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Topological phase transition of the anisotropic XY model with Dzyaloshinskii-Moriya interaction
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Within the real space renormalization group we obtain the phase portrait of the anisotropic quantum XY model
on square lattice in presence of Dzyaloshinskii-Moriya (DM) interaction. The model is characterized by two
parameters, λ corresponding to XY anisotropy, and D corresponding to the strength of DM interaction. The flow
portrait of the model is governed by two global Ising-Kitaev attractors at (λ = ±1, D = 0) and a repeller line,
λ = 0. This line itself is characterized by an attractor at D = 0. Renormalization flow of concurrence suggests
that the λ = 0 line corresponds to a topological phase transition. The gap starts at zero on this repeller line
corresponding to superfluid phase of underlying bosons; and flows towards a finite value at the Ising-Kitaev
points. At these two fixed points the spin fields become purely classical, and hence the resulting Ising degeneracy
can be interpreted as topological degeneracy of dual degrees of freedom. The state of affairs at the Ising-Kitaev
fixed point is consistent with the picture of a p-wave pairing of strength λ of Jordan-Wigner fermions coupled
with Chern-Simons gauge fields.
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I. INTRODUCTION

The two-dimensional classical (vector) XY model is a
paradigm for the celebrated Berezinskii-Kosterlitz-Thouless
(BKT) transition upon which the phase coherence of an under-
lying superfluid is lost by the proliferation of topological exci-
tations known as vortices [1–3]. Quantum version of this model
was initially proposed by Matsubara and Matsuda as a lattice
model to understand the liquid helium [4]. Since then there has
been tremendous studies of the the two-dimensional quantum
XY (2DQXY) model. Berezinskii used the term “anisotropic
planar magnetic substances” to refer to the quantum XY

model [5]. The isotropic limit of the XY model refers to the
situation where σxσ x and σyσ y couplings have equal strength.
This is the isotropic limit of the XY model. Oitma and Betts
found that the ground state of this model has finite transverse
magnetization [6]. The exact diagonalization study of Tang
on the antiferromagnetic XY model found isotropic staggered
magnetization in the XY plane [7]. Drzewinsky and Sznajd
used a block-spin renormalization group at finite temperatures
to find a BKT transition temperature in this system [8]. The
BKT transition for the 2DQXY was confirmed in quantum
Monte Carlo studies [9–12]. The critical exponents extracted
from the quantum Monte Carlo study of Ding and co-workers
suggested that 2DQXY belongs to the same universality class
as the classical (vector) XY model [10].

An equivalent way of thinking about 2DQXY model is
in terms of hardcore bosons [13]. This bosonic language is
particularly convenient for the study of superfluid transition
measured by superfluid density ρs , which in the spin language
corresponds to spin stiffness [14]. In the bosonic language
for a system with filling fraction n at the classical level the
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zero temperature superfluid density is given by ρcl
s ∝ n(1 − n).

Quantum fluctuations enhance the above stiffness by few
percent [15]. The emerging picture is that the zero temperature
phase of the isotropic 2DQXY is that of a superfluid. Indeed
in a remarkable paper a much stronger version of this for all
spins and for all dimensions higher than one was proven by
Kennedy, Lieb, and Shastry [16].

Extensions of the isotropic 2DQXY model are also very
interesting. Dekeyser and co-workers employed the quantum
renormalization group method to suggest that extending the
2DQXY by an σ zσ z Ising term gives a very simple picture that
the greater of Ising and XY exchange interaction dominates the
low-energy phase [17]. Such an Ising exchange is equivalent
to interaction among bosons. Placing this model on triangular
lattice [18] sets a very interesting competition between the
Mott localization, geometric frustration, and superfluidity of
hardcore bosons where a diagonal solid order emerges at strong
interactions [19] and remains stable for arbitrary large values
of interaction [18]. This can be a possible explanation for the
supersolid phase of helium [20]. Another possible extension
is by plaquette interactions in presence of an external field
where the four-site terms encourage valence bond solid [21].
Allowing for bond disorder in the 2DQXY model enhances
the amplitude of zero-point phase fluctuations giving rise to
vanishing of the spin stiffness which then turns the ground
state into spin liquid [22].

In addition to the above bosonic picture of the 2DQXY
model and its extensions, there is also fermionic picture which
is based on a Jordan-Wigner transformation. In this approach
the spin system is mapped into a Chern-Simons (CS) theory
coupled with spin-1/2 fermions [3,23,24]. This mapping is
quite general and applies to larger family of spin systems than
the 2DQXY on any bipartite lattice [25]. This approach is quite
powerful, and is used to relate the 1/3 magnetization plateau of
the regime of XY anisotropy to a bosonic fractional Laughlin
state with filling fraction 1/2 [26].
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In this paper we extend the anisotropic 2DQXY model by
adding a Dzyaloshinskii-Moriya (DM) interaction of strength
D. We consider a planar anisotropy λ that makes the exchange
in x and y components of the spin different. On top of that
we add a DM interaction between the planar components of
the spin. We employ the block-spin renormalization group
(BSRG) to study the phase transitions of this model. We
construct a phase portrait of the model from our BSRG
equations. We find that there are two global attractors that
attract the flow to gapped states which correspond to Ising
phases polarized along x or y directions [7]. These two are
separated by a gap closing and hence should correspond to
topologically nontrivial phases, similar to its one-dimensional
counterpart [27]. We corroborate the topological nature of this
quantum phase transition with the calculation of concurrence.
The whole λ = 0 line in the plane of λ and D will be a gapless
repeller which is unstable with respect to smallest anisotropy λ

(irrespective of the sign of λ). This is reminiscent of the pairing
instability in a gapless system of Jordan-Winger fermions [27]
which from the exact solution of the one-dimensional problem
can be interpreted as the p-wave pairing interaction. Indeed
such a p-wave pairing resulting from the anisotropy λ can
be obtained from the study of equivalent fermions coupled to
Chern-Simons gauge fields on the honeycomb lattice [28]. The
λ = 0 line itself has an attractor at the origin, D∗ = 0.

The paper is organized as follows. In Sec. II the XY

model in the presence of DM interaction has been considered.
The effective Hamiltonian of the system for the renormalized
coupling constant and anisotropic parameters is obtained. In
the Sec. III we present the details of the phase diagram. The
discussions and results are presented in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian of XY model on a 2D square lattice in the
presence of DM interaction with N × N sites can be written as

H (J, λ,D) = J

N∑
i=1

N∑
j=1

[
(1 + λ)

(
σx

i,j σ
x
i+1,j + σx

i,j σ
x
i,j+1

)
+ (1 − λ)

(
σ

y

i,j σ
y

i+1,j + σ
y

i,j σ
y

i,j+1

)
+D

(
σx

i,j σ
y

i+1,j − σ
y

i,j σ
x
i+1,j

)
+D

(
σx

i,j σ
y

i,j+1 − σ
y

i,j σ
x
i,j+1

)]
, (1)

where J > 0 is the exchange coupling, λ is anisotropy pa-
rameter, D is the DM interaction term, and σn

i (n = x, y, z)
are Pauli matrices at site i. The basic idea of block-spin
renormalization method is to partition the lattice into clusters.
Then if the cluster allows for a Kramers doublet ground states,
the fluctuations between such doublet can be captured with an
effective (coarse grained) spin variable [29,30].

A. Block spin RG equations

To study the ground state phases of the above Hamiltonian,
we partition the square lattice into blocks of five sites as
depicted in Fig. 1. Out of the five sites in the cluster, four
are from one sublattice and one is from the other sublattice.
For interactions involving the Ising term of the form σ zσ z

such a sublattice imbalance erroneously biases the ground

FIG. 1. The selected cluster in a square lattice where the dashed
lines shows the block-block interactions.

state towards the wrong ground state total spin. This is due to
Lieb-Mattis theorem for the Hubbard and Heisenberg family
of models. However for XY family where the only conserved
charge is ζ = ∏

j σ z
j [27] where j runts over the whole

lattice, this sublattice asymmetry does not destroy the doublet
structure of the ground state and we still get a doublet of ground
states each belonging to ζ = ±1 sectors. The conserved charge
ζ already breaks the 25-dimensional Hilbert space into two
sectors, each of dimension 16. States in each sector are in
one-to-one correspondence in the above two sectors. These
two sectors are mapped to each other by replacing the role
of ↑ and ↓ spins. The clusters in Fig. 1 have further fourfold
rotational symmetry. This allows to use standard methods of
group theory [31] to further reduce the 16-dimensional space
corresponding to a given ζ . The details of the straightforward
but lengthily algebra is given in the Appendix. The sector that
contains the ground state is a 6 × 6 dimensional space which
can be diagonalized to give the set of eigenvalues depicted in
Fig. 2 in the parameter space of D,λ.

The ground state energy in both ζ = ±1 sectors is

e0 = −2J
√

5(1 + D2) + 5λ2 + η, (2)

where

η =
√

λ4 + 34λ2(1 + D2) + (1 + D2)2 (3)

FIG. 2. The bands plots of selected five-site cluster in terms of λ

and D when J = 1.
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and the ground state eigenvector in the ζ = +1 sector is

|φ+〉 = γ1|↓↓↓↓↓〉+γ2|↑↑↑↑↓〉+γ3(|↑↑↑↓↑〉+|↑↑↓↑↑〉
+ |↑↓↑↑↑〉+|↓↑↑↑↑〉)+γ4(|↑↓↓↓↑〉+|↓↓↓↑↑〉

+ |↓↑↓↓↑〉+|↓↓↑↓↑〉)+
√

2

2
(|↑↓↓↑↓〉+|↑↑↓↓↓〉

+ |↓↓↑↑↓〉+|↓↑↑↓↓〉+|↑↓↑↓↓〉+|↓↑↓↑↓〉). (4)

The ground state in ζ = −1 sector is simply obtained by the
spin-flip transformation of the above ground state ↑ ↔ ↓:

|φ−〉 = γ1|↑↑↑↑↑〉+γ2|↓↓↓↓↑〉+γ3(|↓↓↓↑↓〉+|↓↓↑↓↓〉
+ |↓↑↓↓↓〉+|↑↓↓↓↓〉)+γ4(|↓↑↑↑↓〉+|↑↑↑↓↓〉

+ |↑↓↑↑↓〉+|↑↑↓↑↓〉)+
√

2

2
(|↓↑↑↓↑〉+|↓↓↑↑↑〉

+ |↑↑↓↓↑〉+|↑↓↓↑↑〉+|↓↑↓↑↑〉+|↑↓↑↓↑〉), (5)

where the coefficients are obtained as

γ1 = 6
√

2λ(1 + iD)

5(1 + D2) + λ2 + η
,

γ2 =
√

2(1 + iD)(−1 + λ2 − D2 + η)

λ(5(1 + D2) + λ2 + η)
,

(6)

γ3 = (−1 − 5λ2 − D2 + η)
√

5(1 + D2) + 5λ2 + η

4
√

2λ(−1 − D2 + λ2)
,

γ4 = −3i(−i + D)
√

5(1 + D2) + 5λ2 + η

5(1 + D2) + λ2 + η
.

As illustrated in Fig. 2 the presence of DM interaction will
not generate any band crossing and the ground state remains
stable with respect to change of anisotropy parameters and
DM interactions. The relation between Hamiltonian (1) and
the coarse-grained effective Hamiltonian is formally given as

H eff = T
†

0 HT0, (7)

where the projection operator T0 basically assigns new coarse-
grained spins ↑,↓ to the two degenerate (Kramers double)
ground states |φ+〉 and |φ−〉 in the ζ = ±1 sectors:

T0 = |φ+〉〈↑| + |φ−〉〈↓|. (8)

The Pauli matrix σ z
j cannot change the charge ζ = ±1 and

therefore in the space composed of doublet of |φ±〉, the action
of each σ z

j contributes to the formation of a coarse-grained

σ ′z for the whole cluster. Similarly each σ
x(y)
j flips one of the

spins, thereby flipping the sign of ζ and can be interpreted as
flipping the coarse-grained spins |↑〉 and |↓〉 which can then
be represented by σ ′x(y) in the space of coarse-grained spins.
In this process some coefficients from the ground state wave
function will be collected. For the coupling of neighboring
coarse-grained spins one needs to collect interactions on the
bonds connecting a cluster to its neighbors [27]. The effective

Hamiltonian in the nth step of the above process will be

H (Jn, λn,Dn) = Jn

N/5∑
r=1

N/5∑
s=1

[
(1 + λn)

(
σx

r,sσ
x
r+1,s + σx

r,sσ
x
r,s+1

)
+ (1 − λn)

(
σy

r,sσ
y

r+1,s + σy
r,sσ

y

r,s+1

)
+Dn

(
σx

r,sσ
y

r+1,s − σy
r,sσ

x
r+1,s

)
+Dn

(
σx

r,sσ
y

r,s+1 − σy
r,sσ

x
r,s+1

)]
, (9)

where the BSRG transformation connecting two consecutive
steps becomes

Jn+1 = α2 + ξ 2 + (α2 − ξ 2)λn

2
Jn,

λn+1 = α2 − ξ 2 + (α2 + ξ 2)λn

α2 + ξ 2 + (α2 − ξ 2)λn

, (10)

Dn+1 = 2αξ

α2 + ξ 2 + (α2 − ξ 2)λn

Dn.

The coefficients are given by

α = 1

N 2

[
γ1γ

∗
3 + γ3γ

∗
1 + γ2γ

∗
4

+ γ4γ
∗
2

3
√

2

2
(γ3 + γ ∗

3 + γ4 + γ ∗
4 )

]
,

ξ = 1

N 2

[
γ1γ

∗
3 + γ3γ

∗
1 − γ2γ

∗
4

− γ4γ
∗
2 w

3
√

2

2
(−γ3 − γ ∗

3 + γ4 + γ ∗
4 )

]
,

with

N =
√

|γ1|2 + |γ2|2 + 4|γ3|2 + 4|γ4|2 + 3.

The γ ∗
i is the conjugate of γi and |γi |2 = γiγ

∗
i .

B. Entanglement analysis

Among various tools, entanglement is standard tool for
the diagnosis of the phase transitions in general [32–39] and
change of topology [40–42] in particular. Therefore, let us use
this tool in our five-site problem and to study its evolution
under the RG transformations obtained above. Let us consider
the entanglement between two spins in the corners of each
block. For this purpose we first calculate the reduced density
matrix between every two pairs of neighboring sites, namely,
ρ12, ρ13, ρ14, ρ23, ρ24, and ρ34 which involves tracing out all
the rest of degrees of freedom [43,44]. To construct the 4 × 4
matrix ρij (i, j are site indices, not matrix indices) one first
constructs the full density matrix,

ρ = |ψ0〉〈ψ0|, (11)

where the |ψ0〉 can be any of the Kramers doublet degen-
erate ground states |φ±〉 and then traces all sites except
for sites i, j . We then form a matrix ρij ρ̃ij where ρ̃ij =
(σy

i ⊗ σ
y

j )ρ∗
ij (σy

i ⊗ σ
y

j ) and number its four eigenvalues such
that λij,m, (m = 1, 2, 3, 4) such that λij,4 > λij,3 > λij,2 >

λij,1. From these eigenvalues we then evaluate the bipartite
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concurrence defined by [44]

Cij = max(
√

λij,4 − √
λij,3 − √

λij,2 − √
λij,1, 0).

Then we construct a geometric mean of the concurrence (GMC) between the above six pairs of sites as [44]

Cg = 6
√

C12 × C13 × C14 × C23 × C24 × C34. (12)

In the present case, by rotational symmetry all of the six density matrices are equal and given by

ρ12 = ρ23 = ρ34 = ρ13 = ρ14 = ρ24

= 1

N 2

⎛
⎜⎜⎜⎜⎝

γ1γ
∗
1 + 2γ4γ

∗
4 + 1

2 0 0
√

2
2 (γ1 + γ ∗

2 ) + 2γ4γ
∗
3

0 γ3γ
∗
3 + γ4γ

∗
4 + 1 γ3γ

∗
3 + γ4γ

∗
4 + 1 0

0 γ3γ
∗
3 + γ4γ

∗
4 + 1 γ3γ

∗
3 + γ4γ

∗
4 + 1 0

√
2

2 (γ ∗
1 + γ2) + 2γ ∗

4 γ3 0 0 γ2γ
∗
2 + 2γ3γ

∗
3 + 1

2

⎞
⎟⎟⎟⎟⎠. (13)

The above matrix gives

Cg =
√

�2
2 + 2�1�3 + �∗2

2 + 2
√

���2√
2

−
√

�2
2 + 2�1�3 + �∗2

2 − 2
√

���2√
2

− 2
√

�4, (14)

where � =
√

�2
2 + 4�1�3 − 2�2�

∗
2 + �∗2

2 , �1 = 1
N 2 (γ1γ

∗
1 + 2γ4γ

∗
4 + 1

2 ), �2 = 1
N 2 (

√
2

2 (γ1 + γ ∗
2 ) + 2γ4γ

∗
3 ), �3 =

1
N 2 (γ3γ

∗
3 + γ4γ

∗
4 + 1), and �4 = 1

N 2 (γ2γ
∗
2 + 2γ3γ

∗
3 + 1

2 ). We will use the above formula in our analysis of the phase
transitions of the 2DQXY with planar anisotropy λ and DM interaction D.

III. PHASE DIAGRAM OF THE MODEL

A. Analysis of the phase portrait

The standard method for analysis of the phase diagram
of a model that depends on set of parameters R is to study
�Rn ≡ Rn+1 − Rn and its dependence to the initial values
R0 ≡ R [27,45]. This is the discrete version of the beta
function in field theory. In our problem the parameters are
given by R = (λ,D). In Fig. 3 we have presented two such
cuts. In the first row, for two fixed values of D = 0 (left) and
D = 4 (right) we plot how �λ depends on the initial value
λ. As can be seen there are two fixed points. Repulsive fixed
point at λ0

∗ = 0 and two attractors at λ±
∗ = ±1 [27]. These

values do not change by replacing D = 0 with D = 4. In
the second row of Fig. 3, for two fixed values of λ = 0 and
λ = 1 we have plotted how �D depends on the initial value
D. As can be seen, independent of value of λ, there is always
an attractor at D∗ = 0: Slightly moving to the right (left) of
D∗ = 0, gives a negative (positive) �D that returns D to the
attractor D∗ = 0. Therefore, the coupling D is irrelevant and
any Hamiltonian of the form (1) with a nonzero D in the long
wavelength limit behaves similar to the D∗ = 0 and the DM
interaction is renormalized away in the infrared limit.

Let us put the above picture in a global perspective in a plane
composed of λ and D. In Fig. 4 we have provided a stream
plot of the vectors �R = (�λ,�D) as a function of the initial
value R = (λ,D). As can be seen the fact that in Fig. 3 the fixed
point at λ±

∗ does not depend on D is reflected in Fig. 4 as the
fact that the two attractors at (λ±

∗ ,D∗) = (±1, 0) are globally
attractive fixed points. However, the fact that the repulsive fixed
point λ0

∗ in Fig. 3 does not depend on λ is reflected in Fig. 4
as a repulsive line. The λ = 0 line itself has an attractor at
D∗ = 0. The symmetry of the above phase portrait under λ →
−λ is the direct manifestation of the fact that Hamiltonian is
invariant under σx

j → σ
y

j , σ
y

j → −σx
j (π/2 rotation around z

axis), D → D, and λ → −λ.

B. Analysis of the gap

So far our phase portraits in Figs. 3 and 4 indicate the
irrelevance of D and a possible phase transition at λ = 0 line.
Let us see how does this manifest itself in the spectral gap. The
gap between the ground state and the first excited state is given
by

EC
g = 2J [

√
5(1 + D2) + 5λ2 + η

−
√

5(1 + D2) + 5λ2 − η]. (15)

The effect of RG flow on this quantity when it is iterated
up to large enough RG steps to ensure machine precision
convergence is plotted in Fig. 5 for various values of the DM
interaction D indicated in the legend. In this figure we plot the
gap at the eighth RG step (converged within 10−5). As can be
seen for every value of D, the point λ0

∗ = 0 is the only gapless
point, and any nonzero value of λ, either positive or negative,
gives rise to a nonzero gap. The gap is normalized per lattice
site, and the natural unit of the gap is J . The fact that for every
value of D we have a nonzero gap for λ �= 0 agrees with the
existence of a line of fixed points λ = λ0

∗ in the (λ,D) plane
of Fig. 4. We have numerically checked that the same phase
portraits is obtained by nine-site clusters.

As can be seen in Fig. 5 although for all values of D the gap
is a function of λ that vanishes at λ = 0, but the way it vanishes
depends onD and is not universal. To extract these information,
in Fig. 6 we produce a log-log plot of the gap versus λ for
D = 0. Note that very small values of λ ∼ 10−3 are needed to
extract the dependence of gap on λ. The linear dependence of
the log-log plot suggests a perfect power-law dependence of
the gap Eg ∝ λm, where the nonuniversal exponent m actually
does depend on D. This is analogous to the behavior of the
corresponding 1D system [46] where in the absence of DM
term one has Eg ≈ λ. The BSRG for three-site problem in
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FIG. 3. Fixed points of the 2DQXY model with anisotropy (λ) and DM interaction (D). In top (bottom) row we have fixed D (λ) to study
flow of λ (D). There are two attractors at λ = ±1 and a repulsive fixed point at λ = 0. The DM interaction has only one attractor at D = 0. As
can be seen in panel (d), the λ = 0 line has an attractive fixed point at D = 0.

FIG. 4. Phase portrait of the 2DQXY model with anisotropy λ

and DM interaction D. Two global attractors at (λ±
∗ , D∗) = (±1, 0)

along with repeller at infinity and a repulsive line (λ0
∗, D) for every D,

completely characterize the above RG flow profile. As can be inferred
from Fig. 3(d), the flow on the λ = 0 line is attracted from both sides
to the origin at D = 0.

1D with D = 0 gives Eg ∝ λ0.63. In 2D square lattice Fig. 6
suggests that this exponent for D = 0 is given as Eg ≈ λ0.4869.
Note that the value of the exponent (0.4869) has finite size
errors.

By turning on the DM interaction D as can be seen in Fig. 5
still the gap vanishes as λ approaches zero. To quantify this,
we repeat the above log-log analysis for various values of D,
and extracting the corresponding exponent m as a function of

FIG. 5. Dependence of the gap on anisotropy λ for various values
of the DM interaction D indicated in the legend.
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FIG. 6. The power-law behavior of gap in terms of anisotropy
parameter λ �= 0 for D = 0. Different colors correspond to various
RG steps as indicated in the legend.

D, we obtain the set of data points in Fig. 7. As can be seen
from Fig. 7 for larger D the exponent becomes smaller. Using
the following ansatz for the fit,

m = exp(αD2 + βD + γ ) (16)

gives α = −0.02042 ± 0.00106, β = −0.1828 ± 0.00523,
and γ = −0.6732 ± 0.00499.

C. Analysis of the concurrence

So far we have established that for any D, the λ = 0
repulsive line is a gapless line. This is consistent with a picture
of underlying phase coherent superfluid, albeit not limited to
D = 0, but also valid for nonzero values of D. The value of D

only affects the exponent m that determines how fast the gap
vanishes. Its repulsive nature indicates some form of instability
towards a gapped state. On the λ = 0 line, system flows to the
origin at (D∗ = 0, λ∗ = 0). Both positive and negative λ sides
are gapped states. Is the gap closing at λ = 0 line a topological
phase transition? In the λ = 0 (isotropic) XY model, the
nonanalytic value of GMC is suggested as and indicator of
the spin fluid phase in the 2D system [47]. In Fig. 8 we have

FIG. 7. Exponent m of Eg ∼ λm which determines how does the
gap vanish as a function of λ. This exponent varies with D. These
values are extracted from eighth level RG step which converges within
the precision of 10−5.

FIG. 8. GMC as a function of anisotropy parameter λ in the
absence of DM interaction in different RG steps. The nonvanishing
GMC indicates that the gap closing at λ = 0 is a topological phase
transition.

plotted the GMC versus anisotropy parameter λ for the D = 0
case. As can be seen by repeating the RG steps, the convergence
can be attained very quickly, and the GMC at λ = 0 becomes
nonanalytic. This suggest that the gap closing at λ = 0 line is
a topological phase transition [42]. A nice feature of the above
plot is the vanishing of GMS at λ = ±1 which corresponds to
Ising-Kitaev limit polarized along x̂ or ŷ directions. For such
a product state the entanglement must be zero.

To put the above picture in a global perspective, in Fig. 9
we plot intensity profile of GMC at first two steps of the RG
process. This figure suggests that at the λ = 0 line the gap
closing is accompanied by a change of topology [42].

IV. SUMMARY AND DISCUSSION

The phase portrait of anisotropy 2DQXY model with DM
interaction in Fig. 4 indicates that the DM interaction is
irrelevant in the infrared limit. The λ = 0 line is a gapless line
that separates two gapped states for positive and negative λ. We
have numerically checked that the phase portrait obtained from
the five-site cluster does not change by numerically repeating
the RG procedure for the nine-site cluster. The analysis of con-
currence in Fig. 9 suggest that the gap-closing transition at λ =
0 is a topological phase transition [42]. In the bosonic language,
the gapless state at λ = 0 corresponds to a superfluid phase of
underlying bosons [13,14], and vanishing of the gap can be
attributed to the soft phase fluctuations of a superfluid [15].
There are two ways to destroy the long range order in the phase
variable: The well known way is by the BKT mechanism, i.e.,
the proliferation of vortices at elevated temperatures.

The second way to gap the superfluid state is to stay at zero
temperature but turn on the anisotropy λ. According to present
study, as long as anisotropy λ stays at zero, the DM interaction
does not help with gapping the state. Having established that
λ �= 0 generates a gapped state for any D, the question is,
what kind of gapped state is it? Is it topologically trivial or
nontrivial? Fermionic representation of the problem in terms
of Jordan-Wigner fermions coupled with the Chern-Simons
gauge fields [3,23,24,26] suggests that the gapped state is
a topological superconductor [28]. The superfluid picture at
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FIG. 9. Intensity map of GMC in the (λ,D) plane for various RG steps: (a) Zeroth RG step, (b) first RG step, and (c) second RG step. In
the all values of DM interaction at the nontrivial point of λ = 0 the GMC shows nonanalytic behavior.

λ = 0 (in the bosonic language) corresponds to a liquid of JW
fermions coupled with CS gauge fields in the fermionic picture.
In the fermionic language, the anisotropy parameter λ triggers
a superconducting pairing instability in the Fermi sear of JW
fermions leading to a topologically nontrivial superconducting
state of JW fermions [28].

In our RG picture this can be understood as follows: Deep in
the gapped phase, at the Ising-Kitaev fixed points, λ = +(−)1
the long distance behavior of the system is equivalent to a
simple 2D Ising model polarized along x̂ (ŷ) direction. The
ground state at these fixed points is factorizable and this
explains why in Fig. 8 the entanglement indicator at all RG
steps gives zero. This means that at the Ising-Kitaev fixed
point the Hamiltonian is given in terms of entirely commuting
variables, and hence it has become purely classical (hence
zero entanglement). The fact that entanglement at every RG
step (i.e., for every system size) in Fig. 8 is zero, already
indicates that it has been protected by some sort of topology,
and therefore the resulting Ising degeneracy can be interpreted
in a dual picture as topological degeneracy [48]. At these
fixed points the resulting classical 2D Ising model translates
via celebrated Lieb-Schultz-Mattis mapping [49] to a one-
dimensional p-wave superconductor in modern terms. This
is nothing but the well known Kitaev model of a topological
superconductor. Therefore the ground states at the fixed points
λ = ±1 is entitled to a winding number. Now moving slightly
away from these fixed points and deforming the Hamiltonian
in such a way that it ultimately returns to the fixed points upon
enlarging the length scale, the topological number does not
change, as there is no gap closing as long as one does not hit the
λ = 0 repeller line. Therefore our real space RG is consistent
with a nontrivial topological charge for the gapped states at
λ �= 0.

To summarize, we have considered the quantum XY model
in 2D square lattice in the presence of DM interaction. The

symmetry of problem allows us to obtain analytical expressions
for the ground state doublet of this system which then enables
us to set up a real space block spin RG. The DM interaction
turns out to be irrelevant at long wavelengths. The RG flow
consists of a gapless repulsive λ = 0 line, and two attractive
(λ = ±1,D = 0) points corresponding to the Ising-Kitaev
limit. The λ = 0 line has an attractor at its origin, making
D irrelevant. Nonanalyticity of concurrence shows that the
phase transition at λ = 0 is of topological nature [42]. The
Ising-Kitaev limit enables us to assign a topological charge to
the gapped phases at λ �= 0. These features are very similar to
corresponding 1D system [27] and in agreement with results
of studies based on JW fermions coupled with CS gauge
fields [28].
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APPENDIX: DETAILS OF EXACT DIAGONALIZATION OF
SELECTED CLUSTER IN SQUARE LATTICE

In this Appendix, details of the exact diagonalization for
selected cluster in square lattice are presented. To reduce the
dimension of ensuing matrix we employ group theory method.
To obtain the eigenvalues [Eq. (2)] and eigenstates [Eqs. (4) and
(5)] first we consider the possible states of spin-1/2 system 25

in cluster P . Each state of the cluster is in the following form:

|αi〉 = |σ4, σ3, σ2, σ1, σ0〉, (A1)

where i = 1 · · · 32 and σ present the two possible values ↑↓
in Fig. 1. The basis in this 32-dimensional Hilbert space are as
(for brevity in representation of basis states we drop |〉)

|α1〉 = ↑↑↑↑↑, |α2〉 = ↑↑↑↑↓, |α3〉 = ↑↑↑↓↑, |α4〉 = ↑↑↓↑↑,

|α5〉 = ↑↓↑↑↑, |α6〉 = ↓↑↑↑↑, |α7〉 = ↓↑↑↑↓, |α8〉 = ↓↑↑↓↑,

|α9〉 = ↓↑↓↑↑, |α10〉 = ↓↓↑↑↑, |α11〉 = ↑↑↑↓↓, |α12〉 = ↑↑↓↓↑,

|α13〉 = ↑↓↓↑↑, |α14〉 = ↑↓↑↑↓, |α15〉 = ↑↓↑↓↑, |α16〉 = ↑↑↓↑↓,

|α17〉 = ↓↓↓↓↑, |α18〉 = ↓↓↓↑↓, |α19〉 = ↓↓↑↓↓, |α20〉 = ↓↑↓↓↓,
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|α21〉 = ↑↓↓↓↓, |α22〉 = ↑↓↓↓↑, |α23〉 = ↑↓↓↑↓, |α24〉 = ↑↓↑↓↓,

|α25〉 = ↑↑↓↓↓, |α26〉 = ↓↓↓↑↑, |α27〉 = ↓↓↑↑↓, |α28〉 = ↓↑↑↓↓,

|α29〉 = ↓↑↓↓↑, |α30〉 = ↓↑↓↑↓, |α31〉 = ↓↓↑↓↑, |α32〉 = ↓↓↓↓↓, (A2)

Now we proceed calculations by employing symmetry con-
sideration to reduce 32-dimensional Hilbert space to smaller
blocks in matrix representation. The + shape of cluster in Fig. 1
is invariant under rotations by π

2 which is denoted by C and then
the rotation group is given by {C0, C1, C2, C3}. The C operates
on the site labels as

C =

⎧⎪⎨
⎪⎩

1 → 2
2 → 3
3 → 4
4 → 1.

(A3)

By successive operation of C on a one state for |α3〉, the
following pattern is obtained:

|3〉 C−−−→ |4〉 C−−−→ |5〉 C−−−→ |6〉 C−−−→ |3〉, (A4)

which is the concise representation of

C0|3〉 = |3〉, C1|3〉 = |4〉,
(A5)

C2|3〉 = |5〉, C3|3〉 = |6〉,
According to projection theorem in group theory we construct
the symmetry adopted state in representation which is labeled
by n from an arbitrary state |φ〉,

|ψ (n)〉 ∼
(∑

g

g�n[g]

)
|φ〉, (A6)

where g interprets the member of group and �n[g] denotes the
nth irreducible representation for element g in the group. Our
case is a rotation group and the irreducible representations of
the cyclic group are tagged by means of three (angular momen-
tum) n = 0, ± 1. These are presented by {ω0, ωn, ω2n, ω3n}
where ω = exp(iπ/2). The �n(Cp ) = ωpn is the well-set
representation of above cyclic group. A symmetry adopted
state build from |3〉 is

(C0ω0 + C1ωn + C2ω2n + C3ω3n)|3〉, (A7)

where by applying Eq. (A5), the obtained state is

|3〉 + ωn|4〉 + ω2n|5〉 + ω3n|6〉, (A8)

where n is the angular momentum. By applying the same
symmetry to every other states we obtain

|7〉 C−−−→ |11〉 C−−−→ |14〉 C−−−→ |16〉 C−−−→ |7〉,
|8〉 C−−−→ |10〉 C−−−→ |12〉 C−−−→ |13〉 C−−−→ |8〉,

|18〉 C−−−→ |19〉 C−−−→ |20〉 C−−−→ |21〉 C−−−→ |18〉,
|22〉 C−−−→ |26〉 C−−−→ |29〉 C−−−→ |31〉 C−−−→ |22〉,
|23〉 C−−−→ |25〉 C−−−→ |27〉 C−−−→ |28〉 C−−−→ |23〉,

|9〉 C−−−→ |15〉 C−−−→ |9〉,
|24〉 C−−−→ |30〉 C−−−→ |24〉,

|1〉 C−−−→ |1〉, |2〉 C−−−→ |2〉,
|17〉 C−−−→ |17〉, |32〉 C−−−→ |32〉. (A9)

The normalized states are

|φ1〉 = |α1〉, |φ2〉 = |α2〉,
|φ3〉 = 1

2
(|α3〉 + |α4〉 + |α5〉 + |α6〉),

|φ4〉 = 1

2
(|α7〉 + |α11〉 + |α14〉 + |α16〉),

|φ5〉 = 1

2
(|α8〉 + |α10〉 + |α12〉 + |α13〉),

|φ6〉 = 1√
2

(|α9〉 + |α15〉), (A10)

|φ7〉 = 1

2
(|α18〉 + |α19〉 + |α20〉 + |α21〉),

|φ8〉 = 1

2
(|α22〉 + |α26〉 + |α29〉 + |α31〉),

|φ9〉 = 1

2
(|α23〉 + |α25〉 + |α27〉 + |α28〉),

|φ10〉 = 1√
2

(|α24〉 + |α30〉),

|φ11〉 = |α17〉, |φ12〉 = |α32〉.
The same approach will lead to normalized state at n = +1
sector. Due to the time reversal symmetry the n = −1 sector
has identical spectrum. The n = +1 sector normalized states
are

|χ1〉 = 1

2
(|α3〉 + ω|α4〉 + ω2|α5〉 + ω3|α6〉),

|χ2〉 = 1

2
(|α7〉 + ω|α11〉 + ω2|α14〉 + ω3|α16〉),

|χ3〉 = 1

2
(|α8〉 + ω|α10〉 + ω2|α12〉 + ω3|α13〉),

(A11)

|χ4〉 = 1

2
(|α18〉 + ω|α19〉 + ω2|α20〉 + ω3|α21〉),

|χ5〉 = 1

2
(|α22〉 + ω|α26〉 + ω2|α29〉 + ω3|α31〉),

|χ6〉 = 1

2
(|α23〉 + ω|α25〉 + ω2|α27〉 + ω3|α28〉).

It should be noted that the other symmetry such as parity
symmetry in the selected cluster is in the heart of the rotation
symmetry. The other operator that we introduced is

ζ =
∏

i

σ z
i , (A12)

which operates as a constant of motion. Consider one arbitrary
state with arrangements of spins of up and down. The operation
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of the XY Hamiltonian on a selected arrangements does not change the value of q. The reason is that in the presence of the two
consecutive σx or σy operator the total number of spin flip is even. This operator acts on the 32 basis of cluster and breaks it in
two family with ζ = +1 which consist of

|α1〉, |α7〉, |α8〉, |α9〉, |α10〉, |α11〉, |α12〉, |α13〉, |α14〉, |α15〉, |α16〉, |α17〉, |α18〉, |α19〉, |α20〉, |α21〉, (A13)

and ζ = −1

|α2〉, |α3〉, |α4〉, |α5〉, |α6〉, |α22〉, |α23〉, |α24〉, |α25〉, |α26〉, |α27〉, |α28〉, |α29〉, |α30〉, |α31〉, |α32〉. (A14)

By considering all the symmetries and constant of motion, it is possible to diagonalize Hamiltonian analytically for obtain the
ground state and energy bands. For example, in the n = 0 sector the Hamiltonian of the system by considering above symmetries
in ζ = 1 reduced to

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 4Jλ 0 0
0 0 4J (1 + iD) 0 0 0
0 4J (1 − iD) 0 0 4Jλ 2

√
2Jλ

4Jλ0 0 0 0 4J (1 + iD) 2
√

2J (1 + iD)
0 0 4Jλ 4J (1 − iD) 0 0
0 0 2

√
2Jλ 2

√
2J (1 − iD) 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the eigenvalues of above matrix of Hamiltonian are

e0 = −2J
√

5(1 + D2) + 5λ2 + η, e1 = −2J
√

5(1 + D2) + 5λ2 − η, e2 = e3 = 0, e4 = 2J
√

5(1 + D2) + 5λ2 − η,

e5 = 2J
√

5(1 + D2) + 5λ2 + η, (A15)

in which

η =
√

λ4 + 34λ2(1 + D2) + (1 + D2)2 (A16)

and e0 is the ground state.
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