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Dispersion relations for plasmons in complex-shaped nanoparticle chains
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A method for finding dispersion in chains of plasmonic particles of arbitrary shape is proposed. Our approach
is based on analytic continuation via polylogarithms and is basically a generalization of the method known for
spherical nanoparticle chains. As an example, we consider an axial chain of split-ring resonators. Three distinct
solutions are distinguished, namely, two plasmons and a nonexponential wave. Dispersion relations, decay profiles,
and spectra of excitation by a point source are obtained and compared with that in a spherical nanoparticle chain.
The nuances of implementing the method are discussed.
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I. INTRODUCTION

Plasmonic chains have been of great interest since it was
discovered that a chain consisting of spherical metal nanopar-
ticles can possess guiding properties due to electromagnetic
coupling [1]. Owing to their plasmonic nature, such waveg-
uides provide high oscillation frequency (up to ∼1000 THz)
and strong confinement of electromagnetic field. This opens up
opportunities for creating optoelectronic devices for operating
with optical signals at nanoscale.

The central issue of theoretical investigations of plasmonic
chain waveguides is determining their dispersion properties.
Although it is a common knowledge when it concerns longi-
tudinally homogeneous plasmonic waveguides like metallic
nanowires [2], this problem turned out to be unexpectedly
difficult with particle chains. The confusion occurs when
one tries to consider a general case of infinite particle chain
taking into account inter-particle interactions at arbitrarily long
distances. The local field acting on a certain particle from all
other particles is represented by a series that diverges that leads
to an unsolvable dispersion equation [3,4].

For this reason, many approximate methods for determining
dispersion relations in plasmonic chain waveguides were de-
veloped to avoid the infinite summation problem. The simplest
one is based on the nearest-neighbor approximation (NNA). It
was used to find dispersion in chain of spherical nanoparticles
in quasistatic limit [5]. It was also applied to a split-ring
resonator (SRR) waveguide [6].

Another approach is connected with consideration of finite
chains, which gives a possibility to take into account all inter-
actions between the particles. Then the dispersion properties
can be retrieved from the oscillation patterns in the finite chain.
Maier et al. [7] uses numerical FDTD simulation of excitation
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of a finite chain of nanospheres by a point dipole oscillating at
different frequencies. Then the excited waves are analyzed to
determine the values of wave number and attenuation factor. A
similar method using spatial Fourier transform was employed
to find dispersion in chain of SRRs. Both numerical and
experimental data were used [8].

Another retrieval technique was proposed by Weber and
Ford [9]. They search for eigenfrequencies of a finite chain of
spherical nanoparticles. The corresponding eigenmodes take a
form of standing waves that gives the values of wavelength and
corresponding wave numbers. Each pair of eigenfrequency and
wave number gives a point at the dispersion diagram (N points
total for a N -particle chain). Thus, the method selects a discrete
set of points from a continuous dispersion curve (as a finite
chain selects a discrete set of modes from the whole spectrum).
The drawback of the method is that increasing density of
points is a computationally expensive problem since it requires
solving the 2N th power equation for a N -particle chain.

Attempts to take into account all interparticle interactions
in an infinite chain lead to a dispersion equation containing an
infinite sum that diverges at complex k or complex ω [3,4]. Yet,
it can be calculated assuming both k and ω real. One can plot a
map of the absorption rate in the coordinates of real values of k

and ω with fuzzy “dispersion-like” regions where relationship
of k and ω comes close enough to a true dispersion relation.
This approach to approximate the dispersion curves was used
in Refs. [10,11]. Its obvious disadvantage is difficulties to deal
with highly damped waves (when complex k and ω that belong
to a true dispersion have large imaginary parts) and inability
to gauge numerically waves attenuation.

An exact method of finding dispersion in chains of spherical
nanoparticles was developed by Koenderink [4] (see also
Ref. [12]). It involves analytical summation of the infinite sums
in the domain of convergence and analytical continuation to the
domain of all complex values of k andω. This makes possible to
find exact complex-valued solution of the dispersion equation
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Since there is an ambiguity in the choice of k and ω, there
are two cases that are generally used, ω complex at k real
and k complex at ω real [13]. These two cases correspond
to physically different problems, to pulse excitation of the
chain by a plane wave and to stationary excitation by a point
source, respectively. Thus, the first case is more preferable for
description of lumped systems with dumping, while the second
one for distant propagation.

Another method based on analytical continuation was
proposed by Capolino [14]. It involves Ewald summation
technique and allows us to classify solutions by guidance or
radiance, proper or improper, etc.

Along with chains of nanospheres, other particles shapes
are studied, e.g., cubes [15], rods [16], split-rings [17], holes
[18,19], sandwiches [20], etc. However, exact dispersion rela-
tions cannot be found in such systems using existing methods
as they rely strongly on point dipole approximation that is
satisfactory for spherical nanoparticles but is not applicable for
more complex shapes. Direct adaptation of the aforementioned
methods is not possible in this case.

We propose the method of finding dispersion in chains
of plasmonic nanoparticles of complex shapes. Specifically,
we demonstrate it by example of an axial chain of split-
ring resonators (such waveguides were already extensively
studied in the microwave region [6,21]). Our approach is ba-
sically a generalization of the method developed for spherical
nanoparticle chains by Koenderink [4]. The comprehensive
analysis is given for both cases of spherical and complex-
shaped nanoparticles waveguides. We work in the complex k

representation, meaning studying distant plasmon propagation
from a stationary source.

II. PROBLEM OF FIELD SUMMATION
IN INFINITE CHAINS

Consideration of all pairwise particle interactions in infinite
chain results in the equations including infinite number of
interparticle interaction terms in the form S = ∑∞

n=1 sn. There
are two possible approaches allowing to take into account
all sn terms, namely, sequential and simultaneous (analytical)
summation.

In frame of the first approach one performs a sequent term-
by-term summation of some large number N of the sn terms,
taking each of them individually. It may intuitively seem that
the increase of N makes the sum to asymptotically tend to
its true value S,

∑N
n=1 sn →

N→∞
S. In this case, any arbitrary

accuracy of the solution can be provided by adding enough
number of terms. However, we show that this actually doesn’t
happen (see Supplemental Material [22]), namely, the increase
of finite number of terms does not lead to the correct solution.

The second approach suggests that all the sn terms can be
taken into account simultaneously by an analytic summation.
This approach requires that one managed to find an analytic
sum of the series S = ∑∞

n=1 sn, which in turn requires that
all inter-particle interaction terms are described by a unified
analytical expression. An example of a system where this
expression is known is a chain of point dipoles, which is a
common model for spherical nanoparticle chains. The analyt-

ical approach to such chains is developed in Ref. [4] (see also
Ref. [23]).

However, there is no expression of this kind for the vast
majority of complex-shaped nanoparticles that means that
their interaction can be calculated only numerically for any
finite n. In this paper, we solve the problem of finding the
dispersion relation of the complex-shaped nanoparticle chain
by a semi-analytical approach, in which we start with a
numerical calculation of interparticle interaction in a finite
number of points. With the use of them, we then search an
analytical function that represents the interparticle interaction
at any (both small and infinitely large) distances and then apply
the analytical summation approach.

III. WAVES IN CHAINS OF SPHERICAL NANOPARTICLES

Analysis of the arbitrarily-shaped particle chains will be
largely based on the theory of spherical nanoparticle chains,
which is known from Refs. [4,12,23]. Therefore, let us first
consider a chain of spherical nanoparticles excited by an
external electrical field of a frequency ω, inhomogeneously
distributed along the chain and directed perpendicularly to
the chain axis (transverse polarization, see Fig. 1). This field
can be produced by an incident wave or a near-field source.
Let us find a distribution of dipole moments excited by this
field.

We follow a single dipole approximation (SDA), in which
each particle is treated as a point dipole described by a sole
dipole moment pn. The latter appears as a response of the
particle to an external field Eext and to the field produced by
interaction with other particles:

pn = α(s)
∑
m�=n

g(s)
nmpm + α(s)Eext

n . (1)

Here α(s) is a particle polarizability and g(s)
nm is a function

that characterizes particle interaction. Because of translational
invariance, it depends only on the difference between n and
m, but not on each of them separately. Thus, further in the
text a notation g(s)

m with one subscript is used, which means
interaction of two particles at distance of m periods. The
superscript “(s)” standing for “spherical” refers to all quantities
related to spherical particles.

FIG. 1. Chain of spherical metallic particles. In exponentially
decaying wave, the sum of the local fields created at any given particle
diverges due to the exponential divergence of dipole amplitude in the
negative direction.
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In the case of SDA, g(s)
m takes the form of a field of a unitary

dipole with respect to the transverse polarization,

g(s)
m = 1

4πε0

(
− 1

|md|3 + ik0

|md|2 + k2
0

|md|
)

× exp (ik0d|m|), m �= 0, (2)

where d is a chain period and k0 = ω/c is a free-space wave
number.

Polarizability of a spherical particle can be found as [9,24,
Sec. 8.2.1 in 25,26]

1

α(s)
= 1

4πε0

(
ε + 2

ε − 1

1

a3
− i

2

3
k3

0

)
, (3)

where ε is a permittivity of the particle material (in our case,
silver) and a is the particle radius. For a frequency dependence
of ε we use the experimental data obtained by Babar [27]
for silver. The frequency of dipole resonance of a single
spherical particle (corresponding to ε = −2) is thereby ω

(s)
0 =

5.36 × 1015s−1. The frequency of the quadrupole resonance,
which restricts the applicability of single-dipole approxima-
tion, which corresponds to ε = −3/2, is ω

(s)
1 = 5.5 × 1015s−1.

Now we involve Fourier representation introducing nota-
tions for Fourier transform of the dipole moments and external
field distributions:

p(k) = (2π )−1
∑

n

pn exp (−iknd ), (4)

e(k) = (2π )−1
∑

n

Eext
n exp (−iknd ), (5)

assuming at this stage that wave number k is real. Then, taking
the Fourier transform of both parts of Eq. (1), we obtain1

p(k) = α(s)�
(s)

0 (k)p(k) + α(s)e(k). (6)

Here, a spectral function of real argument k is introduced:

�
(s)
0 (k) =

∑
m�=0

g(s)
m eikmd . (7)

Thus, the solution of the problem in the Fourier representation
takes the form

p(k) = α(s)e(k)

1 − α(s)�
(s)
0 (k)

. (8)

Return to the real space is made by the inverse Fourier
transform,

pn =
∫ π

−π

α(s)e(k) exp (ikn)

1 − α(s)�
(s)
0 (k)

dk. (9)

1In fact, series in Eq. (9) show mere conditional convergence due
to the term

∑
m �=0 eik0dm/|m|. This makes the derivation of Eq. (6)

through a Fourier transform of Eq. (1), strictly speaking, incorrect, as
well as the further analytic continuation. This fact has not been noticed
in a number of papers dedicated to study of plasmons in infinite chains
[3,4,12,28]. Despite this, a more rigorous derivation with an emphasis
on convergence of series shows that Eq. (6) is correct and outcomes
of said papers remain valid. See Ref. [23] for details.

Equation (9) allows us to find distribution of dipole mo-
ments pn generated by an arbitrary source via its Fourier
transform e(k).

Note that only the real wave numbers k were considered
so far. To deal with surface plasmons, we should take the
complex values of k into consideration. To do this, we rewrite
the function �

(s)
0 (k) with separating the series Eq. (7) into two

subseries with positive and negative m,

�
(s)
0 (k) = 1

4πε0

1

d3

+∞∑
m=1

(
− 1

m3
+ ik0d

m2
+ (k0d )2

m

)
ei(k0+k)md

+ 1

4πε0

1

d3

+∞∑
m=1

(
− 1

m3
+ ik0d

m2
+ (k0d )2

m

)
ei(k0−k)md.

(10)

Considering k complex, one can see that first and second
series in Eq. (10) diverge at lower and upper complex half-
plane, respectively. Thereby, function �

(s)
0 (k) can be defined

only at the real axis Im(k) = 0. To extend the application of
Eq. (9) to all complex wave numbers, one must find analytic
continuation of the function �

(s)
0 (k) to the entire complex

plane.1 In our case, it can be done by using polylogarithms
Lis (x) = ∑∞

m=1 xm/ms [3,29]:

�(s)(k) = − 1

4πε0

1

d3
[Li3(ei(k0+k)d ) + Li3(ei(k0−k)d )]

+ ik0d

4πε0

1

d3
[Li2(ei(k0+k)d ) + Li2(ei(k0−k)d )]

+ (k0d )2

4πε0

1

d3
[Li1(ei(k0+k)d ) + Li1(ei(k0−k)d )].

(11)

Polylogarithms in Eq. (11) can be calculated with an arbi-
trary precision for any complex k. This feature is added to
many mathematical software such as Wolfram Mathematica,
MatLab, Maple. Thus, the function �(s)(k) is an analytic
continuation of the function �

(s)
0 (k), and one can obtain the

distribution of dipole moments as

pn =
∫
R

α(s)e(k) exp (ikn)

1 − α(s)�(s)(k)
dk. (12)

Note that integration is carried out along the real axis, which
is reduced to the integration over the range [−π, π ] because
of the discreteness of nanoparticle chain.

Now let us consider a chain excited by a single δ-source,
i.e., assume that a unitary external field acts only on the mth
particle (in this case the required dipole moments distribution
is the Green function),

Eext
n = δnm. (13)
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Fourier transform of this source is

e(k) = (2π )−1e−ikmd . (14)

Using this, we find dipole moments distribution according to
Eq. (9),

pn = 1

2π

∫
R

α(s) exp (ik(n − m))

1 − α(s)�(s)(k)
dk. (15)

Integration in Eq. (15) is represented at the complex plane as
contour integration along the real axis. Path of the integration
can be deformed in any way unless it crosses singularities of the
integrand. Considering separately the cases of n − m � 0 and
n − m � 0, which physically mean consideration of particles
located to the right and to the left of the δ-source, respectively,
one can notice that the integrand tends to zero at Imk → +∞ in
the first case and at Imk → −∞ in the second case. Thus, one
can shift the path of integration to the upper complex half-plane
in the case of n − m � 0 and to the lower half-plane in the
case of n − m � 0. In the course of such path deformation,
the integral in Eq. (15) breaks into several parts taken around
every singularity of the integrand (see Fig. 2).

The singularities of the integrand in Eq. (15) are the two
poles and one brunch cut.2 Thus, total dipole moments
distribution in a spherical nanoparticle chain contains three
contributions,

pn = pn,pole 1 + pn,pole 2 + pn,cut. (16)

Integrals taken around the poles can be transformed using the
residue theorem,

pn,pole = 1

2π

∮
pole

α(s) exp (ik(n − m))

1 − α(s)�(s)(k)
dk

= iRespole

[
α(s) exp (ik(n − m))

1 − α(s)�(s)(k)

]

= i
α(s) exp(ikpole(n − m))

−α(s)�(s)′(kpole )
. (17)

Therefore, all the pole contributions pn,pole take a form of
exponentially decaying harmonic waves (plasmons) with the
complex wave numbers kpole. These wave numbers can be
found from the condition of equality of denominator in (15) to
zero,

1 − α(s)�(s)(k) = 0, (18)

where α(s) and �(s)(k) are given by Eqs. (3) and (11),
respectively.

This is a dispersion equation of plasmons in a chain
of spherical nanoparticles. It also can be obtained directly
from Eq. (1) setting external field to zero and substituting

2The total number of poles in a particular region of the complex plane
can be counted using the argument principle, taking into account that
the integrand in Eq. (15) does not go anywhere to zero. In the present
study poles are searched in a rectangular region [−π, π ] along real
axis and [0, 16π ] along the imaginary axis.

FIG. 2. A schematic (the losses are artificially reduced for
the sake of visibility) plot of an absolute value of the integrand
1/(1 − α�(k′ + ik′′)) in Eq. (15) at the complex k plane (shown in
color). The horizontal white dashed line is the original integration
path, black solid line is the path after the shift. Thick arrows show the
direction of shift. Thin arrows show the direction of integration. On
the bottom, a pole hiding under the branch cut is shown on a larger
scale.

infinite series with polylogarithms as it was done in a number
of previous studies [3,4,28]. Such approach, though, allows
only obtain wave numbers of plasmonic solutions, whereas
the approach developed here gives also plasmon amplitudes
excited by a source and additional nonexponential solution,
which appears beside the plasmonic ones.

Contribution pn,cut related to integration around the branch
cut,

pn = 1

2π

∫
C

α(s) exp (ik(n − m))

1 − α(s)�(s)(k)
dk (19)

has a nonexponential decay profile as it includes a continuum
of complex harmonics concentrated around a free space wave
number. Waves of this type in plasmonic chains were first
distinguished by Fung [28] although decay profiles of a
nonexponential nature can be clearly observed in earlier works
[1,9,30]. An important feature of a nonexponential contribution
is that it always decays slower at long distances than any of
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FIG. 3. Dispersion characteristics for the chain of spherical nanoparticles. (a) Dispersion curves. (b) Attenuation constants corresponding
to the thick curves in (a). (c) Spectra of excitation efficiency (defined as initial amplitude under the fixed driven field). The spectra are given in
the units of total initial amplitude at the resonance frequency. Thick curves correspond to plasmons travelling in the positive direction (identified
by a positive imaginary part of the wave number), thin ones in the negative direction. The dispersion curve corresponding to NNA is coplotted
by the dashed curve. Blue color is related to the strong plasmon, red to the weak plasmon, orange to the nonexponential contribution. The
resonance frequency of a single particle, ±π Brillouin zone boundaries and light lines are depicted by horizontal, vertical, and inclined thin
black lines, respectively. The plot range is bounded upwards by the quadrupole resonance frequency of a single particle, where SDA is no longer
applicable. The chain period is d = 75 nm, radius of a single particle a = 25 nm.

plasmon contributions. It means that in a chain of sufficiently
long length, it always will dominate the total decay profile
far enough from the source. This should not be disregarded,
especially given that a nonexponential contribution is easy to
be confused with a slowly decaying plasmonic solution.

Numerical solution of the dispersion equation (18) gives
dispersion curves [Figs. 3(a) and 3(b)]. The dispersion pic-
ture consists of two branches corresponding to two types of
plasmons in chains of spherical nanoparticles. The first one is
a forward plasmon propagating nearly at the speed of light,
which below is called a “weak plasmon.” This plasmon has
a growing but still very small attenuation constant in a wide
frequency range from zero to some critical frequency, the latter
being slightly below the plasmonic resonance frequency of a
single particle. When this critical frequency is reached, the
corresponding pole hides under the cut (see the bottom plots
in Fig. 2). This means that the contribution of the pole merges
with that of the cut, i.e., this plasmon is no more considered as
a distinct solution. The second plasmon is a backward wave,

which below is called a “strong plasmon.” Plasmons of this
type are characterized by a presence of narrow band in the
vicinity of the resonance frequency of a single particle, within
which the attenuation of the strong plasmon stays relatively
small but still higher than that of the weak plasmon.

Comparison of the obtained result with that predicted
by the nearest neighbor approximation (NNA) reveals large
differences in the dispersion properties. First, NNA predicts
existence of only one solution, namely, the strong plasmonlike
solution. Second, the dispersion curve of the plasmon predicted
by NNA deviates strongly from the full-interaction curve.
Third, NNA significantly underestimates actual attenuation of
the plasmon.

In addition to dispersion curves, the developed formalism
allows us to find decay profiles of plasmons outgoing from a
localized source (which is the same as Green’s function in the
case of a δ-source). These profiles can be calculated directly
from Eqs. (15) by numerical integration over the real values
of k at each value of n. Individual contributions to a decay
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FIG. 4. Decay profiles in the chain of spherical nanoparticles.
Points indicate result obtained in a finite chain, green curve shows the
decay profile in an infinite chain. Individual contributions are plotted
for comparison. Blue color is related to the strong plasmon, red to the
weak plasmon, orange to the nonexponential contribution. Frequency
is equal to ω = 5.31 × 1015s−1.

profile from distinct solutions can be calculated by integration
along the corresponding subcontours [e.g., integration along
the branch cut in Eq. (19)] or by using Eq. (17).

On the other hand, dipole moments distribution in a finite
chain can be found directly from the solution of a finite system
of equations [9]. This distribution can be used as a reference
for cross-checking of the decay profiles in an infinite chain.
As a finite chain problem is a much simpler model that relies
on fewer assumptions, this can be considered as a routine test
for validation of applicability of the infinite chain approach
elaborated here. For this purpose we consider an excitation of
a finite chain of N = 201 particles numbered from −100 to
100 by a δ-source set at a particle with the number 0.3 The
parameters a and d are taken the same as for the infinite chain.
The result of calculation compared to the decay profile obtained
for an infinite chain is presented in Fig. 4. Contributions of
distinct solutions are also plotted. One can observe a perfect
coincidence of both results except a small section near the chain
end, where an interference with the reflected wave takes place.
Thus, as expected, one can conclude that the developed method
does provide an accurate description of modes propagating in
a chain of spherical nanoparticles.

The decay profile is formed by a superposition of several
separate interfering contributions. Let us consider an excitation
efficiency of each contribution for better understanding the
role of each of them in the waveguide. This can be done by
calculating the initial amplitude of each contribution (ampli-
tude at n = 0) using Eqs. (15) and (17) in a similar way as
in calculating the decay profiles. Frequency dependence of
such amplitudes at a fixed value of external field is shown at
Fig. 3(c).

3Such a choice is conditioned by the intention to get rid of boundary
effects. The result of calculation would be sufficiently different if the
source would be set, for example, at the chain end.

First, one can see from the figure that all the three contri-
butions have a maximum in their excitation spectra near the
resonance frequency of a single particle. Second, the initial
amplitudes of different contributions have different scales.
The backward plasmon has the largest initial amplitude in
the whole frequency range. For this reason it is referred to as
“strong.” The forward plasmon, in contrast, has the least initial
amplitude, and is referred to as “weak.” The initial amplitude
of the nonexponential wave is between these two values. The
jump in the non-exponential wave amplitude is due to the
joining of the nonexponential wave and weak plasmon into
a single solution, which corresponds to the hiding of the pole
under the brunch cut mentioned above.

Thus, the response of the spherical nanoparticle chain to
a point stationary source can be represented as a sum of
three contributions, which can be characterized separately,
namely, two plasmons (representing a discrete spectrum) and
additional non-plasmonic contribution, which is not described
by a single wave number (representing a continuous spectrum).
As a result, the dispersion equation for the plasmonic waves is
obtained, which coincides with that obtained in Refs. [4,12,28].
The main outcomes of the provided theory are the excitation
spectra of the separate contributions and possibility to compare
the plasmonic and non-plasmonic contributions at any distance
from the source. The obtained data provide all basic informa-
tion about the guiding properties of the chain helpful for further
qualitative analysis. Two possible directions of such an analysis
are search for optimal operating frequency and determination
of the most suitable type of plasmon to be utilized for energy
transfer in a specific waveguide.

In this way, a comprehensive approach to the study of spher-
ical nanoparticle chains described above has been developed
elsewhere [4,12,28]. However, such study of solutions excited
in chains made up of complex-shaped nanoparticles is still
unavailable. In the next section, we generalize the theory given
above to the case of chains of nanoparticles of an arbitrary
shape including method of finding dispersion and providing
all the related analysis.

IV. WAVES IN CHAINS OF NANOPARTICLES OF
COMPLEX SHAPE

The approach developed to the study of plasmons in chains
of spherical nanoparticles cannot be straightforwardly adapted
for the work with chains of particles of an arbitrary shape.
Plasmonic oscillations in such particles can be significantly
distorted from those in a dipole mode of spherical particles, so
that SDA in no more applicable [31]. Instead, these oscillations
should be described by spatial charge and current distributions.
Therefore, the interaction between the chain elements is not
described analytically, and the continuation into the complex
plane is not straightforward. Below we show how to operate
in this case.

As an example, we consider an axial chain of split-ring
resonators (SRRs, see. Fig. 5). SRRs are popular elements in
optical and microwave plasmonics [32–35]. It was shown that
chains made up of SRRs support plasmonic waves travelling
along the chain [6,21].
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FIG. 5. (a) Geometry of the SRR chain. (b) Magnetic (shown
by color) and electric (shown by arrows) field distribution in the
magnetodipole mode of SRR single particle. (c) Current (upper curve)
and charge (lower curve) angular distribution in a single SRR in the
filamentary current approximation.

A. Description of single SRR plasmonic particle

The geometrical model of the SRR particle is a solid torus
with major and minor radii [36] being equal to R = 100 nm
and r = 20 nm, respectively, and with a 0.8 radian gap. The
ends of the resonator are rounded by the two half-ellipsoidal
stubs with semi-axes lengths of r , r , and r/2 [see Fig. 5(b)].
The material of the particle is silver, which permittivity is taken
from the experimental data obtained by Babar [27].

A single SRR exhibits a series of plasmonic eigenmodes.
The ground mode is magnetodipole and the second mode
is electrodipole [37]. The magnetodipole mode is the most
interesting one [38], and it is spectrally separated from the
other modes due to the split-ring geometry. Particularly, this
mode has nearly twice smaller frequency than the electrodipole
mode. Therefore, in a wide frequency range around the ground
mode eigenfrequency, it can be treated as the sole mode con-
tributing to guidance. Within this single-mode approximation,
charge oscillations in a single particle can be described by
a single generalized coordinate q, which we define as an
instantaneous charge of a half of the particle.

To investigate the SRR eigenmodes we solve an eigen-
value problem by means of COMSOL Multiphysics.
The simulation provides the complex values of eigen-
frequencies. At our parameters, these values are ω̂0 =
(9.66 × 1014 + 1.57 × 1013i) s−1 for the magnetodipole
mode and ω̂1 = (1.97 × 1015 + 1.58 × 1014i) s−1 for the
electrodipole mode. The angular charge and current distribu-
tions characteristic of each mode can also be extracted from
the simulation data. The magnetodipole mode characteristic
distributions are shown at Fig. 5(b).

According to a circuit model approximation [39], gener-
alized coordinate of magneto-dipole oscillations in a single
particle obeys the equation

q̈(t )L + q̇(t )R + q(t )/C = V (t ),

where L, R, and C are the effective values of the particle
inductance, resistance, and capacitance, respectively, V (t )
is an external electromotive force. Introducing conventional
notifications for the eigenfrequency and damping coefficient,
ω0 = 1/(LC) and γ = R/2L, the equation can be rewritten in
the form

q̈(t ) + 2γ q̇(t ) + ω2
0q(t ) = V (t )/L.

The parameters γ and ω0 can be derived from the complex
eigenfrequency ω̂0 of the magnetodipole mode as ω0 = |ω̂0|,
γ = Im(ω̂0). Self-inductance of the SRR can be approximately
calculated from the relation [40]

L = μ0R

(
ln

(
8R

r

)
− 7

4

)
.

B. SRR coupling

When proceeding from a single SRR particle to a chain
of SRRs, one must introduce inter-particle interaction. It can
be described in terms of mutual capacitance K and mutual
inductance M . Total electromotive force (emf) applied to the
nth particle from a mth one is

Vnm = −Mnmq̈m − K−1
nmqm.

As in the case of interaction between the spherical particles,
due to translational invariance emf does not depend on each n

and m separately, but only on their difference. Thus, further in
the text, notationsKm,Mm,Vm, etc. with one subscript are used,
which means interaction of two SRRs separated by a distance
of m periods. Corresponding notifications without subscripts
stand for the same values considered as continuous functions
of distance, i.e., Km = K (md ), with d being the period of the
chain.
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Coupling coefficients K and M can be calculated using the
following overlap integrals [41]:

K−1 = 1

4πε0

∫∫
ρ(−→r1 )ρ(−→r2 )eik0|−→r1 −−→

r2 |

|−→r1 − −→
r2 | dr1dr2, (20)

M = μ0

4π

∫∫
j (−→r1 )j (−→r2 )eik0|−→r1 −−→

r2 |

|−→r1 − −→
r2 | d

−→
r1 d

−→
r2 . (21)

Here, ρ(�r ) and j (�r ) are the dimensionless charge and current
angular distributions of the interacting SRRs, respectively.
In the approximation of thin and distant enough SRRs, a
filamentary current model is applicable and these distributions
can be replaced by one-dimensional angle distributions shown
in Fig. 5(c). They are normalized in such a way that the total
dimensionless charge of a half of each SRR and dimensionless
current in its center are set to unity.

The oscillation equation of the entire chain is thus written
in the form

q̈n + 2γ q̇n + ω2
0qn

= −
∑
m�=n

(
K−1

nmqm + Mnmq̈m

)
/L + V ext

n /L,

or, assuming the time dependence qn(t ) = q0n exp(−iωt ), one
obtains (−ω2 − 2iγ ω + ω2

0

)
qn

=
∑
m�=n

(
ω2Mnm − K−1

nm

)
qm/L + V ext

n /L.

After the introduction of the notations,

α = (−ω2 − 2iγ ω + ω2
0

)−1
, gnm = (

ω2Mnm − K−1
nm

)
/L,

(22)
the latter equation reduces to the form that is equivalent to
Eq. (1),

qn = α
∑
m�=n

gnmqm + αV ext
n /L. (23)

Here, α is a SRR particle response function, which is analogous
to the polarizability α(s) of a spherical particle in Eq. (1),
although it has a different dimension. Function gmn that char-
acterizes the interaction between SRRs is, in turn, analogous
to g(s)

mn. Finally, the term V ext
n /L, which expresses the external

excitation of the chain of SRRs, plays the same role as the
external field Eext

n in the chain of spherical nanoparticles.
Using this similarity, one can perform the same sequence

of operations that was shown in the Sec. III to obtain the dis-
persion equation. The crucial difference between Eqs. (1) and
(23) in this regard is that spherical particles interaction function
g(s)

nm is based on inverse-power series that allows us to perform
summation procedure using the definition of polylogarythms
[see Eqs. (10) and (11)], whereas SRR function gnm is found
numerically and does not have any analytical representation.
Thus, to complete the reduction of Eq. (23) to Eq. (1), one
should replace gnm by an inverse-power series.

C. Approximation of interaction function

The general feature of complex-shaped nanoparticles is
that they exhibit complex-shaped charge distribution resulting
in interparticle interaction function that does not have an
analytical representation. One can still calculate it numer-
ically in an arbitrary number of points. In case of SRRs,
we can use the filamentary current model for this purpose
yielding integral representation Eqs. (20) and (21) for the
coupling coefficients. Here we show how such complex-shaped
nanoparticles’ interaction function can be approximated by an
analytic representation to derive the dispersion relations.

Due to the retardation effects, interaction function g(l)
(we imply the relation gmn = gm−n = g(|m − n|d )) rapidly
oscillates with distance. It is appropriate to distinguish an
oscillating factor to facilitate the approximation procedure,

g(l) = ḡ(l)eik0l .

The slowly varying function ḡ(l) can then be approximated
by an inverse power series. This function exhibits fast growth
near zero and asymptotically tends to zero with the increasing
distance, so one can suggest that a few series terms would
be required for accurate enough approximation. The resulting
approximant is thus given in the form

gm ≈
(

A1

|md| + A2

|md|2 + A3

|md|3 + A4

|md|4 + ...

)
eik0d|m|

=
(

N∑
s=1

As

|md|s
)

eik0d|m|. (24)

When comparing Eq. (2) to Eq. (24), one can see that the
former is the particular case of the latter with A1 = k2

0/(4πε0),
A2 = ik0/(4πε0), and A3 = −1/(4πε0) and other approxi-
mating coefficients equal to zero. Assuming approximant in
the form of Eq. (24) and substituting it into Eq. (23) one can
complete the derivation of the dispersion equation in the same
way as it was done in the case of spherical nanoparticles chain.
The resulting dispersion equation is

1 − α�(k) = 0, (25)

with

�(k) =
N∑

s=1

As

ds
[Lis (ei(k0+k)d ) + Lis (ei(k0−k)d )]. (26)

By analyzing these expressions, one can see that the ob-
tained dispersion equation is identical to Eq. (18) and �(k)
is basically a generalization of �(s)(k) in Eq. (11). Thus, in
a chain of complex-shaped nanoparticles, the approximation
of interaction function by the inverse power series Eq. (24)
provides the reduction of the whole formalism to that appearing
in the investigation of the spherical nanoparticles chain. As
the form of approximant Eq. (24) does not specify the exact
physical properties of the particles such as shape, size, mate-
rial, or mutual orientation, this approach is applicable to an
arbitrary particle chain. Such specification is achieved through
particular values of approximation coefficients A1, A2, A3, ...

So, to obtain dispersion relations in the SRR chain from the
dispersion equation (25) we must determine the concrete values
of the approximation coefficients for the interaction function
in the case of SRRs.
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D. Approximation coefficients

In the present work, coupling coefficients K−1 and M

entering the definition of interaction function are approximated
separately by the two inverse power series with distinguished
exponential oscillating factor,

K−1(l) ≈
(

B1

l
+ B2

l2
+ B3

l3
+ B4

l4
+ ...

)
eik0l

=
(

N∑
s=1

Bs

ls

)
eik0l , (27)

M (l) ≈
(

C1

l
+ C2

l2
+ C3

l3
+ C4

l4
+ ...

)
eik0l

=
(

N∑
s=1

Cs

ls

)
eik0l . (28)

This will result in g approximant in the form of Eq. (24) with
the following approximation coefficients:

As = ω2Cs − B−1
s

L
. (29)

The values of K−1 and M for approximation are evaluated
by Eqs. (20) and (21) in the nodes of the approximation grid
li . Every value of K−1 and M is then divided by exp(ik0li ) to
numerically distinguish the oscillating factor.

Search for the optimum approximants is done by adjusting
all the approximation coefficients Bs and Cs to minimize the
following total relative discrepancies �K and �M ,

�K =
∑

i

∣∣K−1(li ) exp(−ik0li ) − ∑N
s=1 Bs/lsi

∣∣2

|K−1(li )|2
, (30)

�M =
∑

i

∣∣M (li ) exp(−ik0li ) − ∑N
s=1 Cs/lsi

∣∣2

|M (li )|2
. (31)

Note that K−1(l) exp(−ik0l) and M (l) exp(−ik0l) are numer-
ical slowly varying functions of l.

Let us outline a few features of the optimization problem
Eqs. (30) and (31) that are important for the successful imple-
mentation of the approximation procedure. First, as absolute
values of K−1 and M at large l may be up to several orders
of magnitude smaller than that at l ∼ 1, a relative discrepancy
should be used instead of the absolute discrepancy to avoid
overweight of short-range grid nodes. Second, as K−1 and M

change rapidly at small distances and become more smooth at
larger ones, a logarithmic grid li should be used for uniform
nodes weighting at both short and long distances. Third, due
to limitations of filamentary current approximation, the short
end of the approximation grid should not be closer than l = 1.
Fourth, the far end of the grid should be taken far enough
so that the minor contributions into the interaction function,
which decay slowly, are revealed. Fifth, it should be noted that
the lowest order term in the K−1 approximant corresponds
to i = 2, whilst the first term B1 is identically equal to zero

FIG. 6. The absolute value of the electric (red) and magnetic
(blue) interparticle interaction terms calculated numerically (dots)
and the result of inverse-power series approximation Eqs. (27) and
(28) with N = 7 (solid curves).

because of the symmetry of the magneto-dipole mode and the
geometry of the problem.

With this in mind, we use a grid of 31 nodes logarithmically
distributed from l1 = 1 to l31 = 1000 and setB1 = 0 constantly
upon the approximation. The result of approximation is shown
in Fig. 6.

The remaining free parameter that was not discussed so
far is the number of approximation terms N . One can suggest
that more terms provide more accurate approximation. Based
on this, the whole approximation process in the present work
is organized iteratively, with N increasing by 1 at each step
starting from N = 4. At each step, the optimization problem
Eqs. (30) and (31) is solved using the Newton’s method. The
resulting values of the approximation coefficients Bs and Cs are
then used as initial values at the next step. For those coefficients
which firstly appear at the current step, zero is used as the
initial value. At the first step, the search is also started from
all the coefficients equal zero. The resulting values of Bs and
Cs are substituted into Eq. (29) to specify the function �(k) to
use in the dispersion equation. The dispersion equation can
then be handled in the same manner as it was done with
the dispersion equation of the spherical nanoparticles chain
Eq. (18), resulting in the dispersion curves of SRR particles
chain. Different dispersion pictures corresponding to different
values of N are shown in Fig. 7.

FIG. 7. Dispersion curves of the strong plasmon in the SRR chain
calculated at different numbers N of approximation terms in Eqs. (27)
and (28).
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We suggest an increasingly good approximation when
increasing N and expect that the sequence of dispersion curves
converges to some limit state that can be considered as a true
dispersion picture. The convergence process is shown in Fig. 7
with the dispersion curve of the strong plasmon as an example.
One observes that the convergence does practically occur by
the N = 8 iteration. The similar situation can be observed with
a weak plasmon dispersion curve (not shown). In the further
discussion, the result obtained with N = 7 terms is taken as the
final result. At larger values of N , the search for the optimum
values of Bs and Cs leads ho high numerical errors, which
appear as a noise in the resulting dispersion curves (see the
next Section for details).

The dispersion picture consists of two branches correspond-
ing to plasmons of the same two types that exist in chains of
spherical nanoparticles, i.e., the strong and the weak plasmons.
Their general features remain the same. However, due to the
fact that the SRR chain demonstrates lower losses than the
spherical particle chain, one can observe that the curves behave
in concert clinging together and then splitting apart below
some characteristic frequency [1.02 × 1015 s−1 in Fig. 8(a)].4

Such a behavior is well known for the SPP running along
thin metal films (see, e.g., Fig. 7(b) in Ref. [42]). It also
has already been demonstrated and discussed in the chain of
unrealistically low-loss metallic spherical particles [28]. This
leads to the appearance of a clearly defined band structure,
wherein the strong plasmon has a transmittance band about
the resonance frequency with an upper boundary occurring at
the characteristic frequency, and the weak plasmon follows
the light line until approaching the characteristic frequency,
where its attenuation drastically increases. It is interesting to
note that the strong plasmon attenuation is now significantly
lower, while the attenuation of the weak plasmon is, in contrast,
higher than those in the spherical particle chain.

Comparing the obtained result to that predicted by NNA,
one can observe large differences in the dispersion properties,
similar to those in case of spherical particles chain. First, NNA
predicts existence of only one solution, namely, the strong
plasmon-like solution [Fig. 8(a)]. Second, the dispersion curve
of the plasmon predicted by NNA always remains in the left
half of the first Brillouin zone, while the full-interaction curve
intersects the frequency axis. Third, the behavior of k′′ within
the transmittance band differs substantially [Fig. 8(b)].

Decay profiles of in the infinite SRR chain can be calculated
using the formula

qn = 1

2π

∫
R

α exp (ik(n − m))

1 − α�(k)
dk, (32)

which is derived from Eq. (23) similarly to the derivation of
Eq. (15) from Eq. (1). Here, α and �(k) are defined by Eqs. (22)
and (26), respectively.

4Since polylogarithm is a multi-valued function, a pole may move
away from the principal branch to another one through a branch cut
(corresponds to a dispersion curve hitting the right light line). To shift
the cut and build the continuation of the curve, one can use a relation
between the values of polylogarithm at the upper and lower branches,
Lis (x ) → Lis (x ) ± 2πilns−1(x )/�(s ).

Now we perform the validation procedure described in the
previous Section through cross-checking the obtained results
with that in a finite chain. For this purpose we consider an
excitation of a finite SRR chain of N = 201 particles numbered
from −100 to 100 by a δ-source set at a particle with the number
0.3 The problem is solved by the same standard method that
was used in the case of finite spherical particle chain problem
(see the explanations to Fig. 9 ) [6,9]. The result of calculation
compared to the decay profile obtained in an infinite chain is
shown in Fig. 9. Contributions of distinct solutions are also
plotted. One can observe a perfect coincidence of both results
including complicated interference effects between distinct
solutions. The exception is a small section near the chain end,
where an interference with a reflected wave takes place. Thus,
one can conclude that the developed method does provide a
highly accurate description of modes propagating in the SRR
chain.

Let us consider an excitation efficiency of each contribution
to the decay profile. Frequency dependence of such efficiencies
defined as initial amplitudes (amplitudes at n = 0) of corre-
sponding solutions under the fixed driven field is shown in
Fig. 8(c). It can be seen that excitation spectra become more
sophisticated being compared with those in case of spherical
particle chain [Fig. 3(c)]. Due to low losses in the SRR chain
the plots corresponding to the strong and to the weak plasmons
exhibit the following behavior. Above some characteristic
frequency, at which the dispersion curves are clinging together,
the initial amplitudes of the strong and the weak plasmons
also become almost the same. Below this frequency, the
amplitudes are different. The initial amplitude of the strong
plasmon is still higher than that of the weak plasmon in
the whole frequency range (that justifies their denotations).
However, the intermediate position of the nonexponential wave
is no longer preserved. The excitation spectrum of the strong
plasmon now exhibits two distinct peaks at the boundaries
of the transmittance band. The peak exhibited by the weak
plasmon is also shifted up from the resonance frequency to the
characteristic frequency. The jump in the nonexponential wave
amplitude is due to the joining of the nonexponential wave and
the weak plasmon into a single solution.

Thus, the proposed approach for the characterization of
plasmons propagating in complex-shaped nanoparticle chains
provides a highly accurate modes description and opens up
a wide spectrum of analysis that was previously available
only for spherical particles chains. Since the key point of the
approach, which consists in the approximation of the inter-
action function with the inverse-power series and subsequent
analytical continuation to the complex wave-number values,
is universal and is not restricted to the considered particles’
geometry, the approach developed here can be applied to a
chain made up of particles of any arbitrary shape.

E. Accuracy and limitations

Here we discuss possible issues with convergence of the
dispersion curves that should be handled with to successfully
achieve a satisfactory approximation and avoid misinterpreta-
tion of the results.
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FIG. 8. Dispersion characteristics for the chain of SRRs. (a) Dispersion curves. (b) Attenuation constant. (c) Spectra of excitation efficiency
(defined as initial amplitude under the fixed driven field). The spectra are given in the units of total initial amplitude at the resonance frequency.
Thick curves correspond to plasmons travelling in the positive direction (identified by a positive imaginary part of the wave number), thin
ones in the negative direction. The dispersion curve corresponding to NNA is coplotted by the dashed curve. Blue color is related to the strong
plasmon, red to the weak plasmon, orange to the nonexponential contribution. The resonance frequency of a single particle, ±π Brillouin zone
boundaries, and light lines are depicted by horizontal, vertical, and inclined thin black lines, respectively. The plot range is bounded upwards
far enough from the electrodipole resonance frequency of a single SRR particle that restricts applicability of single mode approximation.

1. False solutions

In the case of spherical particle chain, the dispersion
equation (18) contains the function �(s)(k) that includes a
series of three strictly specified terms. Solving the dispersion
equation results in exactly three types of propagating waves,
namely, the strong and weak plasmons corresponding to the
two poles at the complex k-plane and a nonexponential wave
corresponding to a branch cut. In the case of complex-shaped
particle chain, the dispersion equation (25) contains the func-
tion �(k) that includes a series of terms whose number and
coefficient values may vary depending on the approximation
order N in Eq. (24). However, one may find larger number
of the dispersion equation solutions, which results in the
existence of more than two poles, producing more than two
branches in the dispersion picture. Two of them still can be
recognized as corresponding to weak and a strong plasmons,
but other ones exhibit some chaotic behavior. The number of
this additional poles can be different depending on the number
of approximation terms N and increases with increasing N .
All of these solutions have large wave-number imaginary parts

(k′′ 	 1), indicating that these plasmons are highly damped.
To interpret this result we consider the total decay profiles
with the weak and strong plasmons and non-exponential wave
contributions being subtracted. We take a profile previously
calculated in the finite chain (see Fig. 9) as the “true decay
profile,” then subtract the said contributions in infinite chain
and consider the remainder (i.e., the discrepancy between the
finite and infinite chain solutions). Ideally, this remainder must
be zero, meaning that the decay profile in a finite chain must
break entirely into the contributions analytically found from the
infinite chain problem. But due to inaccuracies the discrepancy
actually remains at the level of 0.001 of the initial amplitude
(see Fig. 10). However, one can see that the discrepancy rises
sharply in the neighborhood of the δ-source reaching a value
of 0.1. But then if we also sequentially subtract contributions
of the two additional plasmonlike solutions appearing in
the considered example, the remainder will return again to
the average level. Therefore, these additional plasmonlike
solutions can be perceived as a mathematical artifact of the
method arising from numerical inaccuracies but not as a
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FIG. 9. Decay profiles in the SRR chain. Points indicate result
obtained in a finite chain, green curve shows the decay profile in
an infinite chain. Individual contributions are plotted for compari-
son. Blue color is related to the strong plasmon, red to the weak
plasmon, orange to the nonexponential contribution. Frequency ω =
1.028 × 1015s−1.

physically existing phenomenon. Numerically, it manifests in
a few percent discrepancy between the full decay profile in an
infinite chain (taken as a sum of weak and strong plasmons and
non-exponential wave) and the solution found in finite chain.
However, due to high damping, this discrepancy is noticeable
only at short distances and comes to naught a few particles
aside from the δ-source.

Nevertheless, since the amplitudes of the false solutions are
considerable in the neighborhood of the δ-source, they should
not be neglected when calculating the excitation spectra, which
are defined through the amplitudes at the zeroth particle. In this
paper, we include the contributions of the false solutions into
the nonexponential wave decay profile that may result in a few
percent normalization inaccuracy in Fig. 8(c).

FIG. 10. The remainder of the total decay profile after sequential
subtraction of different contributions. The full solution in the finite
chain is shown by black points. At the first step, the weak and strong
plasmons and non-exponential wave contributions are subtracted from
the full solution (red points). At the second step, one of the two false
solutions is subtracted (magenta points). At the third step, the last
false solution is subtracted (blue points). Green and aquamarine points
show the contributions of the false solutions. The frequency is ω =
1.028 × 1015s−1.

2. Numerical noise

Besides the mentioned difficulties, let us mention one more
issue, which addresses the choice of the number N of terms
in Eq. (24). Search for the optimal set of approximation
coefficients Bs and Cs in a multidimensional space is a
computationally hard task. At high N , it cannot be solved
precisely by the computational algorithm due to emergence
of local minima and high computational time. This leads to
the fact that the optimization problem Eqs. (30) and (31) could
not be solved for an arbitrarily large N . In practice, starting
from N = 9 we observe the growth of numerical errors. The
noise affects primarily the solutions with high imaginary part
of k, i.e., the false solutions discussed above and the strong
plasmon far from the transmittance band. Nonetheless, as was
mentioned earlier, in our case N = 7 terms are enough to
consider the dispersion curves obtained at that step converged
to the “true” dispersion.

V. CONCLUSIONS

We have proposed an approach for description of plasmons
in chains of nanoparticles of a complex shape. This approach
leads to finding the dispersion relations, decay profiles and
excitation spectra. The approach is basically a generalization of
the method previously developed by Koenderink for spherical
nanoparticle chains [4]. We have shown how the complex-
shaped nanoparticles interaction functions that are known only
numerically can be approximated by the inverse power series
with subsequent analytical continuation to the complex wave
numbers.

We applied the developed method to a chain made up of
split-ring resonators and compared the results to that in a
spherical nanoparticle chain. We found that a localized source
excites three contributions, namely, two plasmonic solutions
and a non-exponential wave. All three types are common for
both spherical and SRR particle chains.

The first plasmonic solution (“strong plasmon”) originates
from the plasmon localized at a single particle, which is a
magnetic mode of SRR in our case. This solution is formed by
the strong coupling mechanism. It can be described with the
account of only nearest neighbor interactions, although this
brings considerable mistakes into the dispersion relation. This
plasmon is mostly a backward wave. The strong plasmon has
the largest decay among the three contributions. It appears that
most papers on nanoparticles chain waveguides imply this type
of plasmon as a signal or energy carrier.

The second plasmonic solution (“weak plasmon”) appears
with the account of the radiative part of nanoparticles’ field.
It requires the account of many interparticle interactions. The
dispersion curve follows the light line; therefore, the wave is
mostly forward. The wave has a very large propagation length.

The third, nonexponential contribution, strictly speaking,
is not an eigensolution, because it does not have any charac-
teristic shape in a sense that the latter depends on the form
of the source. It cannot be described by a certain complex
wave number and includes many harmonics. Nonexponential
contribution is often referred to as the continuous spectrum in
contrast with the discrete spectrum, which is presented by the
plasmonic solutions in our system.
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When the chain is excited by a source, the response
may be represented as a sum of the three mentioned con-
tributions. The strong plasmon is the strongest near the
source, but it decays just near the source. The weak plas-
mon is characterized by smaller initial amplitude and lower
damping. Far enough from the source, a complete solu-
tion consists almost entirely of the nonexponential wave,
which is due to a nonexponential form of the decay
profile.

If one compares a chain of spherical particles to that of
SRRs, the latter are far less dissipative. In particular, the
plasmonic dispersion curves in the SRR chain clearly form
a single dispersion structure similar to that in thin metallic
films [42], whereas this picture is deformed unrecognizably in
spherical particle chains due to too high dumping.

We also found that the excitation spectrum of the strong
plasmon is not uniform within the transmittance band. Instead,
it has two distinct peaks at its boundaries (this effect is
also blurred in the spherical nanoparticle chain due to high

dumping). Due to this effect, when designing a nanoparticle
chain waveguide, the optimal operational frequency may occur
somewhere aside from the resonanse frequency, contrary to a
widespread approach, where the resonance frequency is treated
as an optimal frequency for signal propagation.

Basically, the key point of the proposed method is the ap-
proximation procedure, which doesn’t depend on the particles’
geometry, material or orientation as well as on the nature of the
considered wave at all. So, this method can also be adapted to
chains of magnonic particles, metamaterial meta-atoms etc.
Therefore, the proposed approach is universal for studying
chain waveguides of various kinds.
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