = N/

√
2πσ 2 exp(−ε2/2σ 2), with N and σ the

total density of states (DOS) and the width of the distribution,
respectively. If the relaxation process is completed during the
lifetime τ , excitons will occupy states around the equilibrium
energy ε∞ (see Fig. 1) at which the product g(ε)f (ε, εF ) max-
imizes [49]. Here, f (ε, εF ) = {1 + exp[(ε − εF )/kBT ]}−1 is
the Fermi distribution and εF is the Fermi level, determined by
the number density n of the excitons as

n =
∫ +∞

−∞
g(ε)f (ε, εF )dε. (3)

Note that at low densities, the equilibrium energy ε∞ can be
approximated by either −σ 2/kBT , at high temperatures [52],
or by εF , at low temperatures; see Fig. 2(a).

Now, we examine the possibility of the existence of a TE
level εtr in the energy distribution that can serve as the mobility
edge in our exciton diffusion problem [50]. In the presence of
such an energy level, excitons with ε > εtr , will, on average,

FIG. 1. Schematic illustration of interacting units in a disordered
semiconductor, resulting in a Gaussian broadened excitonic DOS.
Singlet exciton diffusion via Förster-type energy transfer process
triggers energy relaxation toward the equilibrium energy ε∞. Due
to the finite lifetime, excitons may decay at a higher energy, ετ . εtr is
the transport energy level.

move downward in the distribution, toward the TE level. On
the other hand, upward jumps of excitons with ε < εtr will be
in the vicinity of εtr . If we express the mean jump distance as

Rεtr
=

[
4π

3

∫ εtr

−∞
g(ε)f ′(ε, εF )dε

]−1/3

, (4)

we can obtain the following equation governing the position
of the TE level for the Förster transport problem:

g(εtr )f ′(εtr , εF ) = 1

2kBT

∫ εtr

−∞
g(ε)f ′(ε, εF )dε, (5)

where f ′(ε, εF ) = 1 − f (ε, εF ). We have used the approach
of Ref. [46] to obtain the above equation, according to which
one can find εtr by maximizing the upward transfer rate; see
Appendix A for more details. We emphasize that the form of
Eq. (5) directly follows from the inverse sixth power distance
dependence of the dipole-dipole interaction. Equation (5) also
shows that the position of εtr is independent of the character-
istic length RF and the density N , in contrast to the charge
transport problem in which εtr = εtr (α,N ). Interestingly,
Eq. (5) does not acquire a solution for an exponential DOS.
Again, this is in contrast to the charge transport problem, where
for both Gaussian and exponential DOS one can find a TE
level in the energy distribution. Charge transport in disordered
semiconductors occurs via short-range transfer mechanism,
with a rate similar to Eq. (1), but with S(R) = exp(−2R/α),
where α is the carrier localization length.

Figure 2(a) illustrates εtr as a function of disorder nor-
malized thermal energy. At high temperatures, εtr lies near
the center of the energy distribution. At lower temperatures,
εtr decreases to lower energies because by decreasing the
temperature thermal activation to higher energies becomes less
probable. We point out that a meaningful application of the TE
level requires that the condition εtr > ε∞ [49] is satisfied. To
test this condition, we plot a heat map of εtr − ε∞ as a function
of kBT/σ and excitation density in Fig. 2(b), which shows that
this condition is fulfilled over a broad range of temperatures and
exciton densities. Thus the concept of the TE can be used for
Förster-type exciton transport. In what follows, we consider the
weak excitation condition, with n/N � 1 and therefore f ′ ≈ 1.
More precisely, we use σ = 0.065 eV, N = 1 nm−3 and
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FIG. 2. (a) Transport energy level εtr , as a function of disorder
normalized temperature. Data are obtained using Eq. (5) with σ =
0.065 eV, N = 1 nm−3, and n/N = 1.6 × 10−5. εF is the Fermi level
and ε∞ is the thermal equilibrium energy, approaching −σ 2/kBT at
high temperatures. (b) Heat map of εtr − ε∞ for a broad range of
temperatures and exciton densities.

n/N = 1.6 × 10−5, corresponding to one exciton in a lattice
of size (40 nm)3, as implemented in our kMC simulations. The
same parameters were used in Fig. 2(a).

III. NONEQUILIBRIUM EXCITON DYNAMICS

A. Demarcation energy level and energy relaxation

Having outlined the concept of the TE level and the gov-
erning equations for singlet exciton transport [50], let us now
turn our attention to the main problem, that is, the description
of the relaxation dynamics. Excitons, generated randomly
in the DOS, progressively thermalize into deeper energies.
Notwithstanding their way to the deep energy levels, excitons
need to be first activated to shallower energies, because the
density of such levels is high in the energy distribution. Using
the concept of the TE level we can say that these intermediate
activations, necessary to approach thermal equilibrium, are
most probable at the vicinity of the level εtr . As first introduced
by Tiedje and Rose [53], we can define a demarcation energy
εm(t ) in the system, such that during time t following the initial
excitation, only the levels with ε > εm(t ) are likely to release

their excitons to the TE level. Mathematically, this means that
tν(εm → εtr ) = θ , with θ being O(1). In a more explicit form,

t
1

τ

(
RF

Rεtr

)6

exp

[
−εtr − εm(t )

kBT

]
= θ. (6)

From the above equation we find

εm(t ) = εtr − kBT ln

[
t

θτ

(
RF

Rεtr

)6
]
. (7)

On the other hand, if we consider the low density condition, we
can obtain the following equation for the mean jump distance
from Eqs. (4) and (5):

1

R3
εtr

= 8π

3
g(εtr )kBT . (8)

Inserting Eq. (8) in Eq. (7), and using g(ε) = N/√
2πσ 2 exp(−ε2/2σ 2), we get the following expression for

the demarcation level:

εm(t ) = εtr

(
1 + εtr

σ 2/kBT

)
− kBT ln

[(
NF

kBT

σ

)2 2

θπ

t

τ

]
,

(9)

where NF = (4π/3)R3
FN .

According to Eq. (9), in the course of time, the demarcation
level sinks to deeper energies. However, we note that this can
continue only until time t = τ , which is the intrinsic lifetime
of the exciton. If we interpret the demarcation energy as a
quasi-Fermi level [54], at time τ most excitons are accumulated
around an energy level at which the product g(ε)f [ε, εm(τ )]
maximizes. This energy is in fact the same energy ετ shown
in Fig. 1. ετ is in general different from ε∞, but if the
thermalization is completed during the exciton lifetime, we
obtain ετ = ε∞. The energy, ετ is experimentally available
through fluorescence spectroscopy. We stress that our model
can also be applied for exciton transport in the presence of
quenching centers [21,55]. In such a situation, one has to
consider the demarcation energy at time t < τ .

The five energy levels discussed here, εtr (TE level), ετ (en-
ergy relaxation during exciton lifetime), εm(τ ) (demarcation
or quasi-Fermi level at time t = τ ), ε∞ (thermal equilibrium
energy), and εF (equilibrium Fermi level), are plotted in Fig. 3
for RF = 5 nm. We have used θ ≈ 0.2 since it gives excellent
agreement with kinetic Monte Carlo (kMC) simulations, see
below. As expected, at high disorder normalized temperatures
the thermalization is nearly complete, and therefore ετ coin-
cides with ε∞. However, by decreasing kBT/σ, ετ deviates
from ε∞, owing to the incomplete thermalization during the
exciton lifetime.

Two temperature regions in Fig. 3 need to be discussed in
detail. (i) Region with εm(τ ) > ε∞. The relaxation energy ετ in
this region reaches a minimum at a critical temperature where
εm(τ ) ≈ ε∞, and then increases by decreasing the temperature,
see inset of Fig. 3. This behavior, usually assigned to frustrated
relaxation, has been observed experimentally [30,31], and has
been predicted through kMC simulations to occur also for
Förster energy transfer [38]. Here, we see that our model
can naturally produce the frustrated relaxation feature, see
Sec.III D for more details. (ii) Region with εm(τ ) > εtr . In the
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FIG. 3. εtr (TE level), ετ (energy relaxation during the exciton
lifetime), εm(τ ) (quasi-Fermi level), ε∞ (thermal equilibrium energy),
and εF (equilibrium Fermi level), as a function of disorder normalized
temperature. Data are calculated using Eqs. (5) and (9) for RF = 5 nm.

temperature region given by the above condition, the multiple-
trapping model is not applicable at all and introducing εm(τ ) is
physically meaningless. In this region, excitons created in the
system move, on average, downward toward the TE energy
level, and therefore the picture of activation to a TE level
is not correct. As we discuss below in the kMC section, an
agreement between theory and simulation is not expected in
this temperature region.

An important feature of the Förster-type transport mech-
anism is that the exciton transfer rate is coupled to the
spontaneous decay rate, 1/τ ; see Eq. (1). Therefore, a longer
exciton lifetime does not result in a higher degree of the
thermalization, because the transfer rate, that determines the
degree of thermalization, is also reduced. As a consequence, as
predicted by Eq. (9), the demarcation energy at time t = τ , and
hence ετ , are independent of the exciton lifetime. On the other
hand, ετ is a strong function of the Förster radius. We discuss
this dependency below, when presenting the kMC simulation
results.

B. Exciton diffusion length

An important physical quantity related to exciton transport
is the diffusion length. In what follows, we derive an expression
for the exciton diffusion length using the TE level concept.
Since the diffusion length is given by [56]

LD =
√

Dτ, (10)

we must first find the diffusion coefficient D. To obtain this,
one can use [57]

D ≈ R2
εtr

/〈t〉, (11)

where 〈t〉 is the mean time that excitons spend in an energy
state before activation to the TE level. 〈t〉 can be obtained by
averaging the quantity 1/ν(ε → εtr ) for energies smaller than

εtr [57,58]:

〈t〉 = τ

(
Rεtr

RF

)6

∫ εtr

−∞
exp

(
εtr − ε

kBT

)
g(ε)f ′[ε, εm(τ )]dε∫ εtr

−∞
g(ε)f ′[ε, εm(τ )]dε

.

(12)

Combining Eqs. (10)–(12), as shown in Appendix B, we get
the following expression for the diffusion length:

LD ≈
(

9θ3

16π2

N ′ − n′

n′3

)1/6

, (13)

where n′ = ∫ εtr

−∞ g(ε)f [ε, εm(τ )]dε and N ′ = ∫ εtr

−∞ g(ε)dε.
Note that, since according to Eq. (9) εm(τ ) is a function of the
Förster radius RF, the diffusion length is also RF dependent.
However, it is clear from Eq. (13) that the dependency of LD

on RF is more complex than that traditionally expected, that
is, LD ∝ √

D ∝ √
ν ∼ R3

F (which is deduced from a simple
nearest neighbor random walk picture). This is because, for
the problem of exciton transport in energetically disordered
systems, RF is not merely a multiplicative factor, but according
to Eq. (9), it also controls the thermalization process, which, in
turn, affects the dispersivity of the diffusion process. Another
important result of our theory, as discussed in Appendix C,
is that both the quantity ετ /σ and the diffusion length LD in
Eq. (13) scale with the dimensionless disorder strength σ/kBT .
Indeed, the scaling of both the exciton diffusion length and
spectral relaxation has been predicted in the past by one of
the authors using Monte Carlo simulations [19,39,59]. In the
following section, we test the validity of our approach to the
problem of nonequilibrium exciton transport against Monte
Carlo simulations.

C. Kinetic Monte Carlo simulations

Monte Carlo simulations provide an insightful and predic-
tive computational method for studying incoherent hopping
transport phenomena in disordered semiconductors. In this
paper, we use a kMC method [19] to simulate the time
evolution of singlet exciton transport, confirm the validity of
the developed theoretical model and test its applicability range.
The computational protocol is as follows.

We consider a regular cubic cell of 40 nm × 40 nm × 40 nm
with a lattice constant a = 1 nm. Each lattice point corresponds
to an exciton transport site, while periodic boundary conditions
are implemented along all directions of the cell using the
minimum image criterion. Individual Monte Carlo runs start
by placing one exciton at a random site in the cell with each
site having an energy drawn from a Gaussian distribution with
a zero mean and variance σ 2. Förster transfer rates νij from
the exciton occupied site i to each neighboring hopping site
j , within a cutoff radius of rcut = 5 nm, are calculated using
Eq. (1). At each Monte Carlo step, waiting times for each
hopping event are calculated according to τij = − 1

νij
ln X, with

X a random number from a box distribution from zero to
unity, resulting in 514 events for the chosen cutoff radius. An
additional waiting time for exciton recombination is computed
as τir = −τ ln X. If the event with the shorter waiting time
is a hopping event, then exciton transfers to the new site and
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(a) (b)

FIG. 4. (a) Energy relaxation during the exciton lifetime, ετ as
a function of disorder normalized temperature. kMC simulations
(circles) and theory (solid lines), for two different Förster radii,
RF = 2 and 5 nm. The critical points at which εm(τ ) = εtr , are
indicated as segments. Dashed line indicates the thermal equilibrium
energy ε∞. (b) Same as (a) with rcut = 5 nm (empty circles) and 2 nm
(filled circles).

simulation advances whereas if it is recombination, the exciton
is removed from the system and the run is terminated. By
averaging over 105 individual exciton trajectories, we obtain
the quantities of interest, i.e., the relaxation energy ετ and
the diffusion length LD . The first is calculated from the final
energy of each exciton before recombination, while the latter
from the displacement between the initial, exciton generation,
and the final, exciton recombination, position. We allow to
vary independently the temperature T and Förster radius RF

parameters, while disorder σ and lifetime τ remain constant.
In fact, due to the Förster rate inverse dependence on τ, τ does
not impact neither the ετ nor the LD values, while a scaling
law exists for both of them with respect to the dimensionless
disorder parameter σ/kBT [19,38].

The central results comparing theory with Monte Carlo
simulations are presented in Fig. 4 for the spectral relaxation
and Fig. 5 for the diffusion length. Figure 4(a) shows the Monte

FIG. 5. Diffusion length LD as a function of disorder normalized
temperature. Data from kMC simulation (symbols) and theory (solid
lines), for different Förster radii, RF = 2, 3, 4, and 5 nm.

Carlo results for ετ , for two Förster radii RF = 2 and 5 nm. The
theoretical predictions, calculated based on the TE concept
and using the averaging method (see Appendix D), are also
shown in the figure. As pointed out above in Fig. 4(a), the
multiple-trapping picture is not valid when εm(τ ) > εtr . The
exact points at which εm(τ ) = εtr are calculated and marked in
the figure. In the region where the TE concept is applicable, the
theory is in very good agreement with the kMC results. Since
the density of the energy levels is higher near the center of the
Gaussian distribution, most excitons generated in the system
will have energies ε ≈ 0 and according to the TE concept, those
excitons initially move, on average, downward to the TE level
εtr . However, en route to the TE level, some upward in energy
jumps are also necessary to avoid the blockade of excitons due
to disorder. Therefore, for larger Förster radii, the TE concept
is valid over a broader range of temperatures, because a larger
RF results to a higher probability to overcome local energy
barriers.

A recent combined experimental and computational study
highlighted the dominant contribution of long-distance jumps
to singlet exciton migration in metal-organic frameworks [60].
To illustrate the importance of long-distance hopping, we have
also performed simulations with rcut = 2 nm (i.e., restrict-
ing exciton hopping only to the first 32 nearest neighbors).
Figure 4(b) shows that in comparison to rcut = 5 nm (514
nearest neighbors), the energy relaxation shows a pronounced
frustrated dynamics, inconsistent with the theory prediction.
This clearly demonstrates that especially at low temperatures,
long-range jumps contribute significantly to the relaxation
process. In other words, due to the long-range nature of the
Förster mechanism, modeling the singlet exciton transport as
a simple nearest-neighbor random walk process may result
in an incorrect description of the energy transfer dynamics.
We can also conclude that for inherently short-range transport
mechanism, like charge or triplet exciton transport problem,
a strong frustration is expected, as indeed reported in earlier
simulations [38,39]. We revisit this issue in more detail in Sec.
III D, below.

Figure 5 compares LD obtained from the kMC simulations
with those calculated using Eq. (13). Apart from an additional
constant factor (≈ 1.5) needed to fit the theory to the simulation
(see Sec. III E), the theoretical results are in good agreement
with the kMC simulations showing a steep increase of the
diffusion length with disorder normalized thermal energy.
We point out that in contrast to spectral relaxation, reliable
estimates for LD from the theoretical model can be obtained
even in the regime where εm(τ ) > εtr as LD is less sensitive
to εm(τ ) in that region. It must be noted that our results are
in agreement with experimental reports on the temperature
dependence of the exciton diffusion length [29,32]. Finally,
Fig. 6 shows that the traditional picture of LD ∝ R3

F does not
hold true at the intermediate and low temperature region, as
predicted and discussed in the theory section above.

D. TE level for short vs long-range transfer and
comparison with experiment

Herein, we discuss the main differences on the TE level
for short vs long-range excitation transfer and the resulting
influence on energy relaxation. We also include a comparison
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FIG. 6. Diffusion length LD as a function of the Förster radius for
different temperatures on a log-log scale. Data from kMC simulations
(symbols) and theory (solid lines). Dashed line indicates the slope
expected from LD ∝ R3

F.

with published experimental data of temperature dependent
fluorescence relaxation in organic semiconductors. Although
in this paper we have focused on the hopping dynamics of
singlet excitons that transfer by a Förster process, i.e., with a
long-range transfer rate that is ∝ τ−1(RF/R)6, within a Gaus-
sian DOS, of particular interest is also the relaxation process
of charge carriers and triplet excitons that follow a Dexter
type of transfer mechanism. This short-range transfer process
requires wave-function overlap and can be described by a
Miller-Abrahams (MA) type of rate ∝ ν0 exp(−2R/α). An
important difference between those two transfer mechanisms
is that whilst for Förster transfer, exciton transport and decay
are coupled to each other, due to the inverse dependence of the
rate on the exciton lifetime τ , for MA transfer the attempt to
hop frequency prefactor ν0 is independent of the lifetime, with
typically τ � ν−1

0 .
The TE level has been used before to study energy relaxation

of charges and triplet excitons that transfer by short-range
hopping rate transfer [34,53,61]. Motivated by experimental
observations of photoluminescence spectra [30,31] that show
a nonmonotonic dependence of the relaxation energy upon
cooling, those studies along with kMC simulations [34,38,39]
have revealed that charges and triplet excitons show a strong
frustrated relaxation, of the order of a few σ , as depicted
schematically in Fig. 7(a). To describe this behavior, we first
note that the TE level for short-range transfer (MA rate)
[47,62] lies above the TE level for Förster transfer across the
intermediate and low temperature range, as shown in Fig. 7(b).
We highlight that for MA transfer, εtr is a function of disorder
normalized thermal energy kBT/σ , exciton density N , and
localization length α and is independent of ν0. For Förster
transfer, however, εtr is only a function of kBT/σ and is inde-
pendent of N, RF, and τ . The relative position of the pertinent
TE levels is therefore valid for any combination of transport
parameters, unless for very large, unrealistic values of α.
According to the multiple-trapping picture, upward excitation
hops are mainly at the vicinity of the TE level. Henceforth, for
short-range MA transfer, with decreasing thermal energy such

(a)

(b)

(c)

FIG. 7. (a) Illustration of temperature-dependent energy relax-
ation for long- vs short-range transfer processes. Short-range transfer
(relevant for charges and triplet excitons) results in a strong frustra-
tion, of the order of σ at low temperatures. (b) Relevant ordering
of temperature-dependent TE levels for long-range (Förster rate)
and short-range (MA rate) transfer for typical transport parameters.
(c) Schematic illustration showing the different relaxation pathways
for charges and triplet excitons (C,T) and singlet excitons (S). The
TE level for long-range transfer, i, lies below the TE level for
short-range transfer, ii. Paths ©1 and ©2 result to relaxation toward
deep energy levels. At intermediate and low temperatures, however,
thermal activation via path ©2 is forbidden, leading to frustrated
relaxation.
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hops are less probable and the relaxation process terminates at
higher energies, because intermediate activations to the TE
level are necessary to reach the equilibrium level. This is
schematically shown in Fig. 7(c). On the other hand, since the
TE level for long-range Förster transfer is at lower energies,
thermal activations to this level are more likely and therefore
subsequent relaxation to deep energy levels is an allowed
process. Note that although for a Gaussian DOS, sites with
low energy levels are limited, the long-range nature of the
Förster rate makes upward energy jumps more probable for
singlet excitons [Path ©1 in Fig. 7(c)]. It is well established that
for disordered organic semiconductors and colloidal quantum
dots, a Gaussian DOS describes the distribution of localized
energy states [18], whereas for inorganic semiconductors an
exponential DOS is a more appropriate choice [34,61,63,64].
An important feature of the Gaussian DOS, in contrast to the
exponential one, is that for a broad temperature range the most
populated energy level (ε∞ or ετ ) does not lie near the Fermi
level (εF or εm); see Fig. 3. Therefore, for calculating the
amount of the energy relaxation, we have used the energy
ετ and not the demarcation energy εm. For an exponential
DOS however, since ε∞(τ ) � εF (m), one can use the position
of the demarcation energy as the energy relaxation, as done in
Refs. [34,61] for short-range type of transfer in an exponential
DOS.

Finally, we compare our theoretical results for the energy
relaxation (ετ ) based on the TE level formulation with previ-
ously published experimental data in conjugated polymers and
oligomers. Figure 8 shows experimental data obtained from
the fluorescence spectra of four different films: dioctyloxy-
poly(p-phenylene) (DOOPPP), polyfluorene (PF2/6), ladder-
type poly(p-phenylene) (MeLPPP), and PF2/6 trimer (Trimer)
as reported in Refs. [30,38]. It is evident that the theory
reproduces the experimental data for reasonable Förster radii
(best fits are obtained with RF = 2.5 and 4.5 nm, as indicated
in the figure). Note that according to Eq. (9), the quantity NR3

F
is the fit parameter. Here, however, we have decided to fix the
total density of states (N = 1 nm−3) and only vary the Förster
radius to obtain the above data. In Fig. 8, in addition to ετ ,
we also display ε∞ (energy relaxation at equilibrium) and the
quantity −σ 2/kBT . Interestingly, the equilibrium quantity ε∞
fits the experimental data for the DOOPPP polymer over the
whole temperature range, showing that singlet excitons reach
equilibrium conditions during their lifetime. This, in turn, is
a result of the high density of localized states, a large Förster
radius, or a combination of these two factors.

E. Subdiffusive transport

Having established the effectiveness of the analytical model
to describe spectral relaxation, we now turn our attention
to obtaining the time dynamics of exciton diffusion. Very
recently, it has been reported experimentally that exciton
diffusion in a system of disordered colloidal quantum dots is
dispersive and can be described as a subdiffusive transport
[3], in which D(t ) ∝ tβ with β < 0. Similar results have been
obtained from Monte Carlo simulations for triplet exciton and
charge transport in a Gaussian DOS [39,65]. To investigate
whether our model can explain these observations, we expand
the TE concept to take into account the time dependence of the

(a)

(b)

FIG. 8. Energy relaxation during the exciton lifetime, ετ as a
function of disorder normalized temperature. Theoretical data based
on the TE level (solid line) and experimental data obtained from the
fluorescence spectra of (a) PF2/6 trimer (empty squares) and DOOPPP
polymer(filled squares) films (from Ref. [30]) and (b) PF2/6 (empty
squares) and MeLPPP (filled squares) polymer films (from Ref. [38]).
The Förster radii RF used in the calculations are indicated in the plots.
The levels ε∞ (thick dashed line) and −σ 2/kBT (thin dashed line) are
also plotted.

dynamics for t < τ . This can be achieved by considering
the demarcation energy εm(t ), instead of εm(τ ) used in the
previous calculations. Below, we present results for the energy
relaxation shift εt�τ and the diffusion coefficient D(t ), while
we derive the time-dependent expressions in Appendix B.

Figure 9 shows the temporal evolution of εt�τ and D(t ) for
two different temperatures and two Förster radii, RF = 2 and
5 nm. As seen in Fig. 9(a), in the course of time, excitons relax
to lower energy levels. For a Förster radius of RF = 5 nm and
at high temperatures, excitons reach the equilibrium energy
during their lifetime [this is also apparent in Fig. 4(a)] and
a stationary state is indeed established at t < τ . In contrast,
at low temperatures and/or small Förster radius, the relaxation
process is incomplete and the stationary state can not obtained.
Interestingly, our theoretical results for low temperatures
show a linear dependence with time in the logarithmic scale
εt�τ ∼ − ln(t/τ ), with the same slope for both RF = 2 and
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(a)

(b)

FIG. 9. (a) Energy relaxation (shift) as a function of time. Data for
T = 140, and 300 K, and RF = 2 and 5 nm. (b) Diffusion coefficient
D(t ) as a function of time calculated using Eq. (B5). Data for T = 140
and 300 K and RF = 2 and 5 nm. The dotted line shows the scaling
of the diffusion coefficient with time in the nonequilibrium regime.
Stars indicate the equilibrium values.

5 nm, and are in agreement with results from Movaghar
et. al. [51]. The time evolution of the diffusivity is shown in
Fig. 9(b). As a result of exciton relaxation to lower energy
levels with time, based on the multiple-trapping picture, the
waiting time needed to jump to the TE level increases with time.
Therefore, the diffusion coefficient becomes time-dependent,
i.e., dispersive transport, and decreases with time. As derived
in Appendix B, in this nonequilibrium regime we obtain

D(t ) ∝
(

t

τ

)−2/3

, (14)

which clearly demonstrates the dispersive nature of singlet
exciton diffusion. Nevertheless, at high temperatures and large
Förster radius, since equilibrium can be established during
the exciton lifetime, the diffusion coefficient approaches its
equilibrium, time-independent, value.

In obtaining Eq. (13) for the diffusion length, the diffusion
coefficient at time t = τ has been used in the calculations.
However, since the exciton transport occurs almost entirely in
the nonequilibrium regime and the diffusion coefficient is time-
dependent, using D(t = τ ) may result in an underestimation
of the diffusion length. This argument shows why an additional
factor was required to fit the theory with the kMC results in
Fig. 5. One can estimate this factor by using the following

relation for the diffusion length of excitons :

LD =
√∫ τ

0
D(t )dt . (15)

Using Eq. (14) we have

LD ≈
√

D(τ )τ
∫ τ

0
(t/τ )−2/3d(t/τ ) =

√
3 ×

√
D(τ )τ .

(16)

The factor
√

3 justifies the additional factor used in Fig. 5 to
match the theory with the kMC results.

IV. CONCLUSION

A theory for singlet exciton hopping transport has been
developed and tested. It describes diffusive transport via long-
range Förster transfer in a Gaussian distribution of localized
states through a multiple-trapping mechanism, with the TE
playing the role of the mobility edge. The theory provided
in this paper fully describes the transition from equilibrium
to nonequilibrium transport. The global validity range of the
theory is illustrated by comparison to Monte Carlo simulations.
We find that for Förster radius values smaller than 5 nm,
typical in organic semiconductors, exciton transport occurs
mainly in the nonequilibrium regime and the diffusion length
deviates from the cubic dependence upon the Förster radius.
An important feature of the theory is that it takes into account
explicitly the temporal evolution of the spectral relaxation
energy and diffusivity and can be used to understand time-gated
spectroscopic experiments in a wide range of disordered semi-
conducting materials. Understanding the exciton dynamics is
also important for exploiting novel device applications. In the
current paper, we take a step toward this goal and anticipate
that it will motivate further studies. In future work, we hope
to tackle the excitation density dependence of the relaxation
dynamics and transport in spatially correlated disordered
systems.
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APPENDIX A: POSITION OF THE TRANSPORT ENERGY

According to Eq. (1), the upward exciton jump rate is given
by

ν(εd → εa ) = 1

τ

(
RF

R

)6

exp

(
−εa − εd

kBT

)
, (A1)

where εa − εd > 0 is the difference between the acceptor and
donor energy. Let us denote this rate by ν↑(εd, εa, R). For steep
energy distributions, the typical upward jump distance is given
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by [Eq. (4) in the main text]

Rεa
=

[
4π

3

∫ εa

−∞
g(ε)f ′(ε, εF )dε

]−1/3

. (A2)

Now, according to the standard approach of calculating the TE
level, we seek to find if such an acceptor energy level exists
that it maximizes all typical upward jumps, independent of the
donor energy. In other words, we look for a unique acceptor
energy, εtr , that meets the condition

∂ν↑(εd, εa, Rεa
)

∂εa

∣∣∣∣
εa=εtr

= 0. (A3)

By algebraic manipulation of the above equation, we obtain
Eq. (5).

APPENDIX B: DIFFUSION COEFFICIENT

In this appendix, a general expression for the diffusion
coefficient is obtained, from which the time-dependency of
the diffusion coefficient and the singlet diffusion length can be
extracted. First, we note that the integral in the numerator of
Eq. (12) can be rewritten as

exp

(
εtr − εm

kBT

) ∫ εtr

−∞
exp

(
εm − ε

kBT

)
g(ε)f ′(ε, εm)dε,

(B1)

where, for brevity, we have used εm for εm(t ). This, bearing in
mind that f ′ = 1 − f , can be simplified as

exp

(
εtr − εm

kBT

) ∫ εtr

−∞
g(ε)f (ε, εm)dε. (B2)

On the other hand, using Eq. (6), for the exponential term in
the above equation we have

exp

(
εtr − εm

kBT

)
= t

τ θ

(
RF

Rεtr

)6

. (B3)

Using these simplifications, and if we define
n′ = ∫ εtr

−∞ g(ε)f (ε, εm)dε and N ′ = ∫ εtr

−∞ g(ε)dε, we obtain

D(t ) = θ

t
R2

εtr

N ′ − n′

n′ , (B4)

that, using Eq. (4), can be rewritten as

D(t ) = θ

t

(
4π

3

)−2/3 (
N ′ − n′)1/3

n′ . (B5)

From this general result, one can obtain Eq. (13) for the
diffusion length LD = √

D(τ )τ .
To obtain the time-evolution of the diffusion coefficient in

nonequilibrium regime, we use the fact that the demarcation
energy is high at short and intermediate times such that we can
write f ≈ 1 and 1 − f ≈ exp{[ε − εm(t )]/kBT }. Therefore,
since εm(t ) = εm(τ ) − kBT ln(t/τ ), we can obtain the follow-
ing time-dependent behavior for the diffusion coefficient (valid
only for the nonequilibrium regime):

D(t ) ∝ (t/τ )−2/3. (B6)

On the other hand, at the equilibrium regime where the
demarcation energy lies deep in the energy distribution, we

can use the approximation f ≈ exp{−[ε − εm(t )]/kBT } and
N ′ − n′ ≈ N ′. These approximations result in a stationary
diffusion coefficient as

Dst ∝ (t/τ )0. (B7)

APPENDIX C: SCALING BEHAVIOR OF THE
DIFFUSION LENGTH

Equation (3) shows that at a given density n, the Fermi level
εF is determined by the temperature and the width of the energy
distribution. By expressing this integral in terms of a new
variable x = ε/σ , we find that the temperature-normalized
Fermi level, that is, εF /kBT , is a function of the dimensionless
disorder parameter σ/kBT . Using this result, and the same
change-of-variable for the integral of Eq. (5), we find that
εtr/σ is a function of σ/kBT . Inspection of Eq. (9) for the
demarcation level shows that the same scaling behavior holds
for εm(τ )/σ , and since ετ is the energy at which the product
g(ε)f [ε, εm(τ )] maximizes, we find that ετ /σ also scales with
σ/kBT . Using the above scaling features and Eq. (13), we
obtain that LD = LD (σ/kBT ).

APPENDIX D: AVERAGING METHOD FOR THE
CALCULATION OF THE RELAXATION ENERGY

The equilibrium energy ε∞ can be calculated in two
different ways. As pointed out in the main text, we have
introduced ε∞ as the energy that maximizes the product
g(ε)f (ε, εF ). Accordingly, the relaxation energy ετ can be
found by maximizing the product g(ε)f [ε, εm(τ )]. On the
other hand, one can define the equilibrium or relaxation energy
as the average energy of the carriers. In this definition, the
equilibrium energy is calculated as

〈ε〉 =

∫
εg(ε)f (ε, εF )dε∫
g(ε)f (ε, εF )dε

. (D1)

To obtain ετ , one needs to replace εF with εm(τ ) in the
above equation. We find that the averaging method gives
excellent agreement with Monte Carlo simulations. In compar-
ison, the method of maximizing the product f × g results in
slightly lower values for the equilibrium energy at intermediate
and higher temperatures and a more pronounced minimum
(Fig. 3). However, since the product f × g is approximately
a symmetric function of energy, the two definitions result in
the same overall trend and similar values for the relaxation
energy. From a practical point of view, while the first method
is numerically more tractable, the second definition is most
suitable for comparing with kMC simulation results, where
the relaxation energy is obtained by averaging over different
exciton trajectories. Throughout this paper, we adopted the
first method, except in Figs. 4 and 8 where we compare ετ

with kMC calculations and experimental results.
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