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Schmidt gap in random spin chains
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We numerically investigate the low-lying entanglement spectrum of the ground state of random one-dimensional
spin chains obtained after partition of the chain into two equal halves. We consider two paradigmatic models: the
spin-1/2 random transverse-field Ising model, solved exactly, and the spin-1 random Heisenberg model, simulated
using the density matrix renormalization group. In both cases we analyze the mean Schmidt gap, defined as the
difference between the two largest eigenvalues of the reduced density matrix of one of the two partitions, averaged
over many disorder realizations. We find that the Schmidt gap detects the critical point very well and scales with
universal critical exponents.
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I. INTRODUCTION

The entanglement spectrum (ES) [1], the set of eigenvalues
of the reduced density matrix of a quantum many-body state,
has now become a standard fingerprint that reveals much
more information on a state compared to measures of bipartite
entanglement, such as the von Neumann entropy and the
negativity (see Refs. [2,3] for recent comprehensive reviews).

Originally introduced to study the transition to a topolog-
ically ordered state in the quantum Hall effect [1], ES has
been used for the characterization of spin chains and other
one-dimensional (1D) models in real and momentum space
[4–13]. The distribution of the Schmidt eigenvalues in the
middle of the spectrum has been studied by means of conformal
field theory [14]. The study of the structure of the low-lying part
of the ES in 1D models also reveals the Luttinger parameter
[15,16]. In 2D systems the situation is somewhat less clear and
the universality of the ES has been challenged [17].

The Schmidt gap, the difference between the two largest
Schmidt eigenvalues of the ES, originally introduced in [18]
and [19], was shown to scale according to universal critical
exponents in [20–24]. It was further employed in the charac-
terization of 2D spin models in a region close to a topological
spin liquid [25,26]. The time evolution of the Schmidt gap was
analyzed in [27–29] for the dynamics after a quantum quench in
homogeneous systems and in [30] for a quench to a many-body
localized Hamiltonian. Whether or not the Schmidt gap can be
applied as an instrument to detect criticality in random models
is still an open question.

The effect of randomness in spin models, whether intro-
duced via disorder in coupling constants or through some
random external field, has become an area of significant interest
since the early studies on the random transverse-field Ising
model [31–33]. Randomness has been shown to modify the
characteristics of phase transitions [34,35], as well as transition
a spin system from one universality class to another [36,37],
and is integral to the emergence of interesting phases such
as the Griffiths and random singlet phases (RSPs) [38–40].
Recently a lot of attention has been devoted to the mechanism

of many-body localization in 1D and 2D systems [41–44].
While these random models have usually been investigated
using corresponding order parameters [36,45] and entangle-
ment entropy [46–49], a few works have analyzed numerically
the entanglement spectrum of the ground and excited states of
random spin chains [12,50–52].

In this paper, we study the Schmidt gap of the ground
state of random spin-1/2 and spin-1 chains. We show for both
models that the closing of the Schmidt gap, averaged over
the disorder distribution, signals the occurrence of a quantum
phase transition. Moreover, we are able to observe universal
scaling of the Schmidt gap with critical exponents.

II. RANDOM TRANSVERSE-FIELD ISING MODEL

We consider L spin- 1
2 arranged in a chain with open

boundary conditions and Hamiltonian

H = −
∑

i

Jiσ
x
i σ x

i+1 −
∑

i

hiσ
z
i . (1)

The couplings Ji of the Ising interaction and the transverse
magnetic fields hi are independent random variables drawn
from the distributions π (J )dJ and ρ(h)dh, which can be
gauged to be positive. In the following, we consider the
distributions π (J ) and ρ(h) to be uniform in the intervals
J ∈ [0, 1] and h ∈ [0, hmax], respectively, and 0 otherwise.
This choice reduces the Hamiltonian parameters to only one
variable, hmax.

The physics underlying the ground state of this Hamiltonian
is closely related to the finite-temperature behavior of a 2D
classical Ising model with quenched randomness correlated
along one direction [53,54]. The quantum Hamiltonian in
Eq. (1) is recovered by taking the continuum limit of the
classical model, and it was first investigated with transfer
matrix methods by Shankar and Murthy [55]. In particular, by a
simple duality argument, it can be shown that a quantum phase
transition takes place when the two distributions π (J ) and
ρ(h) are identical. By defining the magnetic-field parameter
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�h = [log h]D (where [·]D is the disorder average), the quan-
tum critical point is found at �c = [log J ]D , corresponding to
hmax

c = 1 for our choice of distributions. The phase diagram
features a paramagnetic phase (�h > �c) and a ferromagnetic
phase (�h < �c) with nonzero spontaneous magnetization
mx = [

∑
i〈σx

i 〉]D �= 0, where 〈·〉 denotes the ground-state
average.

The magnetic properties, both at criticality and off crit-
icality, can be derived following a renormalization-group
approach [31], where the short-wavelength modes are cut
off from the system by targeting the strongest coupling � =
max{Ji, hi}. In practice, via perturbation theory, the excited
states of the subspace for the local Hamiltonian describing the
degrees of freedom connected to � are eliminated, leading
to a new effective Hamiltonian with a lower energy scale �

at each step. This iterative procedure allows the estimation
of the correlation function and the various critical expo-
nents [32]. In particular, the behavior of the typical correlation
function C(r ) = ∑

i〈σx
i σ x

i+r〉 is found to be very different
from that of the average correlation function [C(r )]D =
[
∑

i〈σx
i σ x

i+r〉]D . At criticality, the typical correlation decays
as C(r ) ∼ exp(−√

r ) while the average correlation follows a
power-law decay [C(r )]D ∼ 1/r2−φ , where φ = (1 + √

5)/2
is the golden mean. On the other hand, in the paramagnetic
phase, both correlation functions decay exponentially with
correlation length ξ ∼ (hmax − hmax

c )−ν . The critical exponent
ν differs for the two cases, with ν = 1 and ν = 2 for the
typical and average correlation function, respectively. The
spontaneous magnetization in the ferromagnetic phase is
mx (hmax) ∼ (hmax

c − hmax)β with critical exponent β = 2 −
φ = (3 − √

5)/2 � 0.381.
The entanglement structure for the random transverse-field

Ising model can be calculated exactly by first mapping the
spin degrees of freedom into a system of noninteracting
fermions using the Jordan-Wigner transformation [56]. Within
this representation, the reduced density matrix for a subsystem
S is simply given by ρS = Z−1exp(−K ), where K is called
the entanglement Hamiltonian and Z is the normalization
constant [57]. Given the correlation matrices C = 〈c†c〉, F =
〈c†c†〉, with (c†, c) the fermionic creation and annihilation
operators, the eigenvalues εk of K can be calculated from the
matrix M = 2C − I − 2F , where I is the identity matrix, by
singular value decomposition [58]. We can easily calculate the
ES {λi} directly from the full spectrum {εk} of the entanglement
Hamiltonian following the approach explained in Ref. [58]. In
all calculations we partition the chain into two equal halves.

In Fig. 1 we show the entanglement properties as a function
of the upper bound hmax of the magnetic-field distribution
ρ(h). In Fig. 1(a) we plot the six largest eigenvalues of the
ES for a system comprising L = 128 spins. Each data point
is obtained by averaging the eigenvalue over 104 realizations
of disorder. Analogously to the homogeneous case [20], in
the ferromagnetic phase the ES is characterized by doubly
degenerate multiplets, as a consequence of the unbroken Z2

symmetry. The doublets are lifted at and beyond the quantum
critical point hmax

c = 1.
We now study the properties of the Schmidt gap �λ = λ1 −

λ2, where λ1 and λ2 are the two largest Schmidt eigenvalues.
As shown in Fig. 1(b), for small fields hmax < 1, �λ ∼ 0
as a consequence of the existence of the doublets in the
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FIG. 1. Entanglement structure of the random transverse-field
Ising chain, for a system size of L = 128. (a) Largest eigenvalues
λi in the ES plotted versus the upper bound hmax of the magnetic-field
distribution ρ(h). (b) Schmidt gap �λ as a function of hmax for
different system sizes. Each data point was computed as the average
over 104 realizations of disorder. The dashed line represents the
expected critical value of hmax at which the phase transition occurs.

ferromagnetic phase. But for larger fields corresponding to
the paramagnetic phase, �λ grows and eventually saturates to
1 for infinite magnetic field (all the spins are aligned along
the magnetic field and the state is a product state with a
single Schmidt eigenvalue). The behavior of the Schmidt gap
in the random Ising chain is similar to its behavior in the
corresponding homogeneous Ising chain [20]. Therefore it is
quite intriguing to check whether the critical scaling of the
Schmidt gap can be observed also in the random model. To
this end we assume a finite-size scaling ansatz for �λ which
is normally employed for order parameters [20,59]:

Q(L, hmax) � L−βQ/νfQ

(∣∣hmax
c − hmax

∣∣L1/ν
)
, (2)

where Q is the order parameter under investigation and βQ the
corresponding critical exponent.

Using ansatz (2), in Fig. 2, we performed a fit with system
sizes L = 32, 64, 128, and 256 around the critical point, where
each point was averaged over 3 × 104 realizations of disorder.
We observe the best data collapse with an estimated critical
exponentβ�λ = 0.39 ± 0.01 compatible (within statistical and
finite-size error) with the order parameter critical exponent β.
In the fit we fixed the correlation length critical exponent ν = 2.
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FIG. 2. Collapse plot for the Schmidt gap �λ as a function of
hmax for different system sizes, L = 32, 64, 128, and 256, obtained
averaging over 3 × 104 realizations of disorder using Eq. (2). The
critical exponent β�λ = 0.39 ± 0.01 is obtained from a fit with fixed
parameters hmax = 1.0 and ν = 2.0.

This numerical evidence clearly demonstrates that even for
the random model, as for the homogeneous case, the low-lying
structure of the ES is universal and determined by universal
critical exponents.

III. RANDOM SPIN-1 HEISENBERG CHAIN

In this section, we turn our investigation to the spin-1
random antiferromagnetic Heisenberg chain, defined by the
Hamiltonian [36,60,61],

H =
∑

i

JiSi · Si+1, (3)

where Si = (Sxi, Syi, Szi ) are the ith-site angular momentum
operators and Ji are positive couplings. For Ji = J > 0, i.e., a
homogeneous chain, the ground state is in the gapped Haldane
phase, characterized by the absence of any local order, a
nonzero string order, which we introduce later, and an evenly
degenerate ES.

We introduce disorder in the model by choosing

Ji = ζ δ
i , (4)

where δ controls the strength of disorder and ζi is a random
variable distributed uniformly between 0 and 1. The probability
distribution of Ji is

πδ (J ) = δ−1J−1+1/δ. (5)

The gapped Haldane is stable for Jmin/Jmax > 0.6, where
Jmin and Jmax are the smallest and largest couplings, respec-
tively. For the power-law distribution, (5), and for δ > 0,
we have Jmin/Jmax = 0, and the gapped Haldane phase is
immediately destroyed for an infinitesimal amount of this
type of disorder. However, for small δ the system enters the
so-called gapless Haldane phase, a type of Griffith phase with
closed Haldane gap, but exhibiting the hidden topological order
characteristic of the gapped phase [40,60]. For very strong
disorder δ 	 1, the ground state is in the random singlet phase,
which is a gapless phase consisting of pairs of spins in singlets
spanning arbitrarily long distances [61–64].

The phase diagram for the spin-1 random antiferromagnetic
Heisenberg chain when using a power-law disorder distribution
is the following [36,65,66]: gapped Haldane at zero disorder
(δ = 0), gapless Haldane (Griffiths) at 0 < δ < 1, and, finally,
RSP at δ � 1. This power-law distribution for the disorder
is required in order to cross the phase transition between the
Haldane and the RSPs [36,65]. The critical point at which
this phase transition takes place is known to be approximately
δc = 1. A boxlike disorder distribution is only able to reach a
disorder distribution equivalent to that of δ = 1 and, thus, is
unable to cross the quantum phase transition to the RSP [67].

The results reported in this section have been obtained us-
ing finite-size density matrix renormalization-group (DMRG)
calculations with open boundary conditions [68,69]; between
2000 and 2500 random realizations were used. In an attempt
to reduce issues in the calculations relating to degeneracy of
the ground state, a staggered magnetic field of magnitude
2.5 × 10−3 was placed on the first two and last two spins.
Due to the spin chain having zero spontaneous magnetiza-
tion for all values of δ, we project over the total angular
momentum Mz = ∑

i Szi = 0. In the DMRG calculations 100
states were kept during the renormalization process, resulting
in a maximum discarded weight of 10−6. We remark that
an alternative method to deal with random spin chains is
to employ a quantum parallel method in which disorder is
simulated by means of auxiliary sites coupled to the physical
sites [70]. However, within this method the calculation of the
entanglement spectrum for each disorder realization would not
be efficient.

A. String order and Schmidt gap

We wish to investigate the disorder-induced phase transition
from the Haldane gapless phase to the RSP. To this end, we
consider two disorder-averaged quantities: the string order
parameter and the Schmidt gap, introduced in Sec. II.

The string order parameter is defined as [71,72]

Oz = lim
|l−r|→∞

Oz(l, r ), (6)

where the string correlation function Oz(l, r ) is

Oz(l, r ) = −
[〈

Sz
l exp

[
iπ

r−1∑
k=l+1

Sz
k

]
Sz

r

〉]
D

, (7)

and we take the distance |l − r| to be approximately L/2.
The Haldane gapless phase can be detected by the presence
of a nonzero string order parameter, since this phase retains
long-range correlations from the gapped Haldane phase. On
the other hand, the string order vanishes in the RSP, as each
spin is only correlated with the spin it is in a singlet with.

Conversely, the disorder-averaged Schmidt gap is expected
to be nonzero in the RSP and 0 otherwise. In the RSP there are
3N degenerate ground states, where N is the number of singlets
crossing the center of the chain. Therefore, if no singlet crosses
the center of the chain, the central two spins are in a product
state with corresponding �λ ≈ 1. For sufficiently large system
sizes, there is a nonzero probability of this product state
occurring and, in turn, a nonzero disorder-averaged Schmidt
gap. However, in the gapped and gapless Haldane phases the
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FIG. 3. (a) Average string order parameter, Oz, versus δ for varying chain length. (b) Average Schmidt gap, �λ, versus δ; the color coding
is the same as in (a). (c) Average string order parameter and Schmidt gap extrapolated to infinite length. In all plots, lines connect points and
are a guide for the eye. The dashed vertical line represents the approximate critical value of δ at which the disorder-induced phase transition
takes place.

ground state is evenly degenerate, corresponding to a Schmidt
gap of 0 for all cases of disorder.

Figure 3(a) shows the average string order parameter and
Fig. 3(b) shows the average Schmidt gap, for the region of
interest δ ∈ [0, 1.5]. While the RSP extends for any δ > 1, our
DMRG calculations become unstable for δ > 1.5. Therefore
we restrict ourselves to δ � δmax = 1.5, since we are interested
in the transition at δc ≈ 1. In Fig. 3(a) we see a crossing in the
string order parameter at δ ≈ 0.8 for the majority of chain
lengths, with the crossing occurring at a slightly lower value
of δ for the shorter lengths. It seems reasonable to expect
that this crossing would tend towards δc as the chain length
increases. While we do not observe a crossing in the Schmidt
gap [Fig. 3(b)], we do see strong evidence of finite-size effects,
as it is well known that in the Haldane phase (δ = 0) the
Schmidt gap is 0.

Figure 3(c) shows the results of a finite-size extrapolation
to infinite lengths for the two parameters. This finite-size
extrapolation is done by implementing a method similar to
that of Lajko et al. [36], in which a value for the critical decay
exponent η is extracted by fitting an algebraic dependence
A/Lη of the order parameter vs the chain length, where A

is a fitting prefactor and we fix δ = δc. While the extrapolation
for the string order seems to give reasonable results in the
regions δ → 0 and δ ∼ 1, we observe a maximum around
δ ∼ 0.5, which is not observed in the data for fixed lengths.
This might be related to the closure of the second energy gap in
this region [36], leading to a lower quality of the extrapolation
for our samples.

It is known [36,60,61] that, for critical disorder,
the correlation length diverges as ξ ∼ (δc − δ)−ν

with ν = (1 + √
13)/2 ≈ 2.3028 and that the string

order parameter vanishes as Oz ∼ (δc − δ)2βst with
βst = 2(3 − √

5)/(
√

13 − 1) ≈ 0.5864. Therefore, the
string order decays with length as Oz(L) ∼ L−ηst , where
ηst = 2βst/νst ≈ 0.5093. However, there is currently no
conjecture for the theoretical decay rate of the Schmidt gap,
thus we do not have a theoretical prediction for the value
of η�λ. Due to the more conventional construction of the
order parameter the Schmidt gap is expected to scale as
�λ ∼ (δc − δ)β�λ , therefore resulting in η�λ being calculated
by η�λ = β�λ/ν�λ. The values we find for the critical exponent
η obtained for the string order parameter and Schmidt gap
are ηst = 0.20 ± 0.04 and η�λ = 0.37 ± 0.07 respectively.
Note that the value of ηst obtained is relatively far from the

theoretical value. We expect this discrepancy to be due to the
limited sizes of the chains we considered.

We then performed a finite-size scaling analysis [59] of our
results for the string order parameter and the Schmidt gap in
order to obtain another approximation of the critical decay
exponent using Eq. (2). In this work we fix δc = 1 and allow ν

and βQ to vary until the best collapse of the finite-size results
is obtained. The string order is known to scale, as above, with
βQ = 2βst, due to the construction of the order parameter.

Figure 4(a) shows the collapse for the string order pa-
rameter. The best finite-length collapse was obtained for
βst = 0.24 ± 0.05 and νst = 2.3 ± 0.4, corresponding to a
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FIG. 4. (a) Finite-size scaling analysis of the string order param-
eter, Oz, close to the critical point, δc, for chain lengths L = 48, 56,
64, and 72. (b) Same analysis for the Schmidt gap, �λ.
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FIG. 5. ES, − log(λ), versus δ for L = 72. Ascending values of λi

with i = 1, 2, . . . , 12 as the magnitude of − log(λ) increases. Colors
correspond to the expected eigenvalue grouping in the RSP. The
dashed vertical line, as in Fig. 3, represents the approximate critical
value, δc.

value of ηst = 0.21 ± 0.04. This, again, is relatively far from
the theoretical value of η but is in close agreement with the
value found previously using the finite-size extrapolation. Fig-
ure 4(b) shows the results when the same finite-size scaling is
applied to the Schmidt gap data, with the best collapse obtained
at β�λ = 0.9 ± 0.1 and ν�λ = 2.3 ± 0.4, corresponding to
η�λ = 0.38 ± 0.08. This is significantly closer to the theoret-
ical value of η while also being in good agreement with the
value found from the extrapolation. In both cases, the critical
exponent ν is found to be very close to the theoretical value,
thus validating the numerical simulations.

B. Entanglement spectrum and entropy

Finally, we investigate the disorder-averaged ES for the
first 12 eigenvalues of the reduced density matrix. The Hal-
dane phase has a known [18,21] degeneracy sequence of
[2, 4, 2, 4, . . . ] in the eigenvalues of the reduced density
matrix. In the RSP, the ES is dependent on the number of
singlets cut at the center of the chain, with eigenvalues λ1 to λ3N

having a value proportional to 1/3N (with N being the number
of spin-1 singlets cut). This leads to an expected eigenvalue
degeneracy distribution of [1, 2, 6, 18, . . . ], which can also be
written as [30, 31 − 30, 32 − 31, 33 − 32, . . . ].

Figure 5 shows the disorder-averaged ES for the first 12
eigenvalues of a chain of 72 spins. For this fixed length, the
eigenvalues separate significantly for δ > 0.4. We expect that
in the thermodynamic limit this separation would occur close
to δc. We can observe quite clearly the transition between the
Haldane phase and the RSP in the structure of the ES, shown in
Fig. 5. In particular, we expect that for larger values of δ, where
all contributions but those of singlets are almost eradicated, λ4

will group closer with the eigenvalues λ5 and λ6.
Particularly interesting is also the probability distribution

P of the entanglement entropy, as it is directly related to the
distribution of the eigenvalues. We calculate the von Neumann
entropy,

E = −Trρ� log2 ρ�, (8)
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FIG. 6. Probability distribution, P , of the von Neumann entropy,
E, for strength of disorder (a) δ = 0.5 and (b) δ = 1.5 for a spin chain
of length 56.

of the reduced density matrix,

ρ� = TrL−�|ψG〉〈ψG|, (9)

where |ψG〉 is the ground state of Hamiltonian (3) and � = L/2.
Figure 6 shows the probability distribution of the von Neu-

mann entropy for two values of disorder, one corresponding
to the Griffiths phase and one to the RSP. The distribution
is plotted such that the horizontal axis represents the ratio
E/ES , where ES = log2(3) � 1.585 is the entanglement of
a spin-1 singlet. Therefore, peaks at integer values represent
an integer number of singlets crossing the center of the chain.
A significant change in the distribution of entanglement is seen
as we move from the Griffiths phase to the RSP. Specifically,
the distribution becomes much broader in the RSP but at the
same time we see a dominance of one entanglement value (and
thus ES), which is unseen in the Griffiths phase. Our ability
to only investigate smaller values of δ explains the relatively
rare occurrence of zero (∼5%) and more than one (∼0.5%)
spin-1 singlets being cut. As such, we fully expect these peaks
to become more prominent for larger disorders and for larger
lengths.

It is well understood [37,73] that, further in the RSP for
large disorder, the smearing between contributions to the von
Neumann entropy from singlets decreases, and the same would
be seen in the distribution of the eigenvalues. We assume that,
for strong enough disorder, the ES will depend exclusively
on the number of singlets being cut, and thus the disorder-
averaged spectrum will depend on the probability of cutting
a number of singlets N , with this probability varying as the
disorder increases.

IV. CONCLUSIONS

In summary, we have numerically investigated the entan-
glement spectrum of the ground state of random spin-1/2 and
spin-1 chains. The structure and degeneracy of the low-lying
levels of the entanglement spectrum reveal the emergence of
a quantum phase transition even in these disordered models.
Remarkably, even for the two inequivalent random models we
studied, the Schmidt gap detects the corresponding critical
points and scales with universal critical exponents. These
results reinforce the role of the Schmidt gap as a useful probe
in quantum critical phenomena and open the way to possible
extensions to dynamics in the presence of disorder and noise.
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