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Kondo effect in a PT -symmetric non-Hermitian Hamiltonian
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The combination of non-Hermitian physics and strong correlations can give rise to new effects in open quantum
many-body systems with balanced gain and loss. We propose a generalized Anderson impurity model that includes
non-Hermitian hopping terms between an embedded quantum dot and two wires. These non-Hermitian hopping
terms respect a parity-time (PT ) symmetry. In the regime of a singly occupied localized state, we map the problem
to a PT -symmetric Kondo model and study the effects of the interactions using a perturbative renormalization
group approach. We find that the Kondo effect persists if the couplings are below a critical value that corresponds
to an exceptional point of the non-Hermitian Kondo interaction. On the other hand, in the regime of spontaneously
broken PT symmetry, the Kondo effect is suppressed and the low-energy properties are governed by a local-
moment fixed point with vanishing conductance.
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I. INTRODUCTION

According to the fundamental postulates of quantum me-
chanics, any physical observable must be represented by a
Hermitian operator. Hermiticity ensures that all the eigenvalues
of the operator are real and therefore measurable. In particular,
a Hermitean Hamiltonian guarantees the conservation of prob-
ability in the dynamics. However, non-Hermitian Hamiltonians
are routinely used as an approximation to describe the nonuni-
tary dynamics of open quantum systems [1,2]. For instance,
the imaginary part of the energy eigenvalues can account for
the decay of particles such as photons in quantum optics [3]
or signal instabilities such as the vortex depinning transition in
superconductors [4]. Moreover, Hermiticity is not a necessary
condition for the energy spectrum to be real [5]. Non-Hermitian
Hamiltonians that preserve the symmetry composed of parity
(P) and time reversal (T ), the so-called parity-time (PT )
symmetry, can exhibit entirely real spectra. In fact, by varying
the parameters of the non-Hermitian terms in the Hamiltonian,
one can find critical values (called exceptional points [6])
at which the spectrum becomes complex. This is referred to
as spontaneous breaking of PT symmetry [7] because the
eigenstates of the Hamiltonian with complex eigenvalues are
not eigenstates of PT .

Recent studies of non-Hermitian Hamiltonians with PT
symmetry have been stimulated by experiments that realize
such models in open systems with balanced gain and loss
[8–10]. Examples include optical waveguides [9,11,12], cold-
atomic systems [13], coupled resonators [14], acoustic waves
[15,16], and circuit QED [17]. In the context of quantum
many-body systems, several non-Hermitian spin chain models
have been studied [18–20]. It has also been proposed that
non-Hermitian Hamiltonians can give rise to new topological
phases with unconventional edge states [21–25]. Another
intriguing possibility is the PT -symmetric generalization of
effective field theores [26] and quantum critical phenomena
[27]. In Ref. [27], Ashida et al. studied a PT -symmetric

sine-Gordon model which describes the transition between
a Tomonaga-Luttinger (TL) liquid and a Mott insulator of
ultracold bosonic atoms in a one-dimensional optical lattice
with a local gain-loss structure. Remarkably, they showed that
the critical TL phase is favored by the non-Hermitian coupling,
and the insulating phase is completely suppressed in the regime
of spontaneously broken PT symmetry.

In this work, we extend the study of PT -symmetric non-
Hermitian Hamiltonians to the realm of boundary critical phe-
nomena, i.e., quantum impurity models [28]. A paradigmatic
example is the Anderson impurity model [29], which has
been extensively applied to study charge transport through
semiconductor quantum dots [30]. In the Coulomb-blockade
regime where charge fluctuations can be neglected and a single
electron is localized in the dot, the Anderson model can be
mapped to the Kondo model via a Schrieffer-Wolff trans-
formation [31,32]. At low temperatures, the system exhibits
the Kondo effect, whereby the effective exchange coupling
grows with decreasing temperature and the magnetic moment
of the impurity gets screened via the formation of a singlet
with a conduction electron. A hallmark of the Kondo effect in
quantum dots is the observation of ideal quantized conductance
at low temperatures [33,34].

Here we propose a generalization of the Anderson impurity
model in which an embedded quantum dot is weakly coupled
to two leads by non-Hermitian hopping terms. The latter can be
engineered by means of auxiliary sites with complex potentials
[35]. Performing a Schrieffer-Wolff transformation, we obtain
a PT -symmetric non-Hermitian Kondo model. We analyze
the effects of the Kondo interactions using the perturbative
renormalization group (RG) [36–38]. We find two regimes,
depending on the ratio g between the coupling of the non-
Hermitian term and the conventional Kondo coupling. For
g < 1, the Kondo effect persists and the system flows to strong
coupling at low energies. Analyzing the local tight-binding
model at strong coupling, we find that in this regime the
spectrum is real and the formation of the Kondo singlet with
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FIG. 1. Schematic representation of the Anderson model with
PT -symmetric non-Hermitian hopping between the quantum dot and
the wires.

a PT -symmetric orbital leads to a stable fixed point with
ideal conductance and emergent P and T symmetries. On the
other hand, for g > 1, the spectrum becomes complex and
the PT symmetry is spontaneously broken. However, in this
regime the perturbative RG flow is towards a local-moment
fixed point [32], in which the impurity spin decouples from
the leads and the conductance vanishes. Therefore, the Kondo
effect is suppressed in the broken-PT regime. Our model
can in principle be implemented experimentally by means
of two-terminal transport measurements in cold atomic gases
[39,40] with controlled loss and gain (the latter being achieved
by pumping atoms into the auxiliary sites [41]).

The paper is organized as follows. First, in Sec. II, we
introduce the Anderson impurity model with PT -symmetric
non-Hermitian hopping between the localized state and the
wires. We also discuss the mapping to the PT -symmetric
Kondo model. Next, in Sec. III, we take the continuum
limit and derive the RG equations for the Kondo couplings,
identifying two distinct regimes in the flow diagrams as a
function of the dimensionless parameter g. In Sec. IV, we
investigate the spectrum in the strong coupling limit and relate
the spontaneous breaking of PT symmetry to the absence of
the Kondo effect. The observable effects on the conductance
through the quantum dot are discussed in Sec. V. We finally
close with the conclusions in Sec. VI.

II. MODEL

We study the Anderson model that describes the transport
between two wires across a quantum dot, as illustrated in Fig. 1.
In addition to the usual direct hopping between the dot and the
wires, we consider a non-Hermitian hopping process which
represents an alternative tunneling path through auxiliary sites
coupled to a particle reservoir [35]. The Hamiltonian is

H = H0 + Ht ′ + Hd + HPT , (1)

H0 = −t
∑
j�−2

(c†j cj+1 + H.c.) − t
∑
j�1

(c†j cj+1 + H.c.), (2)

Ht ′ = −t ′[c†d (c−1 + c1) + H.c.], (3)

Hd = εdc
†
dcd + Und↑nd↓, (4)

HPT = weiφ (c†1cd + c
†
dc1)

+we−iφ (c†−1cd + c
†
dc−1), (5)

where cd = (cd↑, cd↓)T is the two-component spinor of anni-
hilation operators of electrons (or spin-1/2 fermionic atoms
in cold-atom realizations [42,43]) in the localized state of the
quantum dot, cj = (cj↑, cj↓)T represents the states in the wires
(with cj acting in the left wire for j � −1 or in the right wire
for j � 1), t is the hopping parameter in the wires, t ′ is the
amplitude for hopping between the localized state and the ends
of wires, and weiφ (we−iφ), with w ∈ R and φ ∈ [−π, π ], is
the complex hopping amplitude between the localized state and
the wire on the left (right). The Hamiltonian is non-Hermitian
for φ �= 0, π , but preservesPT symmetry with parity and time
reversal transformations defined by

P : cj �→ c−j , (6)

T : i �→ −i, cj �→ iσ ycj , cd �→ iσ ycd, (7)

where σy is the Pauli matrix in spin space. In the dot Hamil-
tonian Hd , εd < 0 is the energy of an electron in the localized
state, ndσ = c

†
dσ cdσ is the number operator for spin σ = ↑,↓,

and U > 0 is the repulsive interaction strength between two
electrons in the dot. The model is particle-hole symmetric for
U = −2εd and Fermi momentum kF = π〈c†j cj 〉/2 = π/2 in
the wires (setting the lattice spacing a = 1). In this work, we
shall be mainly interested in the particle-hole symmetric case.

The Hamiltonian in Eq. (1) can be mapped to a Kondo
model in the regime t ′, w � |εd |, U [32]. In this case, we
consider that in the low-energy subspace the localized state
is occupied by a single electron with spin ↑ or ↓ (such
that nd = ∑

σ ndσ = 1). The Schrieffer-Wolff transformation
generates an effective spin exchange interaction in the low-
energy subspace by projecting out the high-energy states with
nd = 0 or nd = 2. To second-order perturbation theory, we
obtain the effective Hamiltonian Heff = H0 + HI , where the
Kondo interaction HI has the form

HI = J0 (c†1 + c
†
−1)

σ

2
(c1 + c−1) · S

− iJ1

(
c
†
−1

σ

2
c−1 − c

†
1

σ

2
c1

)
· S

− J2

(
c
†
1

σ

2
c1 + c

†
−1

σ

2
c−1

)
· S. (8)

Here σ denotes the vector of Pauli matrices and S is the spin-
1/2 operator of the localized electron. The exchange coupling
constants are given by

J0 = J + J ′ + 2
√

JJ ′ cos φ, (9)

J1 = 2
√

JJ ′ sin φ + J ′ sin (2φ), (10)

J2 = J ′ [1 − cos (2φ)], (11)

where

J = 2t ′2
(

1

−εd

+ 1

U + εd

)
, (12)

J ′ = 2w2

(
1

−εd

+ 1

U + εd

)
. (13)

Note that J0, J2 � 0. The first term in Eq. (8) corresponds to
the standard antiferromagnetic Kondo coupling between the

085126-2



KONDO EFFECT IN A PT -SYMMETRIC NON- … PHYSICAL REVIEW B 98, 085126 (2018)

impurity spin and the symmetric orbital on sites j = 1 and
j = −1 of the wires [44]. This is the only coupling that survives
in the Hermitian case φ = 0, π . By contrast, J2 represents a
ferromagnetic two-channel Kondo coupling [45,46] between
the impurity and the spins at the ends of the wires. Finally, J1

is the coupling constant of the non-Hermitian term. This term
is odd under both P and T (with T : S �→ −S for the impurity
spin), thus preserving the PT symmetry of the original model
in Eq. (1).

III. RENORMALIZATION GROUP

The Kondo effect can be understood within a perturbative
RG analysis [32,36,38]. First, let us recall the result for
the conventional Kondo model for an embedded quantum
dot, which corresponds to setting J1 = J2 = 0 in Eq. (8).
In the RG analysis, the constant J0 must be replaced by an
effective interaction J0(�) that depends on the energy scale
� at which the properties of the system are measured. In the
low-energy limit, � → 0, the effective interaction diverges.
The interpretation is that the localized spin forms a singlet with
an electron in the symmetric channel between the two wires.
The low-energy physics is described by a Fermi liquid fixed
point [47] at which the boundary conditions on conduction
electrons are modified by a universal phase shift (in the case
of particle-hole symmetry), leading to an ideal conductance
between the two wires [48].

We now consider the PT -symmetric Kondo model in the
weak coupling regime J0, J1, J2 � t . For J0 = J1 = J2 = 0,
the Hamiltonian in Eq. (8) describes two decoupled tight-
binding models with open boundary conditions at j = 0.
This free Hamiltonian can be diagonalized using the Fourier
transform

cj<0 =
∫ π

0

dk

π
sin(kj )ck1, (14)

cj>0 =
∫ π

0

dk

π
sin(kj )ck2, (15)

where ckη, with η = 1, 2, are the annihilation operators of
electrons with momentum k in the wire on the left for η = 1
or on the right for η = 2. The operators ckη obey {ckη, c

†
k′η′ } =

2πδηη′δ(k − k′). We can then write

H0 =
∑
η=1,2

∫ π

0

dk

2π
ε(k)c†kηckη, (16)

where ε(k) = −2t cos(k) is the dispersion relation. At half-
filling (the particle-hole symmetric case), the ground state is
constructed by occupying the single-particle states with 0 <

k < kF = π/2. We take the continuum limit by linearizing the
spectrum around the Fermi point. In real space, the operators
cj are replaced by the fields ψη(x) in the form [44]

cj<0 → ψ1(x = j ) ∼ eikF xψR1(x) + e−ikF xψL1(x),

cj>0 → ψ2(x = j ) ∼ eikF xψR2(x) + e−ikF xψL2(x). (17)

Here ψR/L,η(x) are the slowly varying right- or left-moving
components of the fermionic field, respectively. We impose
open boundary conditions, ψη(0) = 0, by the relation

ψLη(x) = −ψRη(−x). (18)

FIG. 2. Low-energy modes for electrons in the two wires with
open boundary conditions at x = 0.

Thus, the left movers in wire η = 1 (the outgoing modes with
respect to scattering at the boundary) can be regarded as the
analytic continuation of the right movers to the positive-x axis
(see Fig. 2). Likewise, we treat the right movers in wire η = 2
as the analytic continuation of the left movers. Defining the
four-component spinor

�(x) =
(

ψL2(−x)
ψR1(x)

)
=

⎛
⎜⎝

ψL2↑(−x)
ψL2↓(−x)
ψR1↑(x)
ψR1↓(x)

⎞
⎟⎠, (19)

we can write the free Hamiltonian in the low-energy approxi-
mation as

H0 ≈ vF

∫ +∞

−∞
dx �†(x)(−i∂x )�(x), (20)

where vF = 2t sin(kF ) is the Fermi velocity.
We now rewrite the interacting part of the Hamiltonian in the

continuum limit using Eqs. (17) and (18) with ψR/L,η(±1) ≈
ψR/L,η(0). The result is

HI ≈ πvF �†(0)(λ0� + iλ1� − λ2�)�(0) · S, (21)

where λn = Jn sin(kF )/(πt ) with n = 0, 1, 2 are the dimen-
sionless Kondo couplings and the 4 × 4 matrices �, � and �

are written in terms of the Pauli matrices as follows:

� =
(

σ σ

σ σ

)
, � =

(
σ 0
0 −σ

)
, � =

(
σ 0
0 σ

)
. (22)

These matrices obey the algebra

[�a,�b] = 2[�a,�b] = 2[�a,�b] = 4iεabc�c,

[�a,�b] = [�a,�b] = 2iεabc�c,

[�a,�b] = 2iεabc�c,

[�a,�b] = 2iεabc�c + 2iδabϒ, (23)

where ϒ = ( 0 −iI2
iI2 0 ) and I2 is the 2 × 2 identity matrix.

Equation (21) contains the most general boundary exchange
interactions allowed by (spin-rotation) SU(2) and PT sym-
metries.

We calculate the RG equations using perturbation theory
to second order in couplings λ0, λ1, and λ2 following the
procedure for the Kondo model [38]. In this calculation, we
employ the algebra in Eq. (23). We also use the time-ordered
matrix Green’s function for free electrons,

G(t − t ′) = −i〈T �(0, t )�†(0, t ′)〉
= − I4

2πvF (t − t ′)
, (24)

085126-3



LOURENÇO, ENEIAS, AND PEREIRA PHYSICAL REVIEW B 98, 085126 (2018)

�0.4�0.2 0.0 0.2 0.4

�0.4

�0.2

0.0

0.2

0.4

Λ0

Λ2

g � 0

�0.4�0.2 0.0 0.2 0.4

�0.4

�0.2

0.0

0.2

0.4

Λ0

Λ2

g � 0.9

�0.4�0.2 0.0 0.2 0.4

�0.4

�0.2

0.0

0.2

0.4

Λ0

Λ2

g � 1

�0.4�0.2 0.0 0.2 0.4

�0.4

�0.2

0.0

0.2

0.4

Λ0

Λ2

g � 1.1
(a) (b)

(d)(c)

FIG. 3. RG flow diagrams for the couplings λ0 and λ2 and
different values of g: (a) g = 0, (b) g = 0.9, (c) g = 1, and (d)
g = 1.1.

where I4 is the 4 × 4 identity matrix. In the RG step, we
integrate out short time intervals between scattering processes,
�−1 < |t − t ′| < (�′)−1, where � and �′ = � − d� are the
old and new high-energy cutoff scales, respectively. We obtain
the followings set of RG equations:

dλ0

d�
= λ2

0 − λ0λ2 , (25)

dλ1

d�
= λ0λ1 − λ1λ2 , (26)

dλ2

d�
= −λ2

2

2
+ λ2

1

2
, (27)

where d� = d�/�. At first sight, these RG equations involve
three independent couplings, generating a three-dimensional
flow diagram. However, by combining Eqs. (25) and (26), one
can verify that the ratio

g ≡ λ1

λ0
(28)

is conserved along the RG flow, i.e., dg/d� = 0, at least for
the beta functions calculated to second order in the couplings.
Substituting J1 = gJ0, we are left with only two coupled RG
equations:

dλ0

d�
= λ2

0 − λ0λ2, (29)

dλ2

d�
= −λ2

2

2
+ g2 λ2

0

2
. (30)

Figure 3 shows the RG flow according to Eqs. (29) and
(30) for different values of g. Figure 3(a) corresponds to the

Hermitian case g = 0. Along the line λ2 = 0, we recover the
usual Kondo effect [32]: the dimensionless Kondo coupling λ0

is marginally irrelevant in the ferromagnetic case λ0 < 0 and
marginally relevant in the antiferromagnetic case λ0 > 0. In the
regime 0 < λ2 < λ0, we have λ0(�) → ∞ while λ2(�) → 0
as � → 0. When we turn on g �= 0, as in Fig. 3(b), the flow
to strong coupling is no longer along the λ2 = 0 line because
λ2 grows together with λ0. This suggests that the presence
of the non-Hermitian term affects the asymptotic value of the
ratio λ2/λ0 in the low-energy limit. Figure 3(c) shows that
|g| = 1 is a critical value, characterized by a discontinuity of
the flow across the line λ2 = λ0. For |g| > 1, as in Fig. 3(d), the
flow becomes nonmonotonic: for 0 < λ2 < λ0, the couplings
initially increase, but eventually turn around and flow back to
the noninteracting fixed point λ0 = λ2 = 0, regardless of their
initial values. Similar unconventional behavior is observed in
the renormalization of the interactions of the non-Hermitian
sine-Gordon model in the PT -broken phase [27].

IV. SPECTRUM IN THE STRONG COUPLING LIMIT

We saw in Sec. III that, for |g| < 1 and depending on
the bare values of λ0, λ2 > 0, the system can flow to strong
coupling in the low-energy limit. As in the usual Kondo effect,
we can understand the strong-coupling fixed point by going
back to the lattice model and analyzing the limit in which
the interactions are dominant, J0, J2 � t [44]. In this limit,
we start by diagonalizing HI in Eq. (8). The latter can be
viewed as a three-site operator that acts in the Hilbert space
H = H−1 ⊗ H0 ⊗ H1, where H±1 = {|0〉, |↑〉, |↓〉, |↑↓〉} are
the local Hilbert spaces of electrons in sites j = ±1 and
H0 = {|⇑〉, |⇓〉} is the Hilbert space of the impurity spin.

We can block diagonalize the Kondo interaction HI in
sectors labeled by the total number of electrons Ne = c

†
−1c−1 +

c
†
1c1 and by one component of the total spin Sz

tot = c
†
−1

σ z

2 c−1 +
Sz + c

†
1

σ z

2 c1. The possible values for these good quantum num-
bers are Ne = 0, 1, . . . , 4 and −(Ñe + 1)/2 � Sz

tot � (Ñe +
1)/2, where Ñe = min{Ne, 4 − Ne}. We also have the selection
rule that Sz

tot is integer if Ne is odd and half-integer if Ne is
even. Due to particle-hole symmetry, the spectrum for Ne = n

electrons is the same as for Ne = 4 − n electrons. Thus, we
can restrict ourselves to 0 � Ne � 2. Likewise, due to SU(2)
symmetry, the spectrum for spin Sz

tot = m is the same as for
Sz

tot = −m and we focus on m � 0.
Let us denote the energy levels in each subspace by

El (Ne, S
z
tot ), where l runs from l = 1 to the dimension of the

subspace. In the sector with Ne = 0, the interacting Hamil-
tonian HI vanishes identically, thus El (0, 1/2) = 0, with l =
1, 2. For Ne = 1 and Sz

tot = 1, we find two energy levels given
by

E1,2(1, 1) = 1
4 (J0 − J2 ± J0

√
1 − g2). (31)

Note that these energies are real for |g| � 1. For |g| > 1,
E1,2(1, 1) form a complex conjugate pair. This corresponds to
the spontaneous breaking of PT symmetry and it is a first sign
that g = ±1 are exceptional points of the Kondo interactions.
We confirm this expectation by calculating the energy levels
in the other sectors. For Ne = 1 and Sz

tot = 0, the eigenvalues
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FIG. 4. Real and imaginary parts of the energies in the sector with
Ne = 1 and Sz

tot = 1 as given in Eq. (31). Here we set J2 = J0/2. The
spectrum becomes complex for |g| > 1.

are

E1,2(1, 0) = − 3
4 (J0 − J2 ± J0

√
1 − g2), (32)

E3,4(1, 0) = 1
4 (J0 − J2 ± J0

√
1 − g2). (33)

Once again, the energies are real for |g| � 1. Here E1(1, 0)
and E2(1, 0) are associated with singlet states (i.e., eigenstates
of S2

tot with Stot = 0). Their wave functions are antisymmetric
in the spin part, but they correspond to different orbital states.
For |g| < 1, the singlet state with the lowest energy, E1(1, 0),
has the form

|�0〉 = 1
2 [|↑,⇓, 0〉 − |↓,⇑, 0〉
+ eiα (|0,⇓,↑〉 − |0,⇑,↓〉)], (34)

where α = arctan(g/
√

1 − g2). Note that |�0〉 is an eigenstate
of PT and for g = 0 it reduces to the singlet state in the
symmetric orbital, where the electron is in the superposition
(|j = −1〉 + |j = 1〉)/

√
2.

For Ne = 2 and Sz
tot = 3/2, we have only one state

(|↑,⇑,↑〉) with energy E1(2, 3/2) = (J0 − J2)/2, indepen-
dent of the parameter g. Finally, for Ne = 2 and Sz

tot = 1/2,
we have five energy levels: E1(2, 1/2) = E2(2, 1/2) = 0,
E3(2, 1/2) = (J0 − J2)/2, and

E4,5(2, 1/2) = −J0 − J2

2

± 1

2

√
3J0(1 − g2) + (J0 − J2)2. (35)

The latter pair of eigenvalues becomes complex for |g| >√
1 + (1 − J2/J0)2/3 � 1. Therefore, for |g| < 1 the entire

spectrum of HI is real and the PT symmetry is preserved. For
|g| > 1, at least the eigenvalues in the Ne = 1 sector become
complex and the PT symmetry is spontaneously broken.

Figure 4 illustrates the behavior of the energy levels El (1, 1)
as a function of g. As we approach g = 1 from below, the
eigenvalues coalesce with the characteristic square-root depen-
dence of exceptional points [6]. For |g| = 1, the eigenvalues
of HI depend only on the difference J0 − J2. In particular, for
J0 = J2, all the eigenstates become degenerate with eigenvalue

zero, implying that the impurity effectively decouples from
the wires. Note that the condition |g| = 1 and J0 = J2 also
corresponds to the special line (a separatrix) λ0 = λ1 = λ2 in
the weak-coupling RG flow shown in Fig. 3(c).

V. STRONG-COUPLING FIXED POINT
AND CONDUCTANCE

When the effective Kondo couplings diverge in the low-
energy limit, Jn(�) → ∞ with J0(�) > J2(�) along the
flow, a conduction electron forms a singlet with the impurity
spin. The low-energy effective Hamiltonian for the remaining
electrons in the wires can be obtained by projecting out the
PT -symmetric orbital involved in the singlet state in Eq. (34).
We introduce the linear combinations

c̃±,σ = 1√
2

(c−1,σ ± e−iαc1,σ ). (36)

For α = 0, these are the annihilation operators for symmetric
and antisymmetric orbitals (which are eigenstates of P),
respectively. In the more generalPT -symmetric problem, c+,σ

annihilates an electron with spin σ in the orbital state that
becomes inaccessible at low energies where the singlet cannot
be broken. We then define the projection operator P onto
the remaining electronic orbitals, such that Pc−1P = c̃−/

√
2

and Pc1P = −eiαc̃−/
√

2. The projection of the tight-binding
Hamiltonian in the wires gives

Hsc = PH0P

= −t
∑
j�−3

(c†j cj+1 + H.c.) − t
∑
j�2

(c†j cj+1 + H.c.)

− t√
2

(c†−2c̃− − eiαc
†
2c̃− + H.c.). (37)

Note that the magnitude of hopping parameter is reduced
by a factor of 1/

√
2 at the junction. Moreover, there is a

phase factor ei(α+π ) associated with the (Hermitian) hopping
process between the state annihilated by c̃− and the site j = 2.
This phase factor can be removed by performing the gauge
transformation cj → −eiαcj for j � 2. We then obtain

H̃sc = −t
∑
j�−3

(c†j cj+1 + H.c.) − t
∑
j�2

(c†j cj+1 + H.c.)

− t√
2

(c†−2c̃− + c
†
2c̃− + H.c.). (38)

This is now a P- and T -invariant tight-binding model for a
single infinite wire. Remarkably, it coincides with the effective
Hamiltonian for the usual Kondo model in the strong coupling
limit [44].

The linear conductance G can be related to the transmission
amplitude T through the junction using the Landauer-Büttiker
formalism [49]:

G = 2e2

h
T . (39)

At the strong coupling fixed point described by Hamiltonian
(38), the transmission amplitude can be calculated by solving
the single-particle scattering problem. Following Refs. [44,50],
we obtain T = sin2(kF ) [44], which implies ideal transmit-
tance T = 1 in the particle-hole symmetric case kF = π/2.
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This leads to the ideal conductance G = 2e2/h at the strong-
coupling fixed point, as for the usual Kondo effect in quantum
dots [30].

On the other hand, in the regime |g| > 1, the effective
couplings λn(�), with n = 0, 1, 2, vanish in the low-energy
limit. In fact, it follows from the RG equations (29) and (30)
that they vanish logarithmically, λn(�) ∼ [ln(�0/�)]−1 for
� → 0, where�0 ∼ t is the bare cutoff scale. The conductance
in this case can be calculated similarly to the weak coupling
regime of the Kondo model, namely by starting from the Kubo
formula and applying second-order perturbation theory in the
effective couplings (see Refs. [30,51] for details). Therefore,
in the PT -broken regime |g| > 1, the conductance scales as
G(�) ∼ [ln(�0/�)]−2 and vanishes at the local-moment fixed
point, at which the wires decouple from the impurity and the
currents are totally reflected at the boundary.

Within the effective field theory, the strong-coupling fixed
point can be understood as a π/2 phase shift that changes the
boundary conditions of electron states in the channel involved
in the Kondo coupling [38]. The effective field theory can also
be used to show that the Kondo fixed point is stable. Since
the impurity spin disappears from the low-energy effective
Hamiltonian, the perturbations to the Kondo fixed point are all
irrelevant boundary operators and the low-energy properties
are described by a local Fermi liquid theory [47]. No relevant
perturbations arise in the non-Hermitian model with PT ,
SU(2), and particle-hole symmetries. Particle-hole symmetry
breaking allows for marginal perturbations that reduce the
conductance from the ideal to a lower nonuniversal value. In
the Hermitian Kondo model, this marginal perturbation corre-
sponds to the s-wave potential scattering term V0�

†(0)�(0)
[32]. In the non-Hermitian model without particle-hole sym-
metry, we have an additional marginal perturbation allowed by
PT symmetry, represented by V1�

†(0)ϒ�(0) [where ϒ is the
imaginary antisymmetric matrix in Eq. (23)].

Finally, we comment on the possibility of varying the
parameter g across the exceptional point g = 1. Using the
perturbative expressions for the bare exchange couplings in
Eqs. (9)–(11), we can show that g = λ1/λ0 = J1/J0 = sin(2θ )
with

θ = arctan

[ √
JJ ′ sin φ

J + √
JJ ′ cos φ

]
. (40)

Therefore, these perturbative expressions predict |g| � 1.
However, this relation does not hold beyond second-order
perturbation theory in t ′ and w or for a more general lattice
model than Eq. (1) (for instance, including non-Hermitian

hopping processes between the dot and the second site in each
wire). More generally, the bare coupling constants λn that set
the initial values in the RG flow must be treated as independent
phenomenological parameters. Nonetheless, the above result
suggests that the spontaneous breaking ofPT symmetry in our
non-Hermitian Kondo model should be difficult to realize in the
regime t ′, w � |εd |, U . Instead, one should look for stronger
tunneling between the wires and the quantum dot, but still in
the Coulomb blockade regime where charge fluctuations in the
dot can be neglected.

VI. CONCLUSIONS

We have investigated an Anderson impurity model with
PT -symmetric non-Hermitian hopping between the wires and
the localized state in the quantum dot. Using a Schrieffer-
Wolff transformation, we obtained the PT -symmetric Kondo
model that describes the coupling to the impurity spin. Our
perturbative renormalization group analysis showed that the
fate of the Kondo effect is controlled by the parameter g

defined as the ratio between the non-Hermitian coupling and
the usual single-channel Kondo coupling. For |g| < 1, the
spectrum of the Kondo interaction is real and the Kondo
effect persists. In the particle-hole symmetric case, the strong
coupling fixed point of the PT -symmetric Kondo model has
ideal conductance through the quantum dot. For |g| > 1,
the spectrum becomes complex and the PT symmetry is
spontaneously broken. In this case, the low-energy physics is
governed by a local-moment fixed point with zero conductance.

Some open questions include the generalization to the
multichannel Kondo model [45,52] and the interplay of PT -
symmetric interactions at the boundary and in the bulk, as
in the Kondo effect in Tomonaga-Luttinger liquids [53,54].
More generally, it would be interesting to search for new
boundary fixed points unique toPT -symmetric non-Hermitian
systems, perhaps with chiral transport properties analogous
to those realized in quantum optics [10,55]. To go beyond
perturbative approaches, it would be interesting to generalize
powerful numerical techniques that have been instrumental
in the study of quantum impurity models, such as Wilson’s
numerical renormalization group [37,56].
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