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Bethe ansatz and bosonization procedures are used to describe the thermodynamics of the strong-coupled
Hubbard chain in the spin-incoherent Luttinger liquid (LL) regime: J (≡ 4t2/U ) � kBT � EF , where t is the
hopping amplitude, U (� t ) is the repulsive on-site Coulomb interaction, and kBT (EF ∼ t ) is the thermal (Fermi)
energy. We introduce a fractional Landau LL approach, whose U = ∞ fixed point is exactly mapped onto
an ideal gas with two species obeying the Haldane-Wu exclusion fractional statistics. This phenomenological
approach sheds light on the behavior of several thermodynamic properties in the spin-incoherent LL regime:
specific heat, charge compressibility, magnetic susceptibility, and Drude weight. In fact, besides the hopping
(mass) renormalization, the fractional Landau LL parameters, due to quasiparticle interaction, are determined
and relationships with velocities of holons and spinons are unveiled. The specific heat thus obtained is in very
good agreement with previous density matrix renormalization group (DMRG) simulations of the t-J model in
the spin-incoherent regime. A phase diagram is provided and two thermodynamic paths to access this regime
clarifies both the numerical and analytical procedures. Further, we show that the high-T limit of the fractional
Landau LL entropy and chemical potential exhibit the expected results of the t-J model, under the condition
U � kBT . Lastly, finite-temperature Lanczos simulations of the single-particle distribution function confirm the
characteristics of the spin-incoherent regime and the high-T limit observed in previous DMRG studies.
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I. INTRODUCTION

Very recently, experimental realization of one-dimensional
(1D) ultracold fermions with a tunable number of spin compo-
nents has been reported in the crossover regime of temperature
between spin-ordered and spin-incoherent Luttinger liquid
(LL) [1]. In particular, the subtle bosonic limit [2] is evidenced
for strongly repulsive 173Yb atoms with nuclear spin I = 5/2.
In addition, studies using analytical and numerical methods
have shown [3] that the spin-incoherent 1D spin-1 Bose LL
in a harmonic trap and in the Tonks-Girardeau limit (infinite
repulsion) [4], exhibits the universal 1/p4 dependence momen-
tum distribution, which is, however, broader than the spinless
case, due to spin-function overlaps. We also remark that the
Tonks-Girardeau limit has been experimentally achieved in
ultra cold boson atoms [5], and also verified in frustrated
quantum spin chains [6].

On the theoretical side, the method of bosonization [7]
has provided an efficient means to derive analytical results
for low-dimensional interacting fermion systems in condensed
matter and field theory, thereby allowing the emergence of
new physical concepts. In this context, the LL theory has been
proposed [8] as a unified framework to describe the low-energy
physics of a large class of 1D quantum many-body systems
[9–11]. Emphasis has been given to those systems subjected
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to strong quantum fluctuations and exhibiting new features
not fully described by the standard Fermi liquid theory [12]
governed by the zero coupling-strength fixed point [13].
Notwithstanding, several aspects of a Landau-Luttinger theory
were discussed at length [14–16]. Further, generalization of
the standard Fermi liquid theory was also proposed with aim
in describing the unusual properties of heavy-fermion systems,
in particular close to a metal-insulator transition [17].

Following the LL concept we have witnessed a vigorous
development in the study of 1D strongly correlated electron
systems, particularly in connection with the nature and the
role played by charge and spin excitations, and the related
phenomenon of spin-charge separation [9]. Comparison of
results derived using bosonization with those from other
methods, such as the Bethe-ansatz and density matrix renor-
malization group techniques [11,18], has also proved valuable.
More recently, a very interesting regime of the LL, namely
the spin-incoherent LL, has received special attention [19].
For both continuous [20,21] and lattice [22–24] versions
of the 1D Hubbard model [10], this regime is realized un-
der the condition J (≡ 4t2/U ) � kBT � EF (∼ t ), where t

is the nearest-neighbor hopping amplitude, U is the repul-
sive on-site Coulomb interaction, β = 1/(kBT ) is the inverse
temperature measured in units of the Boltzmann constant, J

is the antiferromagnetic exchange coupling, and EF is the
Fermi energy. Alternatively, for low carrier densities, quantum
wires [25–29] are near the 1D Wigner crystal limit at which
the electrostatic energy between the particles greatly exceeds
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their kinetic energy leading to J � EF , so that for kBT � J

the observed conductance is about half the usual LL value
2e2/h due to the spin-incoherent contribution to the resistance,
where e is the magnitude of electron charge and h is the Planck
constant. Indeed, it has been shown that, despite that features of
spin-charge separation persist, the spin part of the correlation
function exhibits an exponential spatial decay [20,21] not
consistent with the usual LL power-law decay. Moreover, at
half filling [22], the effective gapped charged excitations are
modified due to the presence of the uncorrelated spin degrees
of freedom.

In this paper we shall demonstrate that the thermodynamic
properties of the Hubbard chain in the spin-incoherent regime
can be described by using arguments from complementary
powerful methods in the realm of quantum statistical me-
chanics and many-body theory, notably the Haldane-Wu ex-
clusion fractional statistics [30]. In this context, the fractional
character of the excitations of Hubbard models with short-
range Coulomb interaction and correlated hopping [31–33]
(bond-charge interaction), and infinite-range Coulomb interac-
tion [34] as well, has been invoked to properly describe phase
diagrams exhibiting metal-insulator transition, including the
unexpected absence of conductivity at half filling due to a
topological change in the Fermi surface, and η-pairing [35]
induced 1D critical superconductivity [36]. Correlated hopping
can also play a relevant role in 2D models of high-temperature
superconductors [37]. In addition, particles obeying exclusion
fractional statistics have been considered in the context of
optical lattices [38,39], including the (1D) Tonks-Girardeau
limit [40]. In 2D systems, it was suggested [41] that spec-
troscopy measurements on ultracold atoms can be used to
demonstrate the fractional exclusion statistics of quasiholes in
the Laughlin state of bosons. On the other hand, neutral anyonic
excitations, which satisfy fractional exchange statistics in two
dimensions, can be identified [42] through measurements of
spectral functions near the threshold. The structure factor
follows a universal power-law behavior, whose exponent is
the signature of the anyon statistics and the underlying topo-
logically ordered states that should occur in spin liquids and
fractional Chern insulators. Moreover, it was proposed [43]
that superfluid to Mott insulator quantum phase transitions in
an anyon-Hubbard model with three-body interaction can be
driven by the statistics or by the interaction.

In Sec. II, we use a strong-coupling perturbative expan-
sion [44] of the Takahashi’s Bethe-ansatz grand-canonical
free energy [45–47] to calculate the Helmholtz free energy,
energy and entropy in the spin-incoherent regime. From
these thermodynamic potentials and the Luttinger theory, we
present in Sec. III the specific heat, isothermal compressibility,
Luttinger liquid parameter, magnetic susceptibility, and the
Drude weight, to leading order in J/EF . In Sec. IV, we show
that the thermodynamics of the infinite-U Hubbard chain is
exactly mapped onto an ideal exclusion gas of two species
obeying the Haldane-Wu exclusion fractional statistics [30].
In Sec. V we introduce a fractional Landau LL approach,
which provides nontrivial insights and a direct connection
with the LL theory in the spin-incoherent regime. Indeed, our
results provide strong evidence that the fractional exclusion
entropy describes very well the thermodynamics of the spin-
incoherent regime. We can thus identify the pertinent fractional

Landau LL parameters, and their relationship with the LL
properties, namely, the velocity of holons and spinons. Despite
that there have been previous attempts [17,48,49] towards a
generalization of the Fermi liquid theory to particles obeying
fractional exclusion statistics, a realization of these ideas, as
presented here, is apparently missing. In Sec. VI we consider
the high-T limit [50] of the particle distribution function,
chemical potential, and entropy. Finally, concluding remarks
are reserved to Sec. VII.

II. SPIN-INCOHERENT REGIME OF THE
HUBBARD CHAIN

The Hamiltonian of the Hubbard chain of L sites in the
presence of an external magnetic field along the z direction is
given by

H=−t
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑
i

ni↑ni↓−μBH
∑

i

(ni↑ − ni↓),

(1)

where 〈i, j 〉 denotes nearest-neighbor sites, σ ∈ {↑,↓},
ciσ (c†iσ ) is the electron annihilation (creation) operator, niσ =
c
†
iσ ciσ is the number operator, μBH is the Zeeman energy, and

μB is the Bohr magneton. The t-J model, which projects out
doubly occupied states in the strong-coupling regime of the
Hubbard chain, reads:

Ht−J = −t
∑

〈i,j〉,σ
(1 − niσ̄ )c†iσ cjσ (1 − njσ̄ )

+ J
∑
〈i,j〉

(
Si · Sj − 1

4
ninj

)
− 2μBHSz, (2)

where σ̄ = −σ , Sz = 1
2

∑
i (ni↑ − ni↓), with h̄ ≡ 1, and

J = 4t2/U.

The spin-incoherent LL regime is found at temperatures
such that

J (≡ 4t2/U ) � kBT � EF ∼ t. (3)

This regime is characterized by low-energy collective charge
excitations (holons) with a velocity v(inch)

c of interacting spin-
less fermions, and by the absence of collective spin excita-
tions, since the very small strong-coupling spinon velocity vs

(∼ J ) implies a very small correlation length ξ = vs/πkBT ∼
J/2kBT � 1. In this context, we note that the special point
J = 0 (U = ∞) is also a spin-incoherent LL, since it is a spin-
disordered state, with vs = J = 0 and infinite spin degeneracy
in the thermodynamic limit; thereby, only holon excitations
exist.

The thermodynamic Bethe ansatz has been successfully
implemented for the Hubbard chain long ago [45]. However,
difficulties exist in deriving closed-form expressions for ther-
modynamic quantities from the infinite coupled integral equa-
tions. Notwithstanding, it has been shown [44] that it is possible
to solve the set of integral equations perturbatively in the strong
coupling limit (t � U ), and consistent high-temperature series
expansions have been provided. In particular, in Appendix A
the results reported in Ref. [44] for the grand canonical free
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energy �(T ,μ,H ) can be used in order to obtain corrections
ofO(t2/U ) to the U = ∞ limit. Most importantly, as we show
in this work, these corrections are suitable to describe the t-J
limit of the Hubbard chain in the regime U � kBT , including
the spin-incoherent regime for kBT � t . In fact, in Appendix A
we find that �(T ,μ,H ) in the spin-incoherent regime reads:

�inch(T ,μ,H )

L

= −kBT

∫ π

−π

dk

2π
ln[1 + e−β(εk−μ−μBH ) + e−β(εk−μ+μBH )]

− kBT

cosh(βμBH )

(
t

U

)∫ π

−π

dk

2π

2

eβ(εk−μ) + 2 cosh(βμBH )

×
∫ π

−π

dk

2π
cos k ln[1 + e−β(εk−μ−μBH ) + e−β(εk−μ+μBH )]

+ . . . , (4)

where μ is the chemical potential and εk = −2t cos k is the
dispersion relation of tight-binding fermionic particles, which
is the exact dispersion relation for the U = ∞ case [51].
In fact, making U = ∞ in Eq. (4), we obtain the exact
expression of the grand-canonical free energy [45] at this
extremal coupling value. The grand-canonical free energy (4)
is also suitable to describe the spin-incoherent regime, since
using the inequalities in (3): 4t2/U � kBT � t , we find
U/kBT � 1/(kBT /t )2 � 1.

The chemical potential μ is calculated from n = − 1
L

( ∂�
∂μ

):

μinch(T , n) = −2t cos(nπ )

−nt2

U

[
1 + 2 sin2(nπ ) − sin(2nπ )

2nπ

]
− kBT ln 2

+π2(kBT )2 cos(nπ )

12t sin2(nπ )

{
1 +

(
2t

U

)[
n

cos(nπ )
− sin(nπ )

π

]}

+ . . . , (5)

The corresponding expansion for the Helmholtz free en-
ergyF (= μN + �), energyE(= F − T ∂F/∂T ), and entropy
S(= −∂F/∂T ) read:

Finch(T , n)

L
= −2t sin(nπ )

π
−

(
t2

U

)
n2

[
1 − sin(2nπ )

2nπ

]

−nkBT ln 2 − π (kBT )2

12t∗ sin(nπ )
+ . . . ; (6)

Einch(T , n)

L
= −2t sin(nπ )

π
−

(
t2

U

)
n2

[
1 − sin(2nπ )

2nπ

]

+ π (kBT )2

12t∗ sin(nπ )
+ . . . ; (7)

Sinch(T , n)

L
= nkB ln 2 + πk2

BT

6t∗ sin(nπ )
+ . . . , (8)

where the T -dependent terms have coefficients with a hopping
parameter t∗ given by, up to O(t/U ),

t∗ = t

[
1 − 2nt cos(nπ )

U

]
. (9)

We stress that up to O(t/U ) doubly occupied sites are forbid-
den [52]. In fact,

〈N↑↓〉
L

= ∂ (Einch/L)

∂U
= n2

(
t

U

)2[
1 − sin(2nπ )

2nπ

]

−
(nπ

6

)(
kBT

U

)2

cot(nπ ) + . . . . (10)

The above results show that the charge degrees of freedom in
the regime J � kBT � t or J = 0 and kBT � t are described
by a gas of free spinless fermions. Indeed, the first term in
Einch(T , n) is the ground-state energy of a gas of free spinless
fermions with dispersion εk = −2t cos k; while T -dependent
terms in Einch(T , n) and S(T , n) are contributions from ther-
mally excited spinless fermions, with a mass ∼1/t∗, above the
Fermi surface, which is defined by the wave vectors k = ±kF ,
with kF = nπ . The spin-incoherent regime is identified by
noticing that the first term in the entropy Sinch(T , n) indicates
that the spin degrees of freedom are fully disordered.

III. RESPONSE FUNCTIONS AND
SPIN-INCOHERENT LL PARAMETERS

The Hamiltonian of the system in the spin-incoherent
regime and zero field can be mapped onto the following charged
bosonized LL Hamiltonian [27]:

Hinch = v(inch)
c

∫
dx

2π

[
1

g
(∂xθ )2 + g(∂xφ)2

]
, (11)

where v(inch)
c is the holon velocity, (1/π )(∂xθ ) is the fluc-

tuation in electron density, and the commutation relation
[θ (x), ∂x ′φ(x ′)] = iπδ(x − x ′) holds. The coupling g can be
written in terms of the LL parameter Kc, which governs the
decay of the correlation functions:

Kc = 1

2g
. (12)

The specific heat C = − T
L

(∂2F/∂T 2):

Cinch(T , n) = γinchk
2
BT + . . . , (13)

displays a free spinless Fermi gas form where the specific-heat
coefficient γinch and the holon velocity are, respectively,

γinch = π

3v
(inch)
c

; (14)

v(inch)
c = 2t∗ sin(nπ ). (15)

On the other hand, the charge compressibility κ−1 =
n2(∂μ/∂n) reads:

κ−1
inch(T , n) = 2πtn2 sin(nπ )

×
{

1 −
(

2t

U

)[
sin(nπ )

π
+ n cos(nπ ) + O

(
k2
BT 2

t2

)]}
.

(16)

Further, in the spin-incoherent LL regime g−1
inch =

πv(inch)
c κinchn

2, we find

ginch = 1 −
(

2t

U

)
sin(nπ )

π
, (17)
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and

K (inch)
c = 1

2ginch
= 1

2
+

(
t

U

)
sin(nπ )

π
. (18)

Notice that using Eqs. (9) and (15), we can verify that v(inch)
c

is not the holon velocity of the standard LL theory at T = 0.
Lastly, since [53] σ0 = 2Kcvc, the Drude weight that mea-

sures the dc peak in the conductivity, σ (ω) = σ0δ(ω), in the
spin-incoherent LL regime is given by

σ
(inch)
0 = 2t sin(nπ )

[
1 + 2t

U

(
sin(nπ )

π
− n cos(nπ )

)]
,

(19)

where use was made of Eqs. (18) and (21). We also confirm
the spin-incoherent regime by probing the spin degrees of
freedom through the susceptibility χ (T ,μ). As shown in
Appendix B, the canonical susceptibility and spinon velocity
read, respectively:

χinch(T , n) = μ2
Bβn

[
1 − nvs

πkBT
+ O

(
J

t

)]
; (20)

vs = 2πt2

U

[
1 − sin(2nπ )

2nπ

]
, (21)

where vs is the strong-coupling spinon velocity [53]. The
correction of O(vs/kBT ) to the dominant Curie response is
the one we expect in view of the highly excited spin degrees
of freedom and implies vs (n)|U=∞ = 0, for any value of T .
For finite J , we use the fluctuation-dissipation theorem: χ =
β

∫
G(x) dx, where G(x) is the spin-correlation function. In

order to satisfy Eq. (20), G(x) = μ2
Bn[δ(x) − ne−x/ξ ], with a

correlation length ξ given by the expected result [8,54,55]: ξ =
vs/(πkBT ) ∼ [J/(2kBT )] � 1, thus confirming the spin-
incoherent regime for finite J .

A. T → 0 limit: The standard LL regime, with
charge and spin collective excitations

Here we show that we can infer the parameters of the
standard LL regime, which settles as T → 0, from the above
spin-incoherent results. In doing so, we take advantage of the
description of the U → ∞ limit of the Hubbard chain put
forward in Ref. [56]. In particular, by using the Bethe ansatz
solution, it has been shown that the ground-state wave function
of the system can be constructed as a product of a spinless
fermion wave function |�〉 and a squeezed spin wave function
|χ〉. The wave function |χ〉 are eigenfunctions of the following
Heisenberg Hamiltonian:

HS =
N∑

i=1

∑
α=x,y,z

J̃ α

(
Sα

i Sα
i+1 − 1

4
δα,z

)
, (22)

where

J̃ α = n
4t2

U

[
1 − sin (2nπ )

2nπ

]
(23)

is determined by the ground-state energy wave function of the
spinless fermions |�GS〉. Notice that, at half filling, we have
the standard coupling J = 4t2/U . Therefore, the contribution

0 0.2 0.4 0.6 0.8n
0

0.5
1

1.5
2

2.5

v c / 
t

0 0.2 0.4 0.6 0.8 1n

0.5

0.6

K
c

(a) (b)

FIG. 1. (a) Charge velocity [Eq. (26)] and (b) correlation exponent
Kc [Eq. (27)] at T = 0 as a function of n for U = 16t . In both figures,
the dots displayed were obtained from Ref. [53].

of HS to the ground-state energy per site is given by

〈χGS |HS |χGS〉
L

≡ EGS

L
= −n2

(
4t2

U

)
[1 − 4γS (T = 0)]

4

×
[

1 − sin (2nπ )

2nπ

]
, (24)

where

γS (T ) = 〈Si · Si+1〉 =
{

1/4 − ln 2, T = 0;
0, kBT � t2/U

(25)

denotes the T -dependent nearest-neighbor spin correlation
function of the Heisenberg model [57]. This contribution at
T = 0, together with that of spinless fermions [first term in
Eq. (7)] is the exact ground-state result up to O(t/U ) [56,58–
61] of the 1D t-J model. We thus infer that the ground
state energy of the Hubbard chain in the spin-incoherent
regime obtains through the replacement of γS (T = 0) by
γS (T � J/kB ) = 0. This correspondence was already noticed
in the study of the thermodynamics of the Hubbard chain in
the spin-disordered regime at half filling [22]. We have also
noted that several expressions valid in the spin-incoherent LL
regime differ from the corresponding ones at T = 0 by the
multiplying factor [1 − 4γS (T = 0)].

Consider first the charge velocity at T = 0:

vc(T = 0, n) = 2t sin(nπ )

×
{

1 − 2[1 − 4γS (0)]nt cos(nπ )

U

}
,

= 2t sin(nπ )

[
1 − 8 ln 2

U
nt cos(nπ )

]
(26)

which is the extension of Eq. (15) to T = 0 using Eq. (25),
in agreement with Bethe-ansatz analytical results [62] of the
strongly coupled Hubbard model at T = 0. In Fig. 1(a) we plot
vc(T = 0) as a function of n for U = 16t . Note the remarkable
agreement with early Bethe-ansatz numerical [53] result at
T = 0.

Now, consider the LL parameter at T = 0:

Kc(T = 0, n) = 1

2
+ [1 − 4γS (0)]

(
t

U

)
sin(nπ )

π

= 1

2
+ 4 ln 2

Uπ
t sin(nπ ). (27)

The validity of this formula is confirmed in Fig. 1(b), where
the plot of Kc(T = 0, n) as a function of n for U = 16t is
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0 0.2 0.4 0.6 0.8 1
n

0

1

2
σ 0 / 

t

FIG. 2. Drude weight as a function of band filling for U = 16t

and T = 0. Solid curve is the plot of Eq. (28) and the dots in highlight
were obtained from Ref. [53].

exhibited. In addition, we note that for n → 0: Kc(T = 0, n) =
1/2 + (4 ln 2)(nt/U ), which coincides with the expression for
Kc reported in Ref. [63].

The previous results imply that the Drude weight [64] at
T = 0 is given by

σ0(T = 0) = 2Kcvc = 2t sin(nπ )

{
1 + 8 ln 2

(
t

U

)

×
[

sin(nπ )

π
− n cos(nπ )

]}
, (28)

where use of Eqs. (26) and (27) has been made. As shown in
Fig. 2, the agreement between this formula for U = 16t and
early numerical results [53] is excellent. Lastly, concerning the
specific-heat coefficient, as T → 0 the spin-spin correlation
function displays power-law behavior and the prediction for γ

is [10]:

γ = π

3

(
1

vc

+ 1

vs

)
T =0

. (29)

IV. U = ∞ AS AN EXACT IDEAL GAS OF EXCLUSIONS
OR FREE SPINLESS FERMIONS

The concept of a Luttinger liquid is the paradigm for
describing the low-energy physics of interacting electron
systems in one dimension. Notwithstanding, it is important
to investigate alternative approaches that can shed light on the
physics of such systems. In this context, a remarkable result
that follows from previous works [31,34,36] by two of the
authors is that the properties of U = ∞ limit can be viewed as
derived from an ideal exclusion gas of two fractional species:
α = 1 for particles with spin up and α = 2 for particles with
spin down, coupled by the Haldane statistical matrix

[g]kk′;αα′ = δkk′

(
1 1
0 1

)
, (30)

in which case double occupation is excluded. In fact, the
same 3 × 3 statistical matrix describes the referred Hubbard
models [31,34,36], including double occupancy effects. This
is confirmed by noting that Eq. (4) with U = ∞ can be written

in the form:

�∞(T ,μ∞,H ) = − 1

β

∑
k,α

ln
(
1 + w−1

k,α

)
, (31)

where wk,α’s satisfy the Haldane-Wu distribution [30]:

wk,1 = eβ(εk,1−μ∞ ), (32)

wk,2 = (1 + wk,1)eβ(εk,2−εk,1 ). (33)

In addition, 〈nk,α〉 satisfies the exclusion relation:

〈nk,α〉wk,α = 1 −
∑
k′,λ

gkk′;αλ〈nk′,λ〉, (34)

where

〈nk,α〉 = e−β(εk,α−μ∞ )

1 +
2∑

λ=1

e−β(εk,λ−μ∞ )

. (35)

More specifically:

〈nk,1〉 = e2βμBH 〈nk,2〉, (36)

= eβμBH

eβ(εk−μ∞ ) + 2 cosh(βμBH )
, (37)

in agreement with an independent calculation for the Hubbard
model at U = ∞ in Ref. [65]. Although the matrix given in
Eq. (30) is asymmetric, it should be noted that the spin-up and
spin-down symmetry is preserved, as we can see from Eq. (35):
〈nk,1〉H = 〈nk,2〉−H . Moreover, the entropy reads:

S∞(T ,μ,H ) = −kB

∑
k

[〈nk,1〉 ln 〈nk,1〉 + 〈nk,2〉 ln 〈nk,2〉

+ (1 − 〈nk,1〉 − 〈nk,2〉)

× ln (1 − 〈nk,1〉 − 〈nk,2〉)], (38)

which carries the signature of the statistical matrix in Eq. (30).
In zero field, Eq. (35), or Eqs. (36) and (37), reduces to

〈nk,1〉H=0 = 〈nk,2〉H=0 = 1

eβ(εk−μ∞ ) + 2
≡ 〈nk〉, (39)

in agreement with early results [52], so 〈nk〉 develops a rigorous
step discontinuity at the Fermi surface as T → 0, with

n = 2

L

∑
k

〈nk〉T =0. (40)

We also mention that the fractional character of 〈nk〉, Eq. (39),
stems from the fact that, in the exclusion formalism, both
charge and spin degrees of freedom are combined to form a
single distribution. However, by summing up in the fractional
species, we obtain the free spinless fermion distribution:

〈
n

(F )
k

〉 = 〈nk,1〉H=0 + 〈nk,2〉H=0 = 1

eβ(εk−μ
(F )
∞ ) + 1

, (41)

where μ
(F )
∞ is the chemical potential of the free spinless Fermi

gas:

μ(F )
∞ (T , n) = μ∞ + kBT ln 2. (42)
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Lastly, using Eqs. (41) and (42), the zero-field entropy per
site in Eq. (38) can be written as

S∞(T , n)

L
= nkB ln 2 − kB

L

∑
k

[〈
n

(F )
k

〉
ln

〈
n

(F )
k

〉

+ (
1 − 〈

n
(F )
k

〉)
ln

(
1 − 〈

n
(F )
k

〉)]
(43)

= nkB ln 2 + S
(F )
∞ (T , n)

L
, (44)

where S
(F )
∞ is the entropy of the free spinless Fermi gas. We

stress that Eqs. (43) and (44) or (38) in zero field reproduce the
two low-T leading terms in Eq. (8) in the limit U = ∞, i.e.,
t∗ = t , after eliminating μ∞ or μ

(F )
∞ in favor of n. Therefore,

the specific heat calculated from either of the referred equations
has the same value, since the difference between the two forms
of the entropy function is a constant term, nkB ln 2, associated
with the disordered spin degrees of freedom.

V. FRACTIONAL LANDAU LUTTINGER LIQUID

In the previous section, we have described the low-energy
physics of the Hubbard chain for J (≡ 4t2/U ) � kBT �
EF (∼ t ) from the standpoint of a spin-incoherent LL and have
determined the parameters g and vc that govern this class of
fluid. In this section, our aim is to show that the system can
also be mapped onto a fractional Landau LL [48,66,67]. This
phenomenological approach, which is a suitable generalization
of the standard Landau Fermi liquid theory, can shed light on
the underlying aspects that characterize the crossover behavior
from the fixed point associated with U = ∞ at T = 0 to the
spin-incoherent LL regime at a given temperature kBT > J �
t .

In Fig. 3 we present a schematic phase diagram kBT versus
J/t = 4t/U � 1 that illustrates two possible thermodynamic
paths of the Hubbard model to reach the spin-incoherent
LL regime. The first one (Path I) is physically attained by
increasing the temperature of the system, initially in the ground
state of the strong-coupling regime of the LL. The system
undergoes a crossover and ends up at T � J/kB , a spin
disordered regime characterized by a zero pair spin correlation
function: 〈Si · Si+1〉 = γS (T ) = 0, as discussed in Sec. III. In
the second path (Path II), which helps us to understand the
Landau LL approach, the system starts at the fixed point T = 0
and U = ∞, the temperature increases up to a value at which
the interaction is switched on and triggers the system into the
spin-incoherent regime.

We thus assume that when corrections of O(t2/U ) are
switched on, the low-energy spectrum can be obtained from the
following expansion of the functional EL(T ) − E0(T = 0):

EL(T ) − E0(T = 0) =
∑
k,α

ε̃k,αδ〈n̂k,α〉

+ 1

2

∑
k,α,k′,α′

fk,α;k′,α′δ〈n̂k,α〉δ〈n̂k′,α′ 〉,

(45)

FIG. 3. Schematic phase diagram of the Hubbard chain in the
strong-coupling regime, J/t = 4t/U � 1, and kBT � t . At the line
J = 0 the electrons are in a spin-incoherent Luttinger liquid (LL)
phase with Curie response (spin correlation length ξ = 0). Further,
this U = ∞ fixed point is exactly mapped onto an ideal gas with two
species obeying the Haldane-Wu exclusion fractional statistics, i.e.,
a fractional LL. At the T = 0 line, excluding the point J = 0, the
system is found in an LL phase with algebraic decay of the charge
and spin correlation functions. Increasing T from a point at this line,
Path I in the diagram, there is a crossover to a spin-incoherent regime
with spin correlation length ξ = vs/(πkBT ) ∼ [J/(2kBT )] � 1, so
〈Si · Si+1〉 = 0. This regime can also be achieved through Path II,
associated with both fractional LL and the fractional Landau LL:
starting at T = 0 and U = ∞, the temperature increases up to a value
at which the interaction is switched on and triggers the system into
the spin-incoherent regime.

where E0(T = 0) is the ground state energy,

ε̃k,α = −2t∗ cos k, (46)

t∗ is the renormalized hopping amplitude with no effect of
quasiparticle interaction,

δ〈n̂k,α〉 = 〈n̂k,α (T )〉 − 〈n̂k,α (0)〉, (47)

and fk,α;k′,α′ represents the interaction energy between quasi-
particles. In addition, it is assumed that the entropy has the
same fractional functional form of S∞, Eq. (38):

S(T ,μ,H )

= −kB

∑
k

[〈n̂k,1〉 ln 〈n̂k,1〉 + 〈n̂k,2〉 ln 〈n̂k,2〉

+ (1 − 〈n̂k,1〉 − 〈n̂k,2〉) ln (1 − 〈n̂k,1〉 − 〈n̂k,2〉)]. (48)

It means that the statistics of the fractional quasiparticles are
also governed by the statistical matrix (30).

The equilibrium distribution of the quasiparticles is ob-
tained by solving the equation ∂�/∂〈n̂k,α〉 = 0, where
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� = E − T S − μN and

n = 1

L

∑
k,α

〈n̂k,α〉. (49)

After some algebra, one finds a distribution that is formally
identical to Eq. (35):

〈n̂k,α〉 = e−β(ε̂k,α−μL )

1 +
2∑

λ=1

e−β(ε̂k,λ−μL )

, (50)

where

ε̂k,α = ε̃k,α +
∑
k′,α′

fk,α;k′,α′δ〈n̂k′,α′ 〉 (51)

is the energy of the fractional Landau LL quasiparticle [12].
By symmetry considerations, the interaction energy between
quasiparticles satisfies:

fk,1;k′,1 = fk,2;k′,2 ≡ f s
k,k′ + f a

k,k′ , (52)

fk,2;k′,1 = fk,1;k′,2 ≡ f s
k,k′ − f a

k,k′ , (53)

which define the spin symmetric f s
k,k′ and spin antisymmetric

f a
k,k′ parts of the fractional quasiparticle interaction [12]. In

terms of these quantities, one has in zero field

ε̂k,1 = ε̂k,2 = −2t∗ cos k + 2
∑
k′

f s
k,k′δ〈n̂k′ 〉 ≡ ε̂k. (54)

In the following, it is our task to demonstrate that the
above phenomenological approach proves useful in the un-
derstanding of the underlying low-energy behavior of the
Hubbard chain in the spin-incoherent regime. We emphasize
that, regardless of the fact that the quasiparticles effects occur
in the neighborhood of the Fermi surface {±kF }, the final
results are shown to be fully compatible with those derived
in the previous sections through a proper identification of the
fractional Landau LL parameters.

A. Thermodynamic properties

In order to compute the specific heat C(T , n), we make
the usual Landau assumption of neglecting corrections to ε̂k,α

due to interaction between the quasiparticles, so that only the
hopping amplitude is renormalized:

ε̂k � ε̃k = −2t∗ cos k. (55)

Next, we insert Eq. (55) into Eq. (49) in order to obtain the
fractional Landau LL chemical potential, μL:

μL(T , n) = −2t∗ cos(nπ ) − kBT ln 2

+ π2 cos(nπ )(kBT )2

12t∗ sin2(nπ )
+ . . . ; (56)

therefore, the fractional Landau LL energy per site, and the
fractional Landau LL specific heat, thus read:

EL(T , n)

L
− E0(T = 0, n)

L
= 2

L

∑
k

ε̃k[〈ñk〉 − 〈n̂k (0)〉]

= π (kBT )2

12t∗ sin(nπ )
+ . . . , (57)

where

〈ñk〉 = 1

eβ(ε̃k−μL ) + 2
(58)

and

CL(T , n) = πk2
BT

6t∗ sin(nπ )
+ . . . . (59)

Comparing the above equation with Eqs. (9), (13)–(15) asso-
ciated with Cinch, we confirm our choice of t∗ in Eq. (9).

The consistence of the fractional Landau LL approach is
confirmed by the prediction for the entropy. In fact, by using
Eqs. (55), (56), and (58) into Eq. (48), we obtain

SL(T , n)

L
= nkB ln 2 + πk2

BT

6t∗ sin(nπ )
+ . . . , (60)

in complete agreement with Sinch(T , n) in Eq. (8). Remarkably,
the fractional Landau LL quasiparticles carry all the entropy
of the system in the spin-incoherent regime J � kBT � EF

and correctly describe the fermionic spinless charge degrees of
freedom and the background of fully disordered spin degrees
of freedom.

The prediction for κ is obtained as follows. From n =∑
k 2〈n̂k〉/L, we get

∂n

∂μ
= 2

L

∑
k

β(1 − ∂ε̂k/∂μ)eβ(ε̂k−μ)

[eβ(ε̂k−μ) + 2]2
, (61)

where

∂ε̂k

∂μ
= 2

∑
k′

f s
k,k′β(1 − ∂ε̂k′/∂μ)eβ(ε̂k′ −μ)

[eβ(ε̂k′ −μ) + 2]2
. (62)

At low T , the above integrands have sharp peaks centered at
the k vectors of the Fermi surface {±kF }; therefore, one obtains
(see Appendix C)

∂ε̂k

∂μ
= (

f s
k,kF

+ f s
k,−kF

) ∑
k′

β(1 − ∂ε̂k′/∂μ)eβ(ε̂k′ −μ)

[eβ(ε̂k′ −μ) + 2]2

= (
f s

k,kF
+ f s

k,−kF

)(L

2

)(
∂n

∂μ

)
. (63)

By inserting this back into ∂n
∂μ

and using κ−1 = n2(∂μ/∂n),
we find

κ−1
L (T , n) = 2πt∗n2 sin(nπ )

(
1 + F s

0

) + . . . , (64)

where

F s
0 = L

(
f s

kF ,kF
+ f s

kF ,−kF

)
4πt∗ sin(nπ )

(65)

is the Landau-Luttinger parameter associated with the spin
symmetric part of the quasiparticle interaction at the Fermi
level (kF = nπ ). A comparison of Eqs. (64) and (16) implies:

F s
0 = −vc,∞

πU
, (66)

with vc,∞ = v(inch)
c |U=∞ = 2t sin(nπ ). Notice that F s

0 is in fact
the ratio of the total kinetic energy per site for U = ∞ at T = 0
over the on-site Coulomb repulsion U .
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We now calculate the prediction for χ . In the presence of a
magnetic field, we replace ε̂k by ε̂k,α = ε̃k ∓ μBH in Eq. (50).
Thus the spin susceptibility is given by

χL(T , n) = μ2
B

L

∑
k

∂

∂H
(〈n̂k,1〉 − 〈n̂k,2〉)H=0

= μ2
B

L

∑
k

β

[eβ(ε̂k−μ) + 2]

∂

∂H
(ε̂k,2 − ε̂k,1)H=0,

(67)

where

∂

∂H
(ε̂k,2 − ε̂k,1)H=0 = 2

+ 2
∑
k′

f a
k,k′

∂

∂H
(〈n̂k′,2〉 − 〈n̂k′,1〉)H=0. (68)

Since we expect f a
k,k′ = O(t2/U ), we can take

∂

∂H
(〈n̂k′,2〉 − 〈n̂k′,1〉)H=0 = − 2β

eβ(ε̂k′ −μ) + 2
(69)

in the last expression. Therefore, the spin susceptibility be-
comes

χL(T , n) = μ2
Bn

kBT

(
1 − βtF a

0

) + . . . , (70)

where

Fa
0 = 4

tN

∑
k

∑
k′

f a
k,k′ 〈n̂k〉〈n̂k′ 〉. (71)

In contrast to Eqs. (61) and (62), the absence of sharp peaks
at the Fermi surface in Eq. (71) is a clear manifestation of the
fact that the spin degrees of freedom are highly thermalized.
A comparison between Eqs. (20) and (70), however, allows us
to identify

Fa
0 = nvs

πt
(72)

without the need of specifying the range of integration. If, in
addition, we make the assumption that f a

k,k′ is k independent,
Eq. (72) implies Lf a = vs/π . Notice also that Fa

0 is the ratio
between the energy per site of the Heisenberg Hamiltonian
in the spin-incoherent regime and nt [see Eqs. (6), (7)–(24),
and (25)].

Lastly, we shall digress on the eventual crossover of the
magnetic susceptibility as T → 0. Unlike the crossover as-
sociated with the charge response functions, which is gov-
erned by the spin-spin correlation function, as discussed in
Sec. III, in the magnetic susceptibility case there is a change
of paradigm as T → 0. First, as a guess, we notice that, to

O(t2/U ): limT →0 χL(T , n) = limT →0
μ2

Bβn

1+βtF a
0

= πμ2
B/vs . It

thus suggests the following ansatz for the Landau parametriza-
tion: limT →0(tF a

0 ) = (−β−1 + nπvs/2), which implies [10]
limT →0 χL(T , n) = 2μ2

B/πvs . It entails that, as T → 0, the
strong-coupling exchange enhancement of O(t2/U ) sup-
presses the Curie behavior and gives rise to the LL power-law
decay of the spin correlation function and the very low-T
behavior of C(T ) shown in Fig. 4, with dominant spinon
contribution, see Eq. (29).

0 0.2 0.4 0.6 0.8 1
kBT/t

0

0.1

0.2

C
/k

B

t-J model: DMRG, U = 80t
Fractional LL: U = ∞
Fractional Landau LL: U = 80t

0 0.1 0.2
kBT/t

0

0.1

0.2

0.3

C
/k

BOnset:
Fractional Landau LL

Fractional LL

Spin-incoherent
regime

FIG. 4. Specific heat C in units of kB as a function of the thermal
energy kBT in units of t for chains with n = 3/4. The DMRG data for
a t-J chain with 32 sites and J = 0.05t (U = 80t), from Ref. [23].
Also shown are predictions from the fractional Landau LL in zero field
for U = 80t and the fractional LL at U = ∞. Notably, the results of
the fractional Landau LL are in very good agreement with the DMRG
data in the spin-incoherent regime. For completeness, we show the
straight line of the T → 0 limit of C/kB , whose coefficient is γ kBT ,
with γ in Eq. (29). The inset shows details of the referred estimates
for C/kB in a narrow low T interval. Notice that in Fig. 3 Path I is
associated with the DMRG data, while Path II with the fractional LL
and the fractional Landau LL.

B. Drude weight

In the presence of an external electric field φ, the spectrum
E∞ of the Hubbard chain with U = ∞, or J = 0 in Eq. (2), is
altered according to the well known prescription [68]

E∞ →
∑

k

εk (φ)nk, (73)

where

εk (φ) = −2t cos(k + φ). (74)

Since Eqs. (45) and (51) establish a one-to-one mapping
between the eigenstates of the Hamiltonian for J = 0 and
J �= 0, in the presence of φ we have

E(φ) − E0 =
∑
k,α

ε̃k,α (φ)δ〈n̂k,α〉φ

+ 1

2

∑
k,α,k′,α′

fk,α;k′,α′δ〈n̂k,α〉φδ〈n̂k′,α′ 〉φ, (75)

where

ε̃k,α (φ) = −2t∗ cos(k + φ), (76)

ε̂k,α (φ) = ε̃k,α (φ) +
∑
k′,α′

fk,α;k′,α′δ〈n̂k′,α′ 〉φ, (77)

δ〈n̂k,α〉φ = 1

eβ[ε̂k,α (φ)−μ] + 2
− 〈n̂k,α〉 T =0

φ=0
. (78)

085130-8



FRACTIONAL EXCLUSION STATISTICS AND … PHYSICAL REVIEW B 98, 085130 (2018)

We are now in a position to obtain the Drude weight [68] (see
Appendix D):

σ0 = −π

L

[
∂2E(φ)

∂φ2

]
φ=0

= 2t∗ sin(nπ ) −
(

L

π

)(
f s

kF ,kF
− f s

kF ,−kF

)
. (79)

Now using Eq. (19), one obtains

L
(
f s

kF ,kF
− f s

kF ,−kF

)
2πt∗ sin(nπ )

= F s
0 . (80)

A combination of Eqs. (65) and (80) determines the spin sym-
metric part of the interaction energy between quasiparticles:

Lf s
kF ,kF

= 3πvc,∞
2

(1 − 1/g), (81)

Lf s
kF ,−kF

= πvc,∞
2

(1 − 1/g), (82)

with vc,∞ = v(inch)
c |U=∞. Note in addition that the renormal-

ized hopping can be written as

t∗ = t

[
v(inch)

c

vc,∞

]
. (83)

It is now clear that Eq. (72) and Eqs. (81)–(83) establish the
connection between the fractional Landau LL parametrization
and that of the LL in the spin-incoherent regime.

C. Specific heat and numerical data

We shall now demonstrate that in the spin-incoherent regime
the fractional Landau LL approach provides a very good
description of the T behavior of the zero-field specific heat
of the system derived from the entropy defined in Eq. (48). We
stress that this procedure will prove rewarding in establishing
an exact connection between the fractional Landau LL and an
interacting spinless Fermi gas, similarly to the one that we
have discussed between the fractional LL and the free spinless
Fermi gas in Sec. IV. However, the fractional Landau LL is
valid only under the condition J (= 4t2/U ) � kBT � EF (∼
t ), while the fractional LL is an exact description at U = ∞ and
any T .

In zero field, using the Landau assumption in the calculation
of the specific heat, Eqs. (55) and (58), and summing up the two
fractional species we can obtain a direct relation between 〈ñk〉
and the interacting spinless Fermi gas distribution function:

〈
ñ

(F )
k

〉 = 2〈ñk〉 = 1

eβ(ε̃k−μ
(F )
L ) + 1

, (84)

with

μ
(F )
L = μL + kBT ln 2, (85)

where μL is the fractional Landau LL chemical potential and
μ

(F )
L is the chemical potential of the related interacting spinless

Fermi gas. Lastly, by replacing 〈n̂k〉 → 〈ñk〉 in Eq. (48), and
using Eqs. (84) and (85), we can obtain a relation between the
fractional Landau LL entropy, SL, and the related interacting

spinless Fermi gas entropy, S
(F )
L :

SL(T , n)

L
= nkB ln 2 − kB

L

∑
k

[〈
ñ

(F )
k

〉
ln

〈
ñ

(F )
k

〉

+ (
1 − 〈

ñ
(F )
k

〉)
ln

(
1 − 〈

ñ
(F )
k

〉)]
(86)

= nkB ln 2 + S
(F )
L (T , n)

L
, (87)

which is formally identical to Eq. (44) at U = ∞. The function
μL(T , n), to order (kBT /t∗)2, is given by Eq. (56); however,
in order to attain a good description for a wide range of
temperatures we have calculated μL(T , n) numerically using
the constraint equation

2

L

∑
k

〈ñk〉 = n, (88)

where n is the average density of spinless fermions.
From either entropy above, we can numerically calculate

the specific heat of the fractional Landau LL gas using C =
T (∂S/∂T ). In Fig. 4 we show C(T )/kB for the fractional LL
(U = ∞) and the fractional Landau LL for U = 80t (J =
0.05t) for chains with n = 3/4. The specific heat of the frac-
tional Landau LL in zero field is derived using Eqs. (48), (55),
and (9), for U = 80t , whereas for the fractional LL, U = ∞,
use is made of Eq. (38). Remarkably, the fractional Landau LL
prediction quantitatively agrees with the DMRG data in the
temperature range of the spin-incoherent regime up to kBT ∼
t . Despite the tiny value of t

t∗ = 0.987, the fractional Landau
LL approach adequately quantifies the first order correction,
(t/U ), to the U = ∞ curve in the spin-incoherent regime.

The two paths to the spin-incoherent LL regime shown in
Fig. 3 can be discussed with the aid of Fig. 4. Path I of Fig. 3 is
associated with the DMRG data of Ref. [23] showed in Fig. 4, in
which case we witness the linear behavior of the specific heat,
with spin and charge contributions at very low temperature,
and the crossover to the spin-incoherent regime. Further, Path
II of Fig. 3 is associated with the analytical results plotted
in Fig. 4. Indeed, in this figure we indicate the onset of the
spin-incoherent regime, in which case we can notice that the
specific heat data of the fractional LL and that of the Landau
fractional LL, both due to charge contribution only, practically
meet at the onset of the spin-incoherent regime, since they
differ by the small correction term of order t/U .

VI. HIGH-TEMPERATURE LIMIT

In previous sections we have studied the Hubbard chain in
the spin-incoherent regime: J � kBT � t , using a perturba-
tive Bethe ansatz procedure, valid for U/kBT � 1, combined
with a phenomenological approach. In this section, we find it
instructive to study the high-T limit, so we can provide direct
contact with well established results for the t-J models derived
using quantum transfer matrix techniques [50]. The high-T
limit is accessed under the conditions: e−βε̃k → 1, with μL

kBT
a

function of n. Indeed, from either Eqs. (84) and (85) or Eq. (88),
we find that 〈ñk〉 = n/2 and

lim
T →∞

μL

kBT
= ln

(
n/2

1 − n

)
, (89)
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FIG. 5. (a) Fractional Landau LL chemical potential, μL, in units
of kBT as a function of particle density n, for U = 80t . The high-T
limit, given by μL

kBT
= ln( n

2−2n
), is indicated. (b) Fractional Landau

LL entropy per site, SL/L, in units of kB , as a function of n, for
U = 80t . The high-T limit, given by SL

kBL
= n ln 2 − n ln n − (1 −

n) ln (1 − n), is also shown.

which exhibits a Van-Hove singularity as n → 1, as illustrated
in Fig. 5(a). These results imply that SL in Eq. (86) reads:

lim
T →∞

SL(T , n)

kBL
= n ln 2 − n ln n − (1 − n) ln (1 − n), (90)

which is exactly the result expected by counting the total
number of states of the t-J model at a density n, with N↑ = N↓,
in the thermodynamic limit. In Fig. 5(b) we present SL(T , n)
with a density n for U = 80t . It is also interesting to notice
that SL(T , n)/kBL approaches ln 2 at half filling due to the
Van-Hove singularity. In addition, we stress that the high-T
limit is taken under the proviso that U/kBT � 1, as is the
case in Figs. 5(a) and 5(b), in which case U = 80t . It is worth
mentioning that as T → ∞, U increases accordingly, so that
Eq. (90) is the T → ∞ entropy of the U = ∞ Hubbard chain,
Eq. (44).

Lastly, in order to confirm the high-T limit of the particle
occupation number, 〈nk〉, of the t-J model, Eq. (2), we use the
Lanczos exact diagonalization and finite temperature Lanczos
method (FTLM) [69] to calculate 〈nk〉 in finite chains under
periodic boundary conditions (PBC). In fact, our analysis
provides strong evidence in favor of our analytical results
and, most importantly, verifies the consistency of the fractional
Landau LL phenomenological approach.

FIG. 6. Momentum distribution function 〈nk〉 calculated through
FTLM for a t-J chain with 18 sites under PBC, particle density
n = 7/9, J = 0.05t , and kF = nπ/2 for the indicated values of
temperature kBT /t . Notice that the limit 〈nk〉 = n/2 as (kBT /t ) →
∞ is nearly attained for (kBT /t ) = 10. The inset is a copy of Fig. 3(b)
of Ref. [23]: DMRG data for n = 0.75, J = 0.05t , for a chain
with 32 sites. Arrows indicate increasing t/kBT in steps of 4. The
horizontal line at 〈nk〉 = n/2 = 0.375 indicates the value of 〈nk〉 for
(kBT /t ) → ∞.

The FTLM uses the states from R independent Lanczos
exact diagonalization procedures to estimate thermodynamic
functions of finite systems. For each Lanczos run, a maximum
of M Lanczos basis states is generated. The MR approximate
eigenenergies and eigenstates are used to calculate the ther-
modynamic functions of interest. We take R = 12 000 and
M = 50 in our calculations and have exploited translational
symmetry and rotational symmetry in spin space.

The distribution function of spin ↑ electrons of momentum
k is calculated through:

〈nk〉 = 1

L

L∑
l=1,m=1

〈c†l↑cm↑〉eik(l−m), (91)

where 〈. . .〉 indicates thermal and quantum averages. In Fig. 6
we present 〈nk〉 for J = 0.05t and n = 7/9, calculated with
the Lanczos method (T = 0) and FTLM (T �= 0), as well
as DMRG data from Ref. [23] for n = 0.75 and J = 0.05t ,
shown in the inset. At T = 0, the singularities [23,59] at
kF and 3kF (shown at 2π − 3kF ) are evident in our FTLM
results for (kBT /t ) = 0 and 0.0125, with kF = πn/2. The
spin-incoherent regime, kBT � J , is signaled [23] by the
presence of an inflection point at 2kF , as observed in Fig. 6
for (kBT /t ) = 0.05, 0.10, and 0.20. We thus conclude that
both the FTLM and DMRG methods grasp the main features
of the crossover between the low-T LL to its spin-incoherent
regime.

VII. CONCLUDING REMARKS

We have studied the Hubbard chain in the spin-incoherent
Luttinger liquid regime, both for J = 0 and finite J (� kBT ).
In the former case, we have shown that its thermodynamic
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properties are exactly those of an ideal gas of two species of
noninteracting particles obeying fractional statistics. It implies
that the charge degrees of freedom are governed by the free
spinless Fermi gas, while the spin degrees of freedom are fully
disordered (Curie response). On the other hand, the latter case
was investigated using an expression for the grand-canonical
free energy derived perturbatively by Ha from Takahashi’s
integral equations. Based on this result, and using U � kBT ,
we were able to obtain an expression for the Helmholtz free
energy suitable to describe the system in the spin-incoherent
regime: J (≡ 4t2/U ) � kBT � EF , from which several ther-
modynamic quantities were derived. In particular, we have
reported on the specific heat, charge compressibility, magnetic
susceptibility, Drude weight, charge and spin velocities, and
the Luttinger liquid (LL) parameter.

We have also discussed the interesting possibility of looking
at the system with finite J as a fractional Landau LL. In
this framework, the low-energy physics of the system is also
described in terms of fractional quasiparticles obeying the
Haldane-Wu fractional entropy. At the same time, it enables
us to interpret corrections of O(t2/U ) as coming from (i)
renormalization of the hopping t only, which is the case of the
specific heat and charge velocity; (ii) hopping renormalization
and the interaction of fractional Landau quasiparticles, as
found for the charge compressibility, and the Drude weight;
(iii) interaction of fractional Landau LL quasiparticles only, as
for the magnetic susceptibility. In addition, we have calculated
the fractional Landau LL parameters and showed that they
are fixed by the ones of the incoherent LL derived from pure
thermodynamic grounds and arguments of bosonization. In
particular, a phase diagram was provided and two thermody-
namic paths to access the spin-incoherent LL regime shed light
on the numerical and analytical procedures. Lastly, through
a numerical analysis of the exclusion fractional Landau LL
entropy and the use of finite temperature Lanczos method,
we have calculated the temperature behavior of the specific
heat and the particle momentum distribution, respectively,
both in very good agreement with previous density matrix
renormalization group calculations in the spin-incoherent and
the high-T limit.

In conclusion, we believe that our reported results using
complementary approaches have provided interesting insights
on several features of the thermodynamics of the spin-
incoherent Luttinger liquid regime of the Hubbard chain.
They might stimulate further theoretical and experimental
work, since this special LL regime has been of interest in the
context of several physical systems mentioned in our paper,
particularly quantum wires at low temperature. In addition,
the crossover [67,70] from the (1D) spin-incoherent LL regime
(fractional Landau LL) to a higher dimensional phenomenol-
ogy (due to 2D or 3D coupling between chains), e.g., standard
Landau Fermi liquid theory, also deserves further investigation.
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APPENDIX A: THE GRAND-CANONICAL FREE
ENERGY FOR U � kB T , EQ. (4)

In Ref. [44], Ha derived a strong coupling (U � t) pertur-
bative λ expansion of the grand-canonical free energy �(T ,μ,H )

L
:

�(T ,μ,H )

L
= ω(0) + ω(1) + . . . , (A1)

where

ω(0) = U

2
− μ − 1

β
ln 2a − 1

β
I1 (A2)

and

ω(1) = t

U
I2

[(
1

a2
− 1

b2

)
1

β
I3 − 1

a2

]
;

(A3)

with

a = cosh

[
β

(
U

2
− μ

)]
, (A4)

b = cosh (βμBH ), (A5)

I1 =
∫ π

−π

dk

2π
ln

[
1 + b

a
e−β(εk− U

2 )

]
, (A6)

I2 =
∫ π

−π

dk

2π

[
1 + a

b
eβ(εk− U

2 )
]−1

, (A7)

and

I3 =
∫ π

−π

dk

2π
cos k ln

[
1 + b

a
e−β(εk− U

2 )

]
, (A8)

in which εk = −2t cos k.
The above expansion was used to obtain two expansions

in distinct limits: (i) U, kBT � t with U/kBT fixed, which
was shown to be in very good agreement with previous high-T
expansions [71]; (ii) U � t at fixed kBT . We shall use the
latter alternative in the limit U � kBT , in which case we have
eβU � 1 and a ∼ 1

2eβ( U
2 −μ) � 1, such that

ω(0) = −kBT I1 (A9)

and

ω(1) = −t

U
I2

1

b2

1

β
I3 = −kBT

cosh2(βμBH )

(
t

U

)
I2I3; (A10)

with

I1 =
∫ π

−π

dk

2π
ln [1 + e−β(εk−μ−μBH ) + e−β(εk−μ+μBH )],

(A11)

I2 = cosh(βμBH )
∫ π

−π

dk

2π

2

eβ(εk−μ) + 2 cosh(βμBH )
,

(A12)

and

I3 =
∫ π

−π

dk

2π
cos k ln[1 + e−β(εk−μ−μBH )

+ e−β(εk−μ+μBH )]. (A13)
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Therefore, Eq. (A1) with ω(0) and ω(1) given by
Eqs. (A9) and (A10), with I1, I2, and I3 defined through
Eqs. (A11), (A12), and (A13), respectively, leads to Eq. (4).

APPENDIX B: SUSCEPTIBILITY AT H = 0, EQ. (20)

The magnetic susceptibility per site for H = 0 is given by

χ (T ,μ) = ∂M (T ,H,μ)

∂H

∣∣∣∣
H=0

= − μB

L

∂2�(T ,H,μ)

∂H 2

∣∣∣∣
H = 0

, (B1)

with �/L as written in Eq. (4). Using Eq. (B1), and taking the
limits sinh(βμBH ) → βμBH , tanh(βμBH ) → βμBH , and
cosh(βμBH ) → 1, we obtain the following expression for the
susceptibility:

χ = μ2
B

kBT

(
I2,0 − t

U
I2,0I3,0 − 4t

U
I4,0I3,0 + 4t

U

I2,0

2
I5,0

)
,

(B2)

where I1,0, I2,0, and I3,0 are given by Eqs. (A11), (A12),
and (A13), respectively, with H = 0, while

I4,0 =
∫ π

−π

dk

2π

1

[eβ(εk−μ) + 2]2
, (B3)

I5,0 =
∫ π

−π

dk

2π

cos k

eβ(εk−μ) + 2
. (B4)

Now, by performing a Sommerfeld-like expansion around
μinch(T = 0) ∼ t , Eq. (5), in the above integrals, we obtain

I2,0 = n + . . . , (B5)

I3,0 = nt

kBT

(
1 − sin 2πn

2πn

)
+ . . . , (B6)

I4,0 = n

4
+ . . . , (B7)

I5,0 = sin(nπ )

π
+ . . . . (B8)

Lastly, by substituting Eqs. (B5) and (B6) into Eq. (B2), we
obtain

χ = μ2
B

kBT

[
n − 2n2t2

UkBT

(
1 − sin 2πn

2πn

)
+ 2t

U

n sin(nπ )

π

]
.

(B9)

From the above equation, we readily reproduce Eq. (20), where
we noticed that the last term in Eq. (83) is of order (J/t ) and
will be neglected.

APPENDIX C: DERIVATION OF EQ. (63)

Equation (62) can be written as

∂ε̂k

∂μ
= 2

∑
k′>0

f s
k,k′β(1 − ∂ε̂k′/∂μ)eβ(ε̂k′ −μ)

[eβ(ε̂k′−μ) + 2]2

+ 2
∑
k′<0

f s
k,k′β(1 − ∂ε̂k′/∂μ)eβ(ε̂k′ −μ)

[eβ(ε̂k′−μ) + 2]2
. (C1)

Next we explore the presence of sharp peaks at the Fermi
surface:

∂ε̂k

∂μ
� 2f s

k,kF

∑
k′>0

β(1 − ∂ε̂k′/∂μ)eβ(ε̂k′ −μ)

[eβ(ε̂k′ −μ) + 2]2

+ 2f s
k,−kF

∑
k′<0

β(1 − ∂ε̂k′/∂μ)eβ(ε̂k′ −μ)

[eβ(ε̂k′ −μ) + 2]2
. (C2)

Both integrands are now even, thus after using 2
∑

k′>0(. . .) =
2

∑
k′<0(. . .) = ∑

k′ (. . .), one gets Eq. (63) with the help of
Eq. (61).

APPENDIX D: DERIVATION OF EQ. (79)

Deriving E(φ) with respect to φ, one gets

∂E(φ)

∂φ
=

∑
k,α

2t∗ sin(k + φ)δ〈n̂k,α〉φ

+
∑

k,α;k′,α′
fk,α;k′,α′δ〈n̂k,α〉φ ∂

∂φ
δ〈n̂k′,α′ 〉φ, (D1)

where we have explored the symmetry fk,α;k′,α′ = fk′,α′;k,α and
neglected the exponentially small term

W ≡
∑
k,α

[
ε̃k,α (φ)

∂

∂φ
δ〈n̂k,α〉φ

]
. (D2)

In order to demonstrate this point, we derive Eq. (77) with
respect to φ:

∂ε̂k,α (φ)

∂φ
= 2t∗ sin(k + φ) +

∑
k′,α′

fk,α;k′,α′
∂

∂φ
δ〈n̂k′,α′ 〉φ.

(D3)

Since fk,α;k′,α′ = O(t2/U ), we can use in (D3) the approxima-
tion

δ〈n̂k′,α′ 〉φ = 1

eβ[εk′ ,α′ (φ)−μ] + 2
− 〈n̂k′,α′ 〉 φ = 0

T = 0
U = ∞

, (D4)

where εk′,α′ (φ) = −2t cos(k′ + φ). We note that∑
k′,α′

1
e
β[ε

k′ ,α′ (φ)−μ]+2
= N implies μ = −2t cos(nπ ) −

kBT ln 2 + . . ., which is φ independent. Therefore,

∂

∂φ
δ〈n̂k′,α′ 〉φ = −βeβ[εk′ ,α′ (φ)−μ]2t sin(k′ + φ)

[eβ[εk′ ,α′ (φ)−μ] + 2]2
. (D5)

After inserting this derivative back into Eq. (D3), one has

∂ε̂k,α (φ)

∂φ
= 2t∗ sin(k + φ)

−
∑
k′,α′

fk,α;k′,α′
βeβ[εk′ ,α′ (φ)−μ]2t sin(k′ + φ)

[eβ[εk′ ,α′ (φ)−μ] + 2]2
.

(D6)

We now sum over all values of α′ to get an expression that is
α independent:

∂ε̂k,α (φ)

∂φ
= 2t∗ sin(k + φ)

− 2
∑
k′

f s
k,k′

βeβ[εk′ (φ)−μ]2t sin(k′ + φ)

[eβ[εk′ (φ)−μ] + 2]2
, (D7)
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with omission of the subscript α′ in εk′,α′ (φ). We shall now
demonstrate that the above sum is weakly dependent on φ. In
the thermodynamic limit, it reads

I (k) ≡ −L

π

∫ π

−π

dk′f s
k,k′

βeβ[εk′ (φ)−μ]2t sin(k′ + φ)

[eβ[εk′ (φ)−μ] + 2]2
, (D8)

where it is to be noted that the integrand exhibits sharp peaks
at k′ + φ = ±kF . After the transformation k′ + φ = q one
obtains

I (k) = −L

π

∫
dqf s

k,q−φ

βeβ(εq−μ)2t sin q

[eβ(εq−μ) + 2]2
, (D9)

so that the dependence on φ is removed from the integrand
(except for the very small dependence of f s

k,q−φ) and we can
take φ = 0 with negligible error [μ0 = −2t cos(nπ )]:

I (k) = − L

2π

∫ π

−π

dqf s
k,q

βeβ(εq−μ0 )2t sin q

[eβ(εq−μ0 ) + 1]2
, (D10)

with limit of integrations restituted to their original values.
Exploring again the presence of sharp peaks at the Fermi
surface (see Appendix C), we obtain

I (k) = − L

2π

(
f s

k,kF
− f s

k,−kF

)
, (D11)

with the use of | sin q| =
√

1 − cos2 q.
We now return to Eq. (D6):

∂ε̂k,α (φ)

∂φ
= 2t∗ sin(k + φ) − L

2π

(
f s

k,kF
− f s

k,−kF

)
. (D12)

The derivative of δ〈n̂k,α〉φ , Eq. (78), with respect to φ can be
now calculated:

∂

∂φ
δ〈n̂k,α〉φ = − βeβ[ε̂k,α (φ)−μ]

[eβ[ε̂k,α (φ)−μ] + 2]2

×
[

2t∗ sin(k + φ) − L

2π

(
f s

k,kF
− f s

k,−kF

)]
.

(D13)

We are now in a position to show that W is exponentially
small. After inserting Eq. (D13) into (D2), one gets

W =
∑
k,α

[
4(t∗)2 sin(k + φ) cos(k + φ)

− 2t∗ cos(k + φ)

(
L

2π

)(
f s

k,kF
− f s

k,−kF

)]

× βeβ[ε̂k (φ)−μ]

[eβ[ε̂k (φ)−μ] + 2]2
. (D14)

Once again, we call attention to the fact that the integrand
displays sharp peaks at k + φ = ±kF . Thus, after making the
transformation q = k + φ, the resulting integrand becomes
odd in q. Using the same arguments that we have applied
to go from Eq. (D8) to (D11), we thus conclude that W is
exponentially small. We can now return to Eq. (D1) and derive
it one more time with respect to φ:(

∂2E(φ)

∂φ2

)
φ=0

=
∑
k,α

2t∗ sin k

(
∂

∂φ
δ〈n̂k,α〉φ

)
φ=0

+
∑
k,α

2t∗ cos k δ〈n̂k,α〉φ=0

+
∑

k,α;k′,α′
fk,α;k′,α′

(
∂

∂φ
δ〈n̂k,α〉φ

)
φ=0

(
∂

∂φ
δ〈n̂k′,α′ 〉φ

)
φ=0

+
∑

k,α;k′,α′
fk,α;k′,α′ δ〈n̂k,α〉φ=0

(
∂2

∂φ2
δ〈n̂k′,α′ 〉φ

)
φ=0

. (D15)

At low temperatures, we neglect terms containing δ〈n̂k,α〉φ=0

in (D15), and make use of Eq. (D13) and of the procedure that
led to Eq. (D11) to obtain the final result:(

∂2E(φ)

∂φ2

)
φ=0

= −2t∗L
π

sin(nπ )

+
(

L

π

)2(
f s

kF ,kF
− f s

kF ,−kF

)
, (D16)

which implies Eq. (79).
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