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Photonic Floquet media with a complex time-periodic permittivity
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We study the formation of exceptional points (EPs) in a photonic medium with a complex time-periodic
permittivity, i.e., ε(t ) = εo + εr sin(�t ). We formulate Maxwell’s equations in the form of a first-order non-
Hermitian Floquet Hamiltonian matrix and solve it analytically for the Floquet band structures. In the case when
εr is real, to the first order in εr , the band structures show a phase transition from an exact phase with real
quasienergies to a broken phase with complex quasienergies inside a region of wave-vector space, the so-called
k gap. We show that the two EPs at the upper and lower edges of the k gap have opposite chiralities in the
stroboscopic sense. By picking up the mode with a positive imaginary quasienergy, the wave propagation inside
the k gap can grow exponentially. In three dimensions, such pairs of EPs span two concentric spherical surfaces
in the �k space and repeat themselves periodically in the quasienergy space with � as the period. However, in
the case when εr is purely imaginary, the k gap disappears and gaps in the quasienergy space are opened. Our
analytical results agree well with finite-difference time domain simulations. To second order in εr , additional
EP pairs are found for both the cases of real and imaginary εr . We also extend our theory to the case where the
permittivity is simultaneously modulated in both space and time, i.e., ε(x, t ) = εo + εr sin(�t − βx + φ). For
a real εr , we find that EPs also exist when the modulation speed cm = �/β is faster than the speed of the wave
travelling inside the medium.
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I. INTRODUCTION

Time Floquet or periodically driven systems are systems
the parameters of which are periodic in time. As the time
modulation can represent a rich and versatile resource that is
used to achieve many novel phenomena, time Floquet systems
have attracted great attention recently. In quantum systems,
researchers have reported that the topological spectra can be
achieved when a proper time perturbation is introduced to a
system which is topologically trivial in the static case [1–3],
and the topological state is called the Floquet topological state.
Later, these Floquet topological states were observed in pho-
tonic [4–6] and solid-state [7] experiments, which motivated
the detailed study of topological phenomena in periodically
driven systems [8–12]. Time Floquet classical systems, such as
LC circuits with time-reactive elements [13–17] and dynamic
mediums with time-periodic permittivity [18–24], have been
investigated. For a long time, researchers have focused their
studies on the amplification and nonreciprocal behaviors in
these time Floquet classical systems [25–29] and made great
achievements. Recently, there has also been a surge of interest
in investigating systems that combine both non-Hermiticity
and time-periodic modulations [30–36], leading to some novel
phenomena that cannot be found in static systems, such as the
exotic parity-time transitions [34,35] and nonreciprocal gain
without gain materials [36].

In this paper, we study a typical time Floquet photonic
system in which the permittivity of the medium has the form
ε(t ) = εo + εr sin(�t + φ), where εr gives the strength of time
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modulation and can be a complex number in general, � is
the modulation frequency, and φ is an arbitrary initial phase
which sets the origin of the time. When εr is real, dispersion
relations as well as transmission and reflection properties of
such dynamic media have been studied previously by solving
a second-order time-dependent scalar wave equation for the
electric field [21,22]. Here, we are interested in the exceptional
point (EP) phenomena in such systems. Using the method of
the Floquet matrix [37], we formulate Maxwell’s equations in
the form of a first-order non-Hermitian Floquet Hamiltonian
matrix and we solve for the photonic Floquet band structures
as well as the Floquet states. To the first order in εr , we show
explicitly that the existence of a gap in the wave-vector space
(the so-called k gap) is an EP phenomenon. At both the upper
and lower edges of the k gap, two real quasienergies coalesce
and form a pair of EPs which are always in opposite chiralities
in the stroboscopic sense. The region between these two EPs
is a broken phase, in which the quasienergies form complex
conjugate pairs so that the Floquet states can decay or grow.
The amplification and damping of waves in this region are
induced by the time modulation in the absence of gain and
lossy materials [34–36]. By picking up the mode with a positive
imaginary quasienergy, the wave propagation inside the k gap
always grows exponentially with a maximal growth rate near
the center of the k gap. This is numerically verified by using
finite-difference time domain (FDTD) simulations. In three
dimensions, all these EP pairs in different directions in the
�k space form two concentric spherical surfaces of EPs with a
broken phase in between. These two concentric surfaces repeat
themselves periodically in the quasienergy space with � as the
period. When εr is purely imaginary, we find quasienergy gaps
instead of a k gap. The opening of quasienergy gaps in this
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case is analogous to the case of graphene where a gap near
a Dirac point can be opened when the onsite energies of the
electrons at two atoms in the unit cell are different. However,
when the difference in the onsite energies is imaginary, the
static Dirac Hamiltonian becomes non-Hermitian and the Dirac
point splits into two EPs with opposite chiralities. The latter
case corresponds to the case of real εr discussed earlier. There
is no EP when εr is a complex number. Since the quasienergies
still form complex conjugate pairs, the medium will support
field amplification and damping. To second order in εr , we
find additional pairs of EPs for both pure real and purely
imaginary εr .

Our theory can also be extended to the more complicated
case where the permittivity is simultaneously modulated in
both space and time, which has the form ε(x, t ) = εo +
εr sin(�t − βx + φ) with β being the spatial modulation
frequency. Using the new variable u = t − βx/� instead of t,
we analytically obtained the Floquet Hamiltonian and used it to
calculate the Floquet bands. When εr is real, we also find EPs
in the Floquet bands when the modulation speed cm = �/β is
faster than the speed of the electromagnetic wave inside the
medium.

Temporally modulating the permittivity in experiments is
not easy. Nevertheless, various techniques such as electro-
optic, thermal-optic, and plasma dispersion effects have been
proposed for realizing time modulation [37–44]. Owing to
the growing interest in the time Floquet photonic system,
sustainable time modulation on the permittivity with very high
modulation frequency can be feasible in the near future [24].

II. FORMULATION OF THE FLOQUET HAMILTONIAN

We consider the electromagnetic wave propagation inside
a dynamic medium where the permittivity is time periodic.
Without loss of generality, we consider a wave propagating
along the x direction with the electric field and magnetic
field in the y and z directions, respectively. For the sake
of mathematical simplicity, we set both the permittivity and
permeability in vacuum as unity and assume that the static
relative permittivity εo > 0. By using the Maxwell equations

∇ × E = − ∂

∂t
B = −∂H

∂t
,

∇ × H = ∂

∂t
D = [εo + εr sin(�t + φ)]

∂E
∂t

+�εr cos(�t + φ)E, (1)

we obtain the following wave equations for the electromagnetic
fields:

−[εo + εr sin(�t + φ)]
∂2Ey

∂t2
− 2� cos(�t + φ)εr

∂Ey

∂t

+�2εr sin(�t + φ)Ey = −∂2Ey

∂x2
= K2Ey,

−[εo + εr sin(�t + φ)]
∂2Hz

∂t2

−� cos(�t + φ)εr

∂Hz

∂t
= −∂2Hz

∂x2
= K2Hz, (2)

where K = Kx̂ is the wave vector. To obtain the Floquet
Hamiltonian, we followed Ref. [34] to reduce the differential
order by employing the Liouvillian formulation and rewrite
Eq. (2) as a two-component time-dependent Schrodinger-like
equation for the magnetic field and its time derivative, i.e.,

i
∂

∂t

(
Hz

Ḣz

)
= Ĥeff

(
Hz

Ḣz

)
=

(
0 i

−iB −iA

)(
Hz

Ḣz

)
, (3)

where Ḣz = ∂Hz/∂t and

A = �εr cos(�t + φ)

εo + εr sin(�t + φ)
, B = K2

εo + εr sin(�t + φ)
.

(4)

In the absence of time modulation, i.e., εr = 0, Ĥeff reduces
to the time-independent non-Hermitian form:

Ĥeff,0 =
(

0 i

−i K2

εo
0

)
. (5)

The Floquet theorem gives the so-called Floquet-state
solution of Eq. (3) for a specific wave vector K as(

Hz

Ḣz

)
= e−iQ(K )t ��(x, t ) (6)

where Q is the Floquet characteristic exponent or the so-called
quasienergy, which is K dependent, and �� is the so-called
Floquet mode which is periodic in time obeying ��(x, t ) =
��(x, t + 2π/�). Substituting Eq. (6) into Eq. (3), one obtains
the time-dependent eigenvalue equation for the quasienergy
Q as (

Ĥeff − i
∂

∂t

)
�� = Q ��. (7)

From Eqs. (6) and (7), we can see that if Q is an eigenvalue
of Eq. (7) corresponding to the eigenstate �� then Q + n�

with n being an arbitrary integer number is also an eigenvalue
of Eq. (7) corresponding to the eigenstate ein�t ��. Similar
to the Bloch wave vector of a photonic crystal with discrete
translational symmetry, the quasienergy can be thought of as
a periodic variable defined on a quasienergy Brillouin zone
0 � Q � �.

In the following, we will use the Floquet matrix method
[45] to obtain the band dispersions Q(K ). The main idea of
the method is to use the eigenvectors of the time-independent
effective Hamiltonian Ĥeff,0 as the basis to expand the Floquet
mode �� and then transfer the time-dependent eigenvalue prob-
lem Eq. (7) into a time-independent one. Since Ĥeff,0 is pseudo-
Hermitian [46], we can apply a similarity transformation on
Ĥeff,0 to make the time-independent effective Hamiltonian
Hermitian. Here we introduce a time-independent matrix [47]

R̂ =
(√

C i√
C −i

)
, C = K2

εo

, (8)

and the time-dependent effective Hamiltonian is then trans-
formed to

H̃ (t ) = R̂ · Ĥeff (t ) · R̂−1 =
⎛⎝ B−iA

√
C+C

2
√

C

B+iA
√

C−C

2
√

C

−B+iA
√

C+C

2
√

C

−B−iA
√

C−C

2
√

C

⎞⎠.

(9)
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The Floquet modes are then transformed according to ��′ =
R̂ · ��. In the absence of time modulation (εr = 0), the time-
independent part of the effective Hamiltonian becomes

H̃0 = R̂ · Ĥeff,0 · R̂−1 = K√
εo

(
1 0
0 −1

)
, (10)

which is Hermitian with the eigenvectors being �ϕ1 =
(1, 0)T eiKx and �ϕ2 = (0, 1)T e−iKx , respectively. They repre-
sent two linear dispersions: a positive band (� = cK) and
negative band (� = −cK) where c = 1/

√
εo. Then the new

Floquet mode can be expanded in terms of the complete
orthonormal set { �ϕ1, �ϕ2} as

��′ =
2∑

β=1

∞∑
n=−∞

cn
β �ϕβein�t , (11)

where cn
β are the expansion coefficients. Substituting Eqs. (11)

and (9) into Eq. (7), multiplying ( �ϕα )†e−il�t from the left, and
integrating after a time average, we have the time-independent
eigenvalue problem for the quasienergy Q:

2∑
β=1

∞∑
n=−∞

〈�ϕαl|HF | �ϕβn〉cn
β = Qcl

α, (12)

with the Floquet Hamiltonian defined as

〈α, n|HF |β, l〉 = H̃ n−l
αβ + n�δαβδnl, (13)

where −∞ � n, l � ∞ label the block matrix; α, β = 1, 2
label the components inside the block matrix; and

H̃ n−l
αβ = �

2π

∫ 2π/�

0
( �ϕα )† · H̃ (t ) · �ϕβei(n−l)�t dt, α, β ∈ (1, 2).

(14)

In the limit of small |εr/εo|, we can expand H̃ (t ) using a
Taylor series. To the first order in εr/εo we find

H̃ (t ) = H̃0 + H̃1e
i�t + H̃−1e

−i�t , (15)

where

H̃1 = H̃1,K + H̃1,� = eiφ iεr

4εo

K√
εo

(
1 1

−1 −1

)
+ eiφ iεr

4εo

�

(−1 1
1 −1

)
,

H̃−1 = H̃−1,K + H̃−1,� = e−iφ iεr

4εo

K√
εo

(−1 −1
1 1

)
+ e−iφ iεr

4εo

�

(−1 1
1 −1

)
. (16)

From Eq. (13), the Floquet Hamiltonian has the form

H̃F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . . 0 0 0

. . . H̃0 + �
↔
I 2 H̃1 0 0

0 H̃−1 H̃0 H̃1 0

0 0 H̃−1 H̃0 − �
↔
I 2

. . .

0 0 0
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (17)

where
↔
I 2 is the 2 × 2 identity matrix. To the second order in

εr/εo, we find

H̃ (t ) = H̃0 + H̃1e
i�t + H̃−1e

−i�t + H̃2e
2i�t + H̃−2e

−2i�t ,

(18)
where

H̃2 = H̃2,K + H̃2,� = e2iφ ε2
r

8ε2
o

K√
εo

(−1 −1
1 1

)
+ e2iφ ε2

r

8ε2
o

�

(
1 −1

−1 1

)
,

H̃−2 = H̃−2,K + H̃−2,� = e−2iφ ε2
r

8ε2
o

K√
εo

(−1 −1
1 1

)
+ e−2iφ ε2

r

8ε2
o

�

(−1 1
1 −1

)
. (19)

The Floquet Hamiltonian has the form

H̃F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . 0 0

. . . H̃0 + �
↔
I 2 H̃1 H̃2 0

. . . H̃−1 H̃0 H̃1
. . .

0 H̃−2 H̃−1 H̃0 − �
↔
I 2

. . .

0 0
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

Similarly, we can generalize the above procedure to any
order n in εr/εo by finding H̃±n first and then writing down the
corresponding Floquet Hamiltonian using Eq. (13). Here, we
will only consider the cases of n = 1 and 2.

III. EXCEPTIONAL POINTS

In the limit of vanishing |εr/εo|, Eqs. (16)–(20) show
that the Floquet bands can be obtained by copying the two
linear bands of H̃0 and shifting them up and down in the
quasienergy space by integer multiples of �, as shown in
Fig. 1(a). We will call the bands formed by shifting the band of
H̃0 by n� as the nth-order bands. We note that there are both
positive (with positive group velocity) and negative bands (with
negative group velocity) for any order n. Bands of different
orders can cross each other and produce an infinite number
of diabolic points occurring periodically in the K space, at
Kn = n

√
εo�/2, where n is an integer.

When εr �= 0, a positive band and a negative band differing
by an order n can be coupled by the off-diagonal matrices H̃±n

which lifts the degeneracy at the diabolic point and produces
a pair of EPs, a quasienergy gap, or a mixture of the two,
depending on the properties of εr . Since the quasienergies in
the Floquet bands are periodic with the periodic �, we will
only discuss quasienergies in the reduced zone 0 � Q � �.

The block matrices H̃±1 give the coupling between a
positive band and a negative band having orders differing by
one. To the first order in εr/εo, we will only consider the
diabolic points located at Q = �/2 and K = √

εo�/2. When
εr is a real number, H̃±1 is non-Hermitian as can be seen from
Eqs. (16) and (21). Two bands in the vicinity of the diabolic
points can merge and form two EPs at K = K− and K+, as
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K (Ω)
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FIG. 1. Floquet bands for the dynamic medium with permittivity given by ε(t ) = 5 + εr sin(�t + φ). Only the real parts of the quasienergies
are shown. (a) For εr → 0, the bands of H̃0 are copied and shifted up and down by n� with n being an integer. The crossings form degeneracy
points. (b) For real εr , two bands in the vicinity of a degeneracy point will attract each other and form a pair of EPs. The Floquet states between
the two EPs are in the broken phase. (c) When εr is purely imaginary, two bands in the vicinity of a degeneracy point will repel each other and
form a gap. The insets of panels (b) and (c) show the EPs formed by the coupling H̃±2 for the cases of real and purely imaginary εr , respectively.

shown in Fig. 1(b). Quasienergies of the Floquet states inside
the broken phase K− < K < K+ form complex conjugate
pairs. To show this explicitly, we consider the following 2 × 2
reduced Floquet Hamiltonian involving only a negative band
of the first order and a positive band of the zeroth order:

H̃F,red =
⎛⎝ − K√

εo
+ � eiφ iεr

4εo

( − K√
εo

+ �
)

e−iφ iεr

4εo

( − K√
εo

+ �
)

K√
εo

⎞⎠,

(21)
where the four matrix elements are obtained from the cor-
responding entries in Eq. (17). H̃F,red is valid as long as
|εr/εo|  1. The eigenvalues of H̃F,red are given by

Q = �

2
± 1

2

√(
2K√

εo

− �

)2

− ε2
r

4ε2
o

(
K√
εo

− �

)2

. (22)

Equation (22) gives the two EPs

K± = 2εo ± εr

4εo ± εr

√
εo�, (23)

at which the two bands coalesce into a single defective
quasienergy Q = �/2. The existence of EPs is a result of
non-Hermitian off-diagonal terms in Eq. (21). From Eq. (23),
we find to the first order in εr/εo the size of the k gap as

�K = K+ − K− ≈ εr

4εo

√
εo�. (24)

At the EPs, the defective eigenstates obtained from Eq. (21)
have the following forms:

|ψ̃R
−〉 =

(
c1

2

c0
1

)
∝

(
−ieiφ

1

)
, |ψ̃R

+〉 =
(

c1
2

c0
1

)
∝

(
ieiφ

1

)
.

(25)

The chirality of EPs can be defined analogous to the
polarization of electromagnetic waves [48]. Equation (25)
shows clearly that the two EPs possess opposite chirality, which
is expected because they originate from the same diabolic
point. The chirality is determined by the initial phase φ or the
corresponding initial time t0 = φ/�. So the chirality varies
periodically as t0 changes and the stationary chirality can be
observed by a discrete measurement with the time step equal
to 2π/�. Substituting the expression of ψ̃R

1 into Eq. (11), we
obtain the transformed Floquet mode at the EP K = K− as

��′ = c1
2 �ϕ2e

i�t + c0
1 �ϕ1 ∝ −ieiφ

(
0

e−iK−xei�t

)
+

(
eiK−x

0

)
.

(26)
In order to find the explicit eigenfunction of the magnetic

field at the EPs, different from Eq. (25), we have chosen the
first component of the wave function in Eq. (26) as the positive
band, whereas the second component is chosen as the negative
band. In the limit of |εr/εo|  1, and K− ≈ K+ ≈ √

εo�/2,
the time-dependent magnetic field and its derivative can be
obtained from the inverse of the transformation defined in
Eq. (9), i.e.,(

Hz

Ḣz

)
= e−i�t/2 �� = e−i�t/2R̂−1 · ��′

∝ 1

2

(
2
�

(eiK−xe−i�t/2 − ieiφe−iK−xei�t/2)

−ieiK−xe−i�t/2 + eiφe−iK−xei�t/2

)
. (27)

Similarly, we can obtain the magnetic field and its derivative
with respect to time at the EP K = K+ as(

Hz

Ḣz

)
∝ 1

2

(
2
�

(eiK+xe−i�t/2 + ie−iφe−iK+xei�t/2)

−ieiK+xe−i�t/2 − e−iφe−iK+xei�t/2

)
. (28)
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Equations (27) and (28) show that the propagating field
possesses two terms; the first term represents the ordinary wave
propagation due to the zeroth-order positive band, whereas the
second term comes from the negative band of the first order.
And the chirality of the EPs determines the phase difference
between these two terms.

To identify the singularity of the EPs, we studied the phase
rigidity r± at the EPs, which is defined as r± = 〈ψ̃L

±|ψ̃R
±〉

[49], where 〈ψ̃L
±| and |ψ̃R

±〉 are the left and right eigenstates
of the non-Hermitian Hamiltonian Eq. (21), respectively, and
the bracket denotes the inner product. Since the Hamiltonian
H̃F,red is non-Hermitian, the right eigenstates |ψ̃R

±〉 are different
from the left eigenstates 〈ψ̃L

±|. Both together form a biorthogo-
nal basis [48]. At the EPs, the left eigenstates can be calculated
according to

〈ψ̃L
±|H̃F,red = �

2
〈ψ̃L

±|, (29)

and one arrives at

〈ψ̃L
−| ∝ (−ie−iφ 1), 〈ψ̃L

+| ∝ (ie−iφ 1). (30)

Phase rigidity vanishes at the EP according to a power-law
behavior. Combining Eqs. (25) and (30), we can easily find
that the phase rigidities at the two EPs are indeed zero.

Similarly, two opposite bands with orders differing by any
integer±n can be coupled by H̃±n and create an infinite number
of pairs of EPs around K = n

√
εo�/2 with quasienergies at

Q = m�,m ∈ Z. For example, to find the second-order EPs at
Q = 0, we construct a 14 × 14 reduced Floquet Hamiltonian
from Eq. (20) centered at H̃0, from which we find another
pair of EPs located near K = √

εo�, as shown in the inset
of Fig. 1(b). However, the size of the second-order k gap is
much smaller than that of the first order. Similar pairs appear
periodically at Q = m� for all nonzero integers m. There in
an infinite number of pairs of EPs with decreasing size of the
k gap as K increases. For a three-dimensional homogeneous
Floquet medium, these EPs span an infinite number of pairs
of spherical surfaces all centered at K = 0 with radii around
K = n

√
εo�/2 with n being either even or odd.

In order to verify the existence of a broken phase between
a pair of EPs, we use the FDTD method to numerically
simulate the electromagnetic wave propagation inside a slab
of a dynamic medium embedded in air with thickness L and a
time-dependent relative permittivity ε(t ) = εo + εr sin(�t +
φ). The medium is located between 0 < x < L and we excite
the magnetic field by using a pulsed line source of the form
exp(−0.5(t − t0)2/τ 2)δ(x − x0) with x0 < 0, where τ is the
duration time. As shown in Fig. 2, we discretize the medium
with a spatial grid of N + 1 points and M + 1 temporal steps
with the step sizes �x and �t , respectively. Then the time-
dependent electromagnetic fields can be calculated using the
following discretized Maxwell’s equations (Yee’s algorithm):

Ey

∣∣i+1
j =

ε
∣∣i
j

ε
∣∣i+1
j

Ey

∣∣i
j − �t

ε
∣∣i+1
j

ε0

Hz

∣∣i+1/2
j+1/2 − Hz

∣∣i+1/2
j−1/2

�x
,

Hz

∣∣i+1/2
j+1/2 = Hz

∣∣i−1/2
j+1/2 − �t

μ0

Ey

∣∣i
j+1 − Ey

∣∣i
j

�x
.

x

x

x

x

yE yE yE yE

yE yE yE yE

yE yE yE yE

zH zH zH zH

0
0

t
i

1j 2j 3j 1j N
N xx 2 x0

/ 2
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FIG. 2. Graphical representation of the finite-difference time
domain scheme for numerical simulation of photonic Floquet media.

The magnetic field inside the slab is written as

Hz(t, x) =
∫ ∞

−∞
e−iQ(K )t

∞∑
n=−∞

f n
KeiKxein�t dK, (31)

where f n
K is the amplitude corresponding to wave vector K

and the quasienergies in a band of order n. Note that here the
quasienergy is chosen in the first Brillouin zone −�/2 � Q �
�/2. As we discussed previously, when εr is real, there is an
infinite number of pairs of EPs as K increases and between each
pair of EPs is a broken phase with the quasienergies in complex
conjugate pairs. As the time grows, according to Eq. (6), the
field components inside the slab corresponding to the Floquet
states the quasienergies of which possess negative imaginary
parts will decay while the field components corresponding to
the Floquet states the quasienergies of which possess positive
imaginary parts will grow. At large times, the fields inside
the slab will be dominated by the field components the wave
vectors of which are inside the broken phase region. As a result,
this kind of dynamic medium can induce a field amplification
[35,36] if the medium is excited at the proper K.

To describe the amplification behavior, we defined

g0(K ) = 1

(t2 − t1)L

∫ L

0
e−iKxdx

∫ t2

t1

Hze
i�t/2dt, (32)

where t1 and t2 are the starting and ending time for the
measurement. According to Eq. (31), g0(K ) equals to f 0

K

in the condition that Q = �/2. In Figs. 3(a) and 3(b), we
plot the imaginary parts of the quasienergies as well as
|g0(K )| as functions of the wave vector K . We can see clearly
that for the wave vectors in the broken phase region where
the imaginary parts of the quasienergies are nonzero g0(K )
becomes extremely large when the integration time is long
enough. Since the amplitude of the incident field is less than
1, the field inside the slab is greatly amplified. And comparing
Figs. 3(a) and 3(b), we see that when the range of the broken
phase decreases by decreasing εr , the region of wave vectors for
the field amplification also becomes narrower. As the positive
imaginary part of the quasienergy represents the growing rate
of the Floquet states, a larger imaginary part corresponds to a
stronger amplification. To show the periodicity of the Floquet
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FIG. 3. (a) Imaginary parts of the quasienergies (circles) and the absolute value of the function g0(K ) (solid line) for εr = 1.5. (b) Same as
panel (a) but with εr = 0.5. (c) Same as panel (b) but the function g1(K ) is plotted. The functions g0(K ) and g1(K ) are defined in Eqs. (32) and
(33), respectively. For panels (a)–(c), the parameters used for the pulse are t0 = τ = 250T , and the starting and ending times for the integration
of Eq. (32) are t1 = 410T , t2 = 1010T , where T = 2π/�. The thickness of the slab is L = 2000πc/�.

bands, we also defined

g1(K ) = 1

(t2 − t1)L

∫ L

0
e−iKxdx

∫ t2

t1

Hze
i3�t/2dt, (33)

and plotted g1(K ) as function of K in Fig. 3(c). g1(K ) denotes
the amplitude of the Floquet state corresponding to Q = 3�/2.
We can see that g1(K ) has the identical shape as that in Fig. 2(b)
and is also largely amplified in the broken phase region.

If we increase both the starting time t1 and ending time
t2 by �t , according to Eqs. (31) and (32), g0(K ) must be
amplified by exp[Im(Q)�t]. We can therefore numerically
determine the imaginary part of the quasienergy according to
the amplifications for different �t . In Fig. 4(a), we showed
the logarithm of the maximum |g0(K )| (corresponding to the
center of the k gap) as function of �t for different modulation
permittivity εr . It is clearly seen that for each εr , ln |g0(K )|
is linear in �t , and its slope b determines the maximum
imaginary quasienergy according to Im(Qm)/� = b/(2π ).
The maximum imaginary quasienergy Im(Qm) as function of
the modulation permittivity εr is shown in Fig. 4(b), in which

Im(Qm) is calculated using both the Floquet Hamiltonian (in
solid line) and linear fitting of ln|g0(K )| ∼�t (in red circles).
The excellent agreement between the two results is clearly
seen. The linear relation between Im(Qm) and εr can also be
seen from Eq. (22), i.e., Im(Qm) = εr�/(8εo) at the k-gap
center K = √

εo�/2. The linear relation between Im(Qm) and
εr found above is analogous to the Bragg scattering in k space
when a gap is open at the Brillouin-zone boundary due to a
periodic potential of strength �V , and the imaginary part of k

at the midgap is also proportional to �V .

IV. BAND GAPS

When εr is purely imaginary, the reduced Hamiltonian
H̃F,red in Eq. (21) becomes Hermitian. In this case, it is
expected that the interaction between two opposite bands in
the vicinity of the diabolic points at K = √

εo�/2 will become
repulsive and form a quasienergy gap. Indeed, when ε2

r in
Eq. (22) is replaced by −|ε2

r |, we find two separated bands with
the lower band edge at Q = Q− and the upper band edge at
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FIG. 4. (a) The logarithm of the maximum |g0(K )| as a function of the shifted time �t . T = 2π/� is the modulation time period. (b) The
maximum value of the imaginary quasienergy Qm as a function of the modulation permittivity εr calculated by the Floquet Hamiltonian (solid
line) and the linear fitting of slopes in panel (a) (red circles).
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(b) The Floquet band structures in the range of 0.9� � K � 1.4�. The solid lines are calculated using the Floquet Hamiltonian Eq. (20), and
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The parameters for the pulse are t0 = τ = 250T , where T = 2π/�. For the integration of h(K,ω), we used t1 = 410T , t2 = 1010T , L =
2000πc/�.

Q = Q+ as shown in Fig. 1(c). The gap size �Q = Q+ − Q−
can be calculated from Eq. (22). At K = √

εo�/2, we find

�Q =
√(

2K√
εo

− �

)2

+
∣∣ε2

r

∣∣
4ε2

o

(
K√
εo

− �

)2∣∣∣∣
K=√

εo�/2

= |εr |�
4εo

. (34)

If we defined εr = iε̃r , with ε̃r being a real number, it can be
seen from Eq. (34) that the gap will close and reopen when ε̃r

changes from a positive value to a negative one. When ε̃r > 0,
the eigenvectors of Eq. (22) corresponding to Q = Q− and
Q+ are, respectively,

ψ̃R
− =

(
c1

2

c0
1

)
∝

(
eiφ

1

)
, ψ̃R

+ =
(

c1
2

c0
1

)
∝

(
−eiφ

1

)
. (35)

Substituting Eq. (35) into Eq. (11) and combining with
Eq. (6), we obtain the following magnetic fields and their time
derivatives at Q = Q− and Q+, respectively:(

Hz

Ḣz

)
= e−iQ−t R̂−1 · ��′∝e−iQ−t

(
2
�

(eiKx + eiφe−iKxei�t )

−ieiKx + ieiφe−iKxei�t

)

≈ eiφ/2

(
4
�

cos
(√

εo�x−�t−φ

2

)
2 sin

(√
εo�x−�t−φ

2

)
)

, (36)(
Hz

Ḣz

)
= e−iQ+t R̂−1 · ��′ ∝ e−iQ+t

(
2
�

(eiKx − eiφe−iKxei�t )

−ieiKx − ieiφe−iKxei�t

)

≈ ieiφ/2

(
4
�

sin
(√

εo�x−�t−φ

2

)
−2 cos

(√
εo�x−�t−φ

2

)
)

, (37)

where we have assumed εr/εo  1 so that�Q  1. Equations
(36) and (37) show that the magnetic fields for the Floquet
states at the two band edges are standing waves in the
stroboscopic sense, similar to the Bloch states at the band
edges for the one-dimensional ordinary photonic crystal. It is
interesting to point out that the two solutions shown in Eqs. (36)

and (37) differ by a time shift π/�, which is a half period of
the modulation frequency �. Again, this is analogous to the
spatial phase shift �/2 of two orthogonal standing waves at
the band edges of the Bragg scattering gap, which is also half
of the spatial period �.

We have also numerically simulated the time-dependent
fields to obtain the band structures close to the gap. Similar
to the simulation of a broken phase discussed earlier for real
εr , we use again a pulsed line source of the magnetic field of
the form exp(−0.5(t − t0)2/τ 2) located at x = x0 to the left
of a dynamic slab of thickness L with a relative permittivity of
the form ε(t ) = 5 + 1.5i sin �t . From Eq. (31), the magnetic
field inside the slab for a specific wave vector K and frequency
ω can be obtained through the Fourier transform

h(K,ω) = 1

(t2 − t1)L

∫ t2

t1

dteiωt

∫ L

0
Hze

−iKxdx. (38)

According to Eq. (31), h(K,ω) is not zero only when ω

equals to Q + n�, where Q is the quasienergy corresponding
to K and n is an arbitrary integer number.

In Fig. 5(a), we plot the magnitude of h(K,ω) for the fixed
wave vector K = 1.1� as a function of the frequency ω in the
range of 0 < ω < �. Two peaks are found at ω ≈ 0.46� and
0.54�. In order to obtain the band structures, we repeated the
calculations for other values of K in the region of 0.9� �
K � 1.4�. The results are shown by circles in Fig. 5(b).
The solid lines are the results obtained from the Floquet
Hamiltonian Eq. (20). The excellent agreement between the
two is clearly seen. Similar to the case of real εr , we have also
studied the second-order effect by considering the coupling of
two opposite bands with orders differing by ±2 due to H̃±2.
Although εr is purely imaginary, its square becomes a real
number as can be seen from Eq. (19). Thus, pairs of EPs are
expected at K = √

εo� and quasienergies Q = m�,m ∈ Z.
For the case of Q = 0, we construct a 14 × 14 reduced Floquet
Hamiltonian from Eq. (20) centered at H̃0, from which we
indeed find another pair of EPs located near K = √

εo� as
shown in the inset of Fig. 1(c). The similar pairs appear
periodically at Q = m� for all nonzero integers m.
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We have also studied the case that εr is a complex number.
According to Eq. (22), when εr is a complex number, there will
be no EPs as the formula in the square root can no longer be
zero. In this case, the singularity will be smoothed [50,51]. The
quasienergies are now complex numbers where the imaginary
parts can be both positive and negative. And there are gaps
for the real part of the quasienergies. These can be verified by
calculating the Floquet bands using the Floquet Hamiltonian
as shown in Fig. 6.

V. SPACE-TIME MODULATED PERMITTIVITY

In this section, we will study the more complicated case
that the permittivity is modulated simultaneously in space and
time, i.e., the permittivity is expressed as

ε(x, t ) = εo + εr (�t − βx + φ), (39)

where β and � are the spatial and temporal modulation
frequencies, respectively. The modulation speed is defined as
cm = �/β, which is in units of c. The diffraction of light by the
space-time modulated medium can be calculated by directly
solving Maxwell’s equations [52,53], and the diffraction effi-
ciency of diffracted orders has been studied by Laude using
the coupled-wave equations method [54]. The scattering of

acoustic waves by a space-time modulated medium has also
been studied recently [55]. And it is shown that the k gap forms
when the modulation speed is faster than the speed of the wave
inside the medium. In the following, we will show that this
conclusion is also valid for the electromagnetic system, and a
pair of EPs forms at the edges of the k gap.

We first numerically calculate the band dispersion of the
space-time modulated medium using the plane-wave expan-
sion method. Based on the Floquet-Bloch theorem, the elec-
tromagnetic fields inside the space-time modulated medium
can be written as

Ey = eiKx−iQt

∞∑
n=−∞

Eyne
in(�t−βx),

Hz = eiKx−iQt

∞∑
n=−∞

Hzne
in(�t−βx). (40)

Consider a space-time modulated permittivity which can be
expressed as

ε(x, t ) = εo + ε1e
i(�t−βx) + ε−1e

−i(�t−βx), (41)

where ε±1 = e±iφεr/2. Substituting Eqs. (40) and (41) into
Maxwell’s equations, one arrives at

i

∞∑
n=−∞

(K − nβ )Eyne
iKx−iQt ein(�t−βx) = i

∞∑
n=−∞

(Q − n�)Hzne
iKx−iQt ein(�t−βx),

i

∞∑
n=−∞

(K − nβ )Hzne
iKx−iQt ein(�t−βx) =

∞∑
m=−∞

εmeim(�t−βx)
∞∑

n=−∞
−i(Q − n�)Eyne

iKx−iQt ein(�t−βx)

+
∞∑

m=−∞
im�εmeim(�t−βx)

∞∑
n=−∞

Eyne
ikx−iQt ein(�t−βx). (42)

Equation (42) leads to the following eigenvalue problem with the wave vector K as the eigenvalues

K

⎛⎜⎜⎜⎜⎜⎜⎝

...

Ey0

Hz0

...

⎞⎟⎟⎟⎟⎟⎟⎠ = Ĥ ·

⎛⎜⎜⎜⎜⎜⎜⎝

...

Ey0

Hz0

...

⎞⎟⎟⎟⎟⎟⎟⎠, (43)
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FIG. 7. The real part of the Floquet bands for the space-time modulated medium calculated using the plane-wave expansion method (solid
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where Ĥ is defined as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . Ĥ−2 ε−1�̂−2

ε1�̂−1 Ĥ−1 ε−1�̂−1

ε1�̂0 Ĥ0 ε−1�̂0

ε1�̂1 Ĥ1 ε−1�̂1

ε1�̂2 Ĥ2
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(44)
with

Ĥn =
(

nβ Q − n�

(Q − n�)εo nβ

)
, �̂n =

(
0 0

Q − n� 0

)
.

(45)

The Floquet band dispersion is obtained by solving the
eigenvalue equation (43) for every given quasienergy Q.

In Figs. 7(a) and 7(b), we show by solid lines the Flo-
quet bands in the region 0 � Q � �,−β/2 � K � β/2 for
the space-time modulated medium with different modulation
speeds, which are calculated using the plane-wave expansion
method, i.e., Eq. (43) with Ĥ being truncated at n = 22.
From Eq. (43), in the limit of |εr/εo| → 0 where the coupling
matrices �̂n vanish, we can see that the Floquet bands are

obtained by copying the two linear bands of Ĥ0 and shifting
them up and down in the (K,Q) space by integers multiplying
(β,�). Similarly, we label the bands formed by shifting the
bands of Ĥ0 by (nβ, n�) as band n. There are intersections
between bands of different orders. When εr �= 0, k gaps or
quasienergy gaps will form around the intersections due to
the couplings between the bands of different orders. When
the modulation speed (cm = �/β ) is slower than the wave
speed inside the medium, which is c/

√
εo ≈ 0.45, quasienergy

gaps form around the intersections, as shown in Fig. 7(a).
However, when the modulation speed is faster than the wave
speed, k gaps are created as can be seen in Fig. 7(b). To
investigate the EP phenomena associated with the k gaps, we
use again the Floquet matrix method to calculate the Floquet
bands for the case of cm > c/

√
εo, and show that the region

inside the k gap is the broken phase.
As the permittivity depends on (x, t ) through a unique

combination, the medium is more conveniently described by a
new viable u introduced below:

(x, u) = (x, t − x/cm), (∂x, ∂t ) = (∂x − 1/cm∂u, ∂u). (46)

According to Maxwell’s equations, the wave equation for
the electric field inside the space-time modulated medium is
written as

−∂2E

∂x2
= − ∂

∂t2
(ε(t )E). (47)

Using the new variables (x, u) and noting that ε(x, t ) =
ε(u) = εo + εr cos(�u + φ), we rewrite Eq. (47) as

−
(

∂2

∂x2
− 2

cm

∂

∂x

∂

∂u
+ 1

c2
m

∂2

∂u2

)
Ey = − ∂2

∂u2
[ε(u)Ey] = −ε(u)

∂2Ey

∂u2
− 2

∂ε(u)

∂u

∂Ey

∂u
− ∂2ε(u)

∂u2
Ey. (48)

If we define K̃ = K − Q/cm, according to Eq. (40), the electric field can be written as

Ey = eiKx−iQt

∞∑
n=−∞

qne
in(�t−βx) = eiKx−iQ(u+x/cm )

∞∑
n=−∞

qne
in(�t−βx) = eiK̃x−iQt

∞∑
n=−∞

qne
in�u, (49)
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where qn is the expansion coefficient of order n. Substituting Eq. (49) into Eq. (48), one arrives at

−
(

−K̃2 − 2

cm

iK̃
∂

∂u
+ 1

c2
m

∂2

∂u2

)
Ey = − ∂2

∂u2
[ε(u)Ey] = −ε(u)

∂2Ey

∂u2
− 2

∂ε(u)

∂u

∂Ey

∂u
− ∂2ε(u)

∂u2
Ey. (50)

Employing the Liouvillian formulation, we can rewrite Eq. (50) as a two-component time-dependent Schrodinger-like equation
for the electric field and its derivative with respect to u as

i
∂

∂u

(
E

Ė

)
=

(
0 i

−iB ′ −iA′

)(
E

Ė

)
= Ĥ ′

eff

(
E

Ė

)
, (51)

where Ė = ∂E/∂u and

A′ = 2iK̃/cm + 2∂ε/∂u

ε(u) − 1/c2
m

, B ′ = K̃2 + ∂2ε/∂u2

ε(u) − 1/c2
m

. (52)

We apply the following similarity transformation to the effective Hamiltonian Ĥ ′
eff so that its time-independent part H̃ ′

0
becomes Hermitian:

H̃ ′(u) = R̂′ · Ĥ ′
eff (u) · R̂′−1

=
⎛⎝C ′−iA′√C ′(1+D′ )+B(1−D′2 )

2
√

C ′
−C ′+iA

√
C ′(1+D′ )+B(1+D′ )2

2
√

C ′

C ′+iA
√

C ′(1−D′ )−B(1−D′ )2

2
√

C ′
−C ′−iA

√
C ′(1−D′ )−B(1−D′2 )

2
√

C ′

⎞⎠, (53)

where

R̂′ =
(√

C ′ i + iD′
√

C ′ −i + iD′

)
, C ′ = K̃2

εo

, D′ = 1

cm

√
εo

.

(54)
When εr = 0, the time-independent Hamiltonian becomes

H̃ ′
0 =

⎛⎝ cmK̃

cm
√

εo−1 0

0 − cmK̃

cm
√

εo+1

⎞⎠, (55)

which is Hermitian. From Eq. (55), we obtain the band
dispersion of H̃ ′

0 as

Q = cmK̃

−1 ± cm

√
εo

. (56)

Since K̃ = K − Q/cm, Eq. (56) can be rewritten in a
simpler form:

Q = ±K/
√

εo, (57)

which is the same as the band dispersion of H̃0. In the limit of
small |εr/εo|, we can expand the new time-dependent effective
Hamiltonian H̃ ′(u) in Taylor series. To the first order of |εr/εo|,
H̃ ′(u) can be expressed as

H̃ ′(u) = H̃ ′
0 + H̃ ′

1e
i�u + H̃ ′

−1e
−i�u, (58)

where

H̃ ′
±1 = εr

4
e±iφ

⎛⎜⎝− [�±cm(K̃∓√
εo�)]

2

(cm
√

εo−1)2√
εoK̃

− [�±cm(K̃±√
εo�)]

2

(c2
mεo−1)

√
εoK̃

[�±cm(K̃∓√
εo�)]

2

(c2
mεo−1)

√
εoK̃

[�±cm(K̃±√
εo�)]

2

(cm
√

εo+1)2√
εoK̃

⎞⎟⎠.

(59)

Following the same procedure as we did in Sec. II, we can
then obtain the Floquet Hamiltonian H̃ ′

F as

H̃ ′
F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . . 0 0 0

. . . H̃ ′
0 + �

↔
I 2 H̃ ′

1 0 0

0 H̃ ′
−1 H̃ ′

0 H̃ ′
1 0

0 0 H̃ ′
−1 H̃ ′

0 − �
↔
I 2

. . .

0 0 0
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(60)
For larger values of εr , we should also keep the higher-

order terms H̃ ′
±n with n > 1 and consider the corresponding

couplings in the Floquet Hamiltonian matrix.
In Fig. 7(b), we show the real part of the Floquet bands

calculated using the Floquet matrix method (red circles), which
agrees with the results of the plane-wave expansion method.
The imaginary part of the Floquet bands is shown in Fig. 7(c).
It is clearly seen that the quasienergies inside the k gap are
complex conjugate pairs, indicating that the region inside the
k gap corresponds to the broken phase. We have also applied the
above Floquet matrix method to the case when cm < c/

√
εo.

The results are shown by red circles in Fig. 7(a), which again
coincide with the results of the plane-wave expansion method.
Note that to calculate the Floquet bands in Fig. 7, we expanded
H̃ ′(u) and kept up to the third order terms (the coupling
matrices H̃ ′

±2, H̃
′
±3 are considered in the Floquet matrix).

The scattering of light by a space-time modulated medium
is widely studied in acousto-optics [54,56,57]. A travelling
acoustic plane wave in an acousto-optic material such as a
TeO2 crystal can cause a modulation of the permittivity that
can be expressed as Eq. (39) due to the elasto-optic effect.
As the speed of the phonon is much slower than the speed of
light, the EP phenomena cannot be found in acousto-optics.
However, if we modulate the permittivity using electro-optics
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or plasmon dispersion effect [37–44], the modulation speed
could be significantly faster and the EP phenomena could
be observable. Due to the similarity in wave equations, our
theory can also be applied to acoustical systems [55], where a
modulation speed that is faster than the wave speed inside the
medium can easily be realized.

VI. CONCLUSIONS

In summary, we have investigated the formation of EPs in
a time Floquet photonic system in which the permittivity of
the dynamic medium is periodic in time. Using the method of
the Floquet matrix, we obtained the photonic Floquet band
dispersions analytically and the expressions of the Floquet
states in the limit of |εr/εo| → 0. In photonics, the permittivity
is the classical counterpart of the potential in a quantum system.
However, the time modulated permittivity εr performs very
differently from the time modulated potential in quantum
periodically driven systems. When εr is a real number, the
time modulation induces infinitely many pairs of exceptional
points, each pair spanning two concentric spherical surfaces

in the three-dimensional wave-vector space. Those surfaces of
EPs also repeat themselves in the quasienergy space with the
modulation frequency as the period. Since the Floquet states
in the broken phase region will decay and grow as the time
increases, the time modulation of permittivity can induce the
field amplification and damping in the absence of loss and
gain materials. When εr is purely imaginary, there will be
quasienergy gaps with the gap sizes proportional to |εr/εo|.
For a complex εr , there is no EP but since the quasienergies
form complex conjugate pairs field amplification and damping
still exist. We have also extended our theory to the more
complicated case where the permittivity depends on both space
and time through a unique combination. It is shown that EPs
still exist for a real εr when the modulation speed is faster than
the speed of the wave inside the medium.
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