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Collapse of the electron gas from three to two dimensions in Kohn-Sham density functional theory
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Under pressure, a quasi-two-dimensional electron gas can collapse toward the true two-dimensional (2D) limit.
In this limit, the exact exchange-correlation energy per electron has a known finite limit, but general-purpose
semilocal approximate density functionals, such as the local density approximation (LDA) and the Perdew-Burke-
Ernzerhof generalized gradient approximation (PBE GGA), are known to diverge to minus infinity. Here we
consider a model density for a noninteracting electron gas confined to a thickness L by infinite-barrier walls, with
a fixed 2D density 1/[π (r2D

s )2] and r2D
s = 4 Bohr. We estimate that LDA, PBE, and the strongly constrained and

appropriately normed (SCAN) meta-GGA are accurate for the exchange-correlation energy over a wide quasi-2D
range, 1.5 < L/r2D

s < 3.85, but not for smaller L. Of these functionals, only SCAN tends to a finite limit when
L tends to 0. Since the noninteracting kinetic energy, treated exactly in Kohn-Sham theory, dominates in this
limit within a deformable jellium model, all of the general-purpose functionals can estimate the pressure required
to achieve any thickness (with SCAN and LDA better than PBE). This pressure vanishes around L/r2D

s = 3.85,
where the 3D electron density is roughly that of the valence electrons in metallic potassium, and it reaches about
20 GPa at L/r2D

s = 1.5 and 400 GPa at L/r2D
s = 0.6.

DOI: 10.1103/PhysRevB.98.085147

I. INTRODUCTION

Ground-state Kohn-Sham density functional theory
(KS-DFT) [1] is a widely used method to find accurate
approximate properties of many-electron systems at reasonable
computation cost. The ground-state energy in DFT is the sum of
noninteracting kinetic, electrostatic, and exchange-correlation
energy terms.

All three are exact in principle, however in practice the
exchange-correlation energy Exc must be approximated. Exc

is often decomposed into exchange Ex (Pauli exclusion) and
correlation Ec (driven by Coulomb repulsion) terms. Most of
the chemical bonding energy is due to exchange-correlation
energy [2], therefore reliable approximations of Exc are needed
to reach chemical accuracy. These approximations have a
hierarchy, sometimes referred to as Jacob’s Ladder of density
functional approximations [3].

In order of increasing accuracy, they are the local density
approximation (LDA) [1,4] (e.g., Ref. [5]), the generalized
gradient approximation (GGA, e.g., Ref. [6]), meta-GGA
(e.g., Ref. [7]), and fully nonlocal hyper-GGA [3]. The LDA
exchange-correlation energy density is constructed from the
local electron density alone, while the GGA adds the gradient
of the density, the meta-GGA adds the noninteracting orbital
kinetic energy density, and the hyper-GGA adds the one-
matrix (as in the exact Ex) [2]. The first three rungs of this
ladder of approximations are the computationally efficient
semilocal functionals, and other functionals are typically fully
nonlocal.

More recently, Sun, Ruzsinszky, and Perdew [7] designed a
meta-GGA to satisfy all 17 known exact constraints that a meta-
GGA can satisfy. The strongly constrained and appropriately
normed (SCAN) functional has been shown to be accurate
for diverse systems: ice [8], high-Tc cuprate superconductors

[9], metallic surfaces [10], water [8,11], solids [12], structural
phase transitions [13], and more.

The present work considers only the general-purpose
nonempirical LDA [1,5], PBE [6] (GGA), and SCAN [7]
(meta-GGA) functionals, all of which benefit from error
cancellation in their approximations to Exc. Error cancellation
is best understood in terms of the exchange-correlation hole,
the region of density depletion around an electron [14,15]. The
exchange-correlation hole is deeper and shorter-ranged than
the exchange hole, and thus less fully nonlocal [16]. While
the exact exchange-correlation hole is typically nonspherical,
Gunnarsson and Lundqvist [17] argued that an approximate
Exc only depends upon the spherical average of the exchange-
correlation hole.

Our last diversion before discussing the system in question
is nonuniform scaling in one coordinate. For c a constant, a
nonuniformly scaled density has the form

nx
c (x, y, z) = c n(cx, y, z). (1)

Exact constraints on the exchange and correlation functionals
under nonuniform scaling are known [18]. Ex and Ec from
SCAN are designed to approach finite values under nonuniform
scaling as c → ∞ [7]. Neither LDA nor PBE are constrained
to finite values in this limit.

This brings us to the problem at hand, the quasi-two-
dimensional (2D) electron gas. This is an electron gas confined
to a well that is infinite in two dimensions and finite in the third.
The quasi-2D electron gas can be used to model semiconductor
devices [19–21] and quantum dots [20]. DFT was first applied
to this system by Ryan [19] to study the collective electron
oscillations of a semiconductor quasi-2D well [metalorganic
semiconductor field-effect transistor (MOSFET)].
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Kim et al. [20] were the first to study the 2D limit of the
quasi-2D electron gas. They found that the LDA, a GGA, and
a meta-GGA were not able to recover a finite value, however
the average density approximation (a fully nonlocal functional)
was able to recover a finite limit. In the LDA, GGA, and meta-
GGA, the exchange energy per electron is an average over
the 3D electron density n of −f n1/3, where f is a positive
function. Unless f goes to zero fast enough, the approximate
exchange energy per electron will diverge to minus infinity
in the approach to the true 2D limit, because the 3D density
diverges. In the LDA, f is a constant. In the PBE GGA, f

approaches a constant that is bigger than the one for the LDA
by a factor of 1.804. But, in the SCAN meta-GGA, f more
correctly approaches zero.

García-González [21] showed similar results to those of
Kim et al., and demonstrated that the weighted density ap-
proximation (another fully nonlocal functional) was also able
to recover a finite 2D limit. The method of this work follows
that of Pollack and Perdew [22], who used nonuniform scaling
to study the behavior of density functional approximations for
a quasi-2D system. They also discussed the constraints that
functionals should obey in the 2D limit.

Constantin et al. [23] extended the work of Pollack and
Perdew to include other hyper-GGAs and the random phase
approximation, and they found for the considered functionals
that only rungs higher than meta-GGA could recover a finite
2D limit. Lastly, Constantin [24] described modifications to
the enhancement factor of a GGA or meta-GGA to recover the
exact Exc of a uniform 2D electron gas.

The challenge that the 2D limit presents to 3D semilocal
functionals like LDA, PBE, or SCAN is well understood. For
a wide quasi-2D system, the system-averaged exact exchange-
correlation hole [14–17] around an electron is not so different
from the spherical hole of the 3D uniform electron gas, upon
which all 3D semilocal approximations are based. But the exact
exchange-correlation hole must remain within the electron
density. As the width of the quasi-2D system tends to zero (the
true 2D limit), the exact hole must flatten into a thin pancake
shape. Even the required spherical average [17] of the exact
hole cannot be approximated by 3D semilocal functionals in
this limit.

II. MODEL

A. Solving the Kohn-Sham equation

What follows is in atomic units, h̄ = m = e2 = 1. Let the
Kohn-Sham potential for the quasi-2D electron gas be

vs (x, y, z) =
{

0, 0 < x < L,

∞ otherwise. (2)

This defines a well of finite transverse width L, and infinite
planar area. Solving the Kohn-Sham equation(

1
2∇2 + vs − Ei

)
φi = 0 (3)

subject to this potential gives the orthonormal KS orbitals for
0 < x < L,

φ�,�k (x, y, z) =
[

2

LA

]1/2

sin(π�x/L)

× exp[i(kyy + kzz)], � = 1, 2, 3, . . . , (4)

where A is the area of a large square on whose sides we impose
periodic boundary conditions, and the ki are the components
of the planar Bloch wave vector �k. This simple model is not
intended to be realistic, but only to share fundamental features
with more realistic models, in the same way that the uniform
electron gas model represents bulk metals and the infinite
barrier model [25] represents metal surfaces.

In the quasi-2D, or small L, regime, only the � = 1 subband
is occupied, the other subbands being very high in energy.
Therefore, the ground-state density is

n(x) =
∑

�k,|�k|<k2D
F

|φ1,�k (x, y, z)|2 = 2

Lπ (r2D
s )2

sin2
(πx

L

)
, (5)

where r2D
s is the 2D Seitz radius. The number of electrons per

unit area is ∫ L

0
dx n(x) = 1

π
(
r2D
s

)2 = n2D
s . (6)

B. Assumptions

Following the lead of Pollack and Perdew [22], we can
observe the effect of collapse under nonuniform scaling. The
scaled density is

nx
c (x) = 2

(L/c)π
(
r2D
s

)2 sin2

(
πx

L/c

)
, (7)

where c � 1. As we shrink the transverse well width L by
increasing the scale factor c, and keep the number of electrons
fixed, the density of electrons within the well increases.
Precisely,

lim
c→∞ nx

c (x) = lim
L→0

n(x) = n2D
s δ(x), (8)

where δ(x) is the Dirac delta.
From Görling and Levy [18], as amended by Pollack and

Perdew [22], we expect the exchange and correlation energies
per electron to scale as

lim
L→0

Ex/N > −∞, lim
L→0

Ec/N > −∞. (9)

LDA and PBE do not satisfy the first constraint. PBE satis-
fies the second constraint, while LDA does not. SCAN was
designed to constrain Ex/N and Ec/N to finite values under
nonuniform scaling. Thus, we expect ESCAN

xc /N to approach a
finite value as L → 0.

The quasi-2D range of thicknesses L is√
3/2πr2D

s = Lmax > L > 0. (10)

Lmax is found by demanding [22]

E
(
� = 1, |�k| = k2D

F

)
< E(� = 2, |�k| = 0), (11)

i.e., the highest occupied orbital in the � = 1 subband must
have energy less than the least energetic � = 2 state. For L = 0,
the system becomes the true 2D electron gas.

To estimate the pressure, we further assume that the quasi-
2D electron gas is a deformable jellium [26–28] in which the
positive background charge distribution automatically deforms
to cancel the electron charge distribution, making the electro-
static energy identically zero.
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C. Functionals, and parametrizations of exact exchange
and correlation energies

We have used the LDA [1,5], PBE [6], and SCAN [7]
functionals to approximate the exchange-correlation energy
per electron Exc/N as a function of L/r2D

s .
An analytic expression for ELDA

x /N can be found for this
system. The analytic expression was used to estimate the
accuracy of the computations; this process is described in
Appendix B. This expression shows the L−1/3 divergence of
the LDA exchange energy per electron as L tends to zero.

A Padé approximant from Betbeder-Matibet et al. [29]
closely fits the known exact exchange energy per electron
of a quasi-2D electron gas in the model of Eq. (2) over
the whole range of L. We have employed this parametriza-
tion as our “exact” reference. The exact correlation energy
per electron is known only for L = 0 [30]. To parametrize
Eexact

c /N , we assumed SCAN is an accurate approximation
to Exc(L = Lmax)/N , and that Eexact

c /N depends weakly on
L/r2D

s . For a, b > 0, the best Padé approximant based upon
known information is

Eparam
c /N = − a

1 + bL/r2D
s

, (12)

subject to the constraints

Eexact
xc (L = 0)/N = Eparam

x (L = 0)/N

+Eparam
c (L = 0)/N, (13)

ESCAN
xc (L = Lmax)/N = Eparam

x (L = Lmax)/N

+Eparam
c (L = Lmax)/N. (14)

Therefore, a = 0.0566 and b = 0.351. As we will show in
the next section, our simple parametrization for the exchange-
correlation energy per electron is close to LDA, PBE, and
SCAN over a wide range 0.4Lmax < L < Lmax, and it is also
exact at L = 0. We will therefore take this parametrization to
be an “exact” reference for all quasi-2D L.

III. EXCHANGE-CORRELATION AND KINETIC ENERGY
IN THE MODEL

As SCAN was designed to satisfy all 17 known exact
constraints on a meta-GGA, we expect that the exchange and
correlation energies of SCAN approach a finite value under
nonuniform scaling. One can find the finite values analytically
by making approximations to the ingredients of SCAN. This
is demonstrated in Appendix A for ESCAN

x /N ; for ESCAN
c /N ,

one would follow the same procedure.
The results of the calculations of Ex/N , Ec/N , and

Exc/N = Ex/N + Ec/N are plotted in Figs. 1, 2, and 3,
respectively. As demonstrated in previous works [20,22,23],
the exchange energy of LDA and of PBE diverges in the
2D limit. The correlation energy of LDA diverges, and the
correlation energy of PBE tends to zero in the 2D limit, as
shown previously [20,22,23].

It is not apparent that ESCAN
xc /N approaches a finite value,

due to the horizontal scale of Fig. 3. To test this assumption,
we fixed L/r2D

s = 10−10 and r2D
s = 4, and we varied the

number of integration mesh points. We observed that the nu-
meric integration converges to a value of ESCAN

x /N = −1.655
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FIG. 1. Exchange energy per electron for the model of Eq. (2) with
r2D
s = 4. Betbeder-Matibet et al. [29] provided the parametrization of

Eexact
x /N .

Hartree in the 2D limit. The approximation in Appendix A
finds ESCAN

x /N = −1.671 Hartree. Compare this to the value
expected from quantum Monte Carlo (QMC) calculations [30],
E2D

x /N = −0.1501 Hartree. Thus SCAN obeys the correct
nonuniform scaling limits for a functional, Eq. (9), and is
about an order of magnitude in error for Ex/N . Constantin [24]
showed that a GGA or meta-GGA would recover the correct
2D limit of the exchange energy per electron for the model of
Eq. (2) if its exchange enhancement factor over LDA exchange
approached 0.521 s−1/2 in this limit, in which the reduced or
dimensionless density gradient s diverges. In this limit, the
SCAN enhancement factor tends to 5.81 s−1/2, about an order
of magnitude bigger. If the Constantin limit proves to be rea-
sonably universal, it can be incorporated into a revised SCAN.

ESCAN
c /N tends to zero in the 2D limit, as expected by

Eq. (9). This is unrealistic, but preferable to the logarithmic
divergence of LDA.
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FIG. 2. Correlation energy per electron for the model of Eq. (2)
with r2D

s = 4. The parametrization of Eexact
c /N is given by our

Eq. (12).
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FIG. 3. Exchange-correlation energy per electron for the model
of Eq. (2) with r2D

s = 4. The exact result has been parametrized as a
guide to the eye. We see good error cancellation, especially for LDA
and SCAN. The inset shows a closer view for 0 < L/r2D

s < 0.25.

Over most of the quasi-2D regime, for exchange alone
(Fig. 1) and for correlation alone (Fig. 2), LDA is more
accurate than PBE, and PBE is more accurate than SCAN. This
surprising result reflects the challenge to density functional
theory that this regime presents, although the story changes
when exchange and correlation are added together.

As expected for all semilocal functionals [15–17], Exc/N

in Fig. 3 shows a strong error cancellation between exchange
and correlation, making all three functionals accurate over the
wide quasi-2D range 1.5 < L/r2D

s < 3.85. PBE now seems
to perform the worst of the three, diverging faster than LDA
or SCAN as L/r2D

s → 0. We remind the reader that, while it
appears LDA and SCAN both diverge, ESCAN

xc /N ≈ −1.655
Hartree in the 2D limit.

The noninteracting orbital kinetic energy density, needed
for meta-GGAs, is

τ =
∑

�k,|�k|<k2D
F

|∇φ1,�k|2 = |∇n|2
8n

+ n

2
(
r2D
s

)2 , (15)

where the first term on the right-hand side is the von Weizsäcker
kinetic energy density and the second term is the true 2D
kinetic energy density. As L → 0, the first term dominates.
As L → 3.85r2D

s , the integrated values per electron of the first
and second terms become, in units of 1/(r2D

s )2, 0.333 and
0.5, respectively. Their sum becomes 0.833, not so different
from the Thomas-Fermi kinetic energy 0.702 [both in units of
1/(r2D

s )2].

IV. PRESSURE AND PHYSICAL INTERPRETATION
OF THE MODEL

In the deformable jellium model [26–28], which is consis-
tent at the Hartree level with Eq. 2, the total energy of the
electron gas inside the well is

E = Ts + Exc, (16)
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(Ts + Exc)/Ts vs. L/rs
2D

SCAN
Parametrization

FIG. 4. The portion of the total energy that is noninteracting
kinetic energy for the model of Eq. (2), assuming the quasi-2D
electron gas is a deformable jellium [26–28]. We compare only the
SCAN and parametrized exact values.

where Ts = A
∫ L

0 dx τ is the noninteracting kinetic energy per
electron, and τ is given by Eq. (15). The ratio (Ts + Exc)/Ts is
the ratio of total to noninteracting kinetic energy. As the ratio
increases, the pressure of the electron gas increases and vice
versa. The ratios for the parametrized exact and SCAN values
are plotted in Fig. 4. Since the noninteracting kinetic energy is
treated exactly in all Kohn-Sham calculations, we can expect
small relative errors in the total energy per electron from LDA,
PBE, and SCAN.

The thermodynamic pressure is

P = −
(

∂E

∂V

)
N

= − 1

A

∂

∂L
(Ts + Exc)n2D

s
(17)

calculated here under the constraint of constant n2D
s or r2D

s .
The highest pressure that can be achieved in experiment is
400 GPa from a diamond anvil [31]. The pressures from the
parametrization and SCAN are plotted in Fig. 5. We see that
400 GPa is reached at L/r2D

s ≈ 0.6.
The thermodynamic pressure provides a practically achiev-

able lower bound to the well width. What is the pressure at the
upper bound to the well width of Eq. (10)? Pollack and Perdew
[22] derived the 3D bulk Seitz radius r3D

s by equating the
multipole moments of the electron density with the moments
of the positive background density. We use Eq. (24) of Pollack
and Perdew [22],

r3D
s (L) = (3/4)1/3(1 − 6/π2)1/6

[
L

(
r2D
s

)2]1/3
, (18)

to find r3D
s (L = Lmax) = 4.87, nearly the same as for uncom-

pressed metallic potassium. Thus the physical analog of our
system is roughly a monolayer of potassium at equilibrium
under zero or positive pressure.

A more realistic self-consistent pseudopotential calculation
(but with the pressure still applied by infinite barriers) would
of course produce quantitatively different results, except in the
limit whereL tends to zero. In this limit, the 3D electron density
n tends to infinity, and the electrons behave increasingly as if
they were free of all potentials other than the infinite barriers.
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for SCAN and for the parametrized exact exchange-correlation energy
in this model. The vertical axis is on a logarithmic base 5 scale, where
the maximum displayed value is 400 GPa, the current upper limit of
experimental pressure [31].

V. SUMMARY AND CONCLUSIONS

We have shown that the SCAN meta-GGA is able to recover
a finite Ex/N in the 2D limit of a quasi-2D electron gas. The
SCAN value of Ex/N is one order of magnitude greater than
the true 2D value, as found by QMC [30]. We did not need to
use a fully nonlocal functional to recover a finite limit.

We suspect that much of the error in the approximated
exchange-correlation energy per electron at small L/r2D

s is due
to spurious self-interaction. All semilocal functionals allow
for electrons to interact with themselves [32]. For delocalized
systems and systems of finite extent, self-interaction error is
often negligible compared to the error in approximating Exc.
We expect that as a semi-infinite 3D system is collapsed into
an infinite 2D system, and all Kohn-Sham orbitals become
localized as Dirac δ functions, self-interaction errors will no
longer be negligible.

As Kim et al. [20], García-González [21], and Constantin
et al. [23] have shown that fully nonlocal functionals can
recover the exact value of Ex/N , and as those functionals
suffer from little to no self-interaction error, we suspect that a
self-interaction correction to SCAN will increase the accuracy
of ESCAN

x /N .
The exact 3D exchange-correlation energy should pass over

smoothly to the exact 2D exchange-correlation energy as L

tends to zero. The presence of a component of interacting
kinetic energy in the correlation energy, arising from electron
acceleration due to mutual Coulomb repulsion, would not im-
pede this smooth transition, since it would become increasingly
confined to a two-dimensional kinetic energy in this limit. Al-
though the general-purpose nonempirical density functionals
LDA, PBE, and SCAN cannot predict the exchange-correlation
energy of a true 2D electron gas, they can still in a Kohn-Sham
calculation predict the total energy and pressure with a small
relative error, even under extreme compression. Our simple
model for the quasi-2D electron gas corresponds roughly to
a monolayer of potassium under zero or positive pressure,

although this physical analogy will break down at pressures
so high that even the core electrons of the potassium are
compressed.
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APPENDIX A: EVALUATION OF SCAN EXCHANGE
ENERGY PER ELECTRON IN THE TRUE 2D LIMIT

The 2D limit of the electron density can be found using
nonuniform scaling,

lim
L/r2D

s →0
n(x) = n2D

s δ(x). (A1)

SCAN has two primary ingredients, s and α; we begin with
the reduced density gradient s,

s = |∇n|
2(3π2)1/3n4/3

=
[
πr2D

s√
6L

]2/3 ∣∣ sin
(

πx
L

)
cos

(
πx
L

)∣∣
sin8/3

(
πx
L

) . (A2)

In the 2D limit, s(x �= L/2) → ∞ and s(x = L/2) → 0,
however the contribution from the single point x = L/2 will
vanish under integration. We approximate

lim
L/r2D

s →0
s → ∞. (A3)

The orbital kinetic energy density τ is given by Eq. (15),
and α reduces to

α = τ − τW

τ unif
= 5

3(3π2)2/3
(
r2D
s

)2 n−2/3. (A4)

By virtue of Eq. (A1), in the 2D limit,

lim
L/r2D

s →0
α = 0. (A5)

We omit the work necessary to find the exchange energy
functional integrand, and we present our result for the 2D limit,

lim
L/r2D

s →0

ESCAN
x [n]

N
≈ − 3

4π

(3π2)1/3

n2D
s

h0
xa1[2(3π2)1/3]1/2

×
[

2

π
(
r2D
s

)2
L

]2[
L2

(
r2D
s

)2

4

]1/2

×
∫ L

0
dx

sin4(πx/L)

| sin(πx/L) cos(πx/L)|1/2
.

(A6)

The symmetry of the integrand permits analytic integration
(see, e.g., Arfken [33], Eq. 10.59). From Sun, Ruzsinszky,
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and Perdew [7], h0
x = 1.174 and a1 = 4.9479, and in our work

r2D
s = 4 Bohr, thus

lim
L/r2D

s →0

ESCAN
x [n]

N
≈ −1.671 Hartree. (A7)

APPENDIX B: ESTIMATION OF ERROR IN NUMERIC
INTEGRATION AT ANY THICKNESS

An analytic expression for ELDA
x /N at any L is [1]

ELDA
x [n]

N
= − 3

4π
(3π2)1/3 A

N

∫ L

0
dx n(x)4/3, (B1)

and for the quasi-2D electron gas density, this can be reduced
[33] to

ELDA
x [n]

N
= −0.566 392

r2D
s

(
L/r2D

s

)−1/3
. (B2)

We define the percent error as

|Eanalytic
x − Enumeric

x |/Eanalytic
x 100%. (B3)

For all values of L/r2D
s , the percent error of our numerical

LDA calculation is approximately 1.32 × 10−6%. This is a
lower bound on the error for the other functionals, as the PBE
and SCAN integrands can vary more rapidly as functions of x

than the LDA integrand does.
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