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Spinon-orbiton repulsion and attraction mediated by Hund’s rule
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We study the impact of Hund’s-rule coupling on orbital excitations, as, e.g., measured in inelastic resonant
x-ray scattering. We find that the interpretation in terms of spin-orbit separation, which has been derived for
one-dimensional systems without Hund’s rule, remains robust in its presence. Depending on whether or not the
orbital excitation includes a spin excitation, Hund’s rule leads to an attractive or repulsive interaction between
spinon and orbiton. Attraction (repulsion) leave clear signatures through a transfer of spectral weight to the lower
(upper) edge of the spectrum.
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I. INTRODUCTION

Low-dimensional quantum systems have long been of
special interest due to the intriguing and often counterintuitive
properties they can host when quantum fluctuations and inter-
actions come together. Arguably the strangest concept at play
is fractionalization, where the electron, an elementary particle,
behaves as if it were split into parts with fractional charges (e.g.,
in two-dimensional fractional quantum-Hall states) or into a
charge separated from its spin [1]. This last concept, spin-
charge separation, applies to an electron or hole propagating
in a one-dimensional Mott insulator. Spin and charge can then
be considered as propagating as “spinon” and “holon” with
different velocities, as has been studied theoretically [2,3] and
verified experimentally using angle-resolved photoemission
spectroscopy [4,5].

More recently, spin-charge separation has been comple-
mented by the idea of spin-orbit separation [6]. This also
occurs in one-dimensional Mott insulators, but it involves an
electron being excited into some unoccupied higher-energy
orbital instead of being removed from the system. As has
been pointed out theoretically, the orbital excitation can then
be considered in a manner analogous to a hole and similarly
separates into “spinon” and “orbiton.” Experimentally, this has
been verified using resonant inelastic x-ray scattering (RIXS),
which can address orbital excitations, in a cuprate chain
compound [7].

The theory behind the analogy of spin-orbit and spin-charge
separation rests on a mapping [6] of the orbital excitation onto
a hole-removal excitation that, strictly speaking, breaks down
in the presence of Hund’s-rule coupling [8]. However, it must
be assumed to be present in any realistic material description
and can—depending on the material at hand—be strong. We
thus want to assess how far the mapping and the scenario of
spin-orbit separation can be trusted and to identify the impact
of Hund’s rule on orbital excitations.

We show in this paper that an interpretation in terms of
spinon and orbiton survives to a very large degree and that the
main effect of Hund’s-rule coupling is an interaction between

*Corresponding author: jonas.heverhagen@fmq.uni-stuttgart.de

spinon and orbiton. The issue of spinon-holon interaction in
the t-J model has been discussed analytically in the super-
symmetric limit [9], where some exact results can be obtained,
and it turned out to be rather subtle [10,11]. Numerically,
spinon-holon attraction has been followed from the t-J z model,
where it leads to a bound state, to the isotropic t-J model,
where it was concluded to be present but too weak for a bound
state [12]. The present work indicates that orbital excitations
provide an intriguing window into the interactions between
fractionalized excitations: they can address the repulsive as
well as the attractive regime, and for strong Hund’s-rule cou-
pling, signatures of spinon-orbiton interaction become quite
pronounced.

II. ORBITAL EXCITATIONS IN ANTIFERROMAGNETS

We consider here two orbitals per site, denoted by 1 for the
low-energy and 2 for the high-energy state, and the limit of
strong on-site Coulomb repulsion U , i.e., we neglect charge
fluctuations. Second-order perturbation theory with intersite
hopping t as a small parameter t/U then gives a Kugel-
Khomskii-type model [13] with the general form

H = 2
∑
〈i,j〉

(
�Si · �Sj + 1

4

)
Aij +

∑
〈i,j〉

Kij + �
∑

i

T z
i , (1)

where �Si describes a spin S = 1
2 at site i and T z

i = 1
2 (n2 − n1)

is the z component of the orbital pseudospin. Operators Aij

and Kij depend on the orbital degrees of freedom; see below.
Bonds 〈i, j 〉 run over nearest neighbors (NN), but they can be
chosen to include longer-range interactions. Strong crystal field
� � t ensures that only lower-energy orbital 1 is occupied in
the ground state.

Since states with two electrons on one site enter the
perturbation theory as (virtual) intermediate states, Aij and Kij

depend on the on-site interactions. It is helpful to first consider
any doubly occupied site to have energy U , regardless of its
spin and orbital occupation. This neglects processes such as
Hund’s-rule coupling but brings out the dominant terms

A
(0)
ij = 4t2

U

[(
T z

i T z
j + 1

4

)
+ 1

2 (T +
i T −

j + H.c.)
]
, K

(0)
ij = 0.

(2)
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(We assume identical hopping t in both orbitals.) When strong
crystal-field splitting � enforces orbital polarization T z

i ≡ − 1
2 ,

the second term in A
(0)
ij is inactive in the ground state, and

the first term leads to antiferromagnetic (AFM) Heisenberg
coupling of the spins in (1).

An orbital excitation is then induced into the AFM state,
e.g., by RIXS, which allows for this excitation to come with or
without a spin flip. The two excitations can be distinguished
in experiment [14,15] and are described by operators

T +(k) = 1√
L

∑
j,σ

eikj c
†
j,2,σ cj,1,σ , (3)

(SxT +)(k) = 1√
L

∑
j,σ

eikj c
†
j,2,−σ cj,1,σ , (4)

where c
†
j,2,σ (cj,1,σ ) creates (annihilates) an electron with spin

σ = ±1 =↑,↓ in the empty orbital 2 (occupied orbital 1) on
site j . k denotes crystal momentum and runs over the first
Brillouin zone of the L-site chain.

The excitations move via the second term in A
(0)
ij [see

Eq. (2)], and it turns out that the spin in the upper orbital 2
is conserved and has no impact on either kinetic or potential
energy [6,16]. Excitations with and without spin flip are thus
equivalent and can be mapped onto a spinless hole moving in an
AFM background. This mapping between orbital excitations
and hole dynamics has been used extensively to analyze RIXS
in one-dimensional cuprates [7,17,18] and two-dimensional
iridates [16,19,20].

III. RICHER STRUCTURE OF THE DOUBLY
OCCUPIED SITE

However, the above considerations can only be applied to
materials in which Hund’s-rule coupling JH is much smaller
than on-site charge repulsion U . Since U is expected to
depend more strongly on screening effects than JH [24,25],
the important ratio JH

U
can differ significantly even for closely

related compounds [26]. To extend the analysis of orbital
excitations to materials with larger JH

U
, the description of two

electrons on one site has to take into account processes beyond
pure charge interactions.

Let U denote Coulomb repulsion felt by two electrons in
the same orbital on the same site i. Due to reduced overlap
of the wave functions, their interaction U ′ = U − �U < U is
weaker if they occupy different orbitals. In that case, Hund’s-
rule coupling −2JH

�Si,1 �Si,2 moreover favors their ferromag-
netic (FM) alignment. Finally, a “pair hopping” JP involves
a doubly occupied high-energy orbital 2 and is suppressed
here by the large crystal field. The full Kugel-Khomskii
Hamiltonian is given by

Aij = 4Ut2

U 2 − J 2
P

(
T z

i T z
j + 1

4

)
+ 4JH t2

U ′2 − J 2
H

(
T z

i T z
j − 1

4

)

+ 2U ′t2

U ′2 − J 2
H

(T +
i T −

j + H.c.)

− 2JP t2

U 2 − J 2
P

(T −
i T −

j + H.c.) (5)

and

Kij = − 4Ut2

U 2 − J 2
P

(
T z

i T z
j + 1

4

)
+ 4U ′t2

U ′2 − J 2
H

(
T z

i T z
j − 1

4

)

+ 2JH t2

U ′2 − J 2
H

(T +
i T −

j + H.c.)

+ 2JP t2

U 2 − J 2
P

(T −
i T −

j + H.c.). (6)

We use here relations JH = JP and �U = 2JH , which arise
naturally for symmetry-related orbitals [27,28], but we have
checked that deviations do not significantly alter our results.

We apply (Lanczos) exact diagonalization to Hamiltonian
(1) with orbital operators (5) and (6). To reach longer chains,
only states with at most one electron in the higher-energy
orbital 2 are kept, which does not affect results in our limit
of large crystal-field splitting. Exact diagonalization is com-
plemented with spin–cluster-perturbation theory [29], which
gives limited access to momentum points not directly available
on the directly solved cluster and which has been previously
applied to orbital excitations [8].

IV. NUMERICAL RESULTS AND SPINON-ORBITON
INTERACTION

Figure 1 shows spectra for excitations (3) and (4) without
and with a spin flip, for increasing deviation from the high-
symmetry case (2). At small JH/U = 1/20, excitations with
and without spin flip look nearly identical; see Figs. 1(a)
and 1(b). They also strongly resemble the JH = 0 result [6],
which in turn corresponds to the one-particle spectral density
of the supersymmetric t-J model [30] with t = J/2. The
spectrum can then be described in terms of a spinon and a holon
interacting via a phase string [23], where the role of the holon is
taken here by the “orbiton.” The lens-shaped dominant feature
can thus be identified with the one-spinon–one-holon (orbiton)
part of the spectrum, while the additional small weight at higher
energy toward k = π comes from states with three spinons
[21,22].

At larger JH/U = 3/20, the lens can still be recognized,
albeit with a broadened energy range. However, spectral weight
has clearly shifted to its high-energy (low-energy) edge for the
pure orbital (combined spin-orbital) excitation; see Figs. 1(c)
and 1(d). Finally at JH /U = 5/20 = 1/4, energy range has
further increased and spectral weight is almost completely
located on the upper (lower) side without (with) a spin flip. For
the combined spin-orbital excitation, Fig. 1(f) shows features
such as the “spinon” and “holon” branches familiar from the
t-J model, however the “holon” is broadened.

To interpret the features and understand their origin, cor-
rections to (2) in first-order of 1

U
can be analyzed. The part Kij

decoupled from spins no longer vanishes,

K
(1)
ij = 4t2

U

[
�U

U

(
T z

i T z
j − 1

4

)
+ JH

2U
(T +

i T −
j + H.c.)

+ JP

2U
(T −

i T −
j + H.c.)

]
, (7)

where the last term ∝ JP is suppressed by crystal-field splitting
� and the first term ∝ �U gives a small overall energy shift.
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FIG. 1. Orbital excitations with increasing JH = JP = �U/2. Spectra for the pure orbital excitation Eq. (3) without a spin flip are shown
in the left column for (a) JH = t = U/20, (c) JH = 3t = 3U/20, and (e) JH = 5t = U/4. The right column gives spectra for the spin-orbital
excitation Eq. (4), which includes a spin flip, for (b) JH = t , (d) JH = 3t , and (f) JH = 5t . The broad solid (dashed) lines in (a) and (b) give the
approximate support of the one-spinon–one-holon (three-spinon–one-holon) part of the one-particle spectrum of the t-J model [21,22]. This
support is consistent with a phenomenological analysis in terms of a spinon and holon interacting via a phase string [23], and it corresponds
to the orbital excitation spectrum for JH = 0. In (f), the broad solid and dashed lines are guides to the eye following the peaks of the branches
identified as “spinon” and “orbiton” branches. Results obtained with spin CPT based on L = 24 sites, Coulomb repulsion U = 20t , crystal
field � = 10t ; spectra were broadened by a Lorentzian with width η = 0.05t .

The second term ∝ JH allows the excited orbital to move
without an on-site spin flip, so that the spin of the excitation can
flip. In the 1D chain, this can induce additional spinons and is a
likely reason for, e.g., the broadening of the “holon” branch in
Fig. 1(f). Despite its rather minor role here, we expect this term
to have a more decisive effect in higher dimensions, where it
would allow the orbital excitation to travel “freely” through an
AFM ordered state without creating a string potential.

Corrections to Aij are

A
(1)
ij = 4t2

U

[
JH

U

(
T z

i T z
j − 1

4

)
+ �U

2U
(T +

i T −
j + H.c.)

− JP

2U
(T −

i T −
j + H.c.)

]
, (8)

where the last term is again suppressed. The second terms here
and in Eq. (2) have exactly the same form and the same sign, so
that the main effect of U ′ < U is to increase orbiton hopping

relative to spin superexchange [16]. This in turn increases
bandwidth and makes the orbiton faster than the spinon, so
that we recover the “usual” spinon-holon scenario in Fig. 1(f).

Finally, the first term of (8) becomes negative between two
sites with different orbital occupation because T z

i T z
j = − 1

4 in
that case, while the term vanishes for identical orbitals and
T z

i T z
j = + 1

4 . Negative Aij implies FM spin-spin coupling in
the Kugel-Khomskii Hamiltonian (1). This is opposite to the
AFM coupling between identical orbitals that comes from the
first term of (2), which in turn vanishes between sites with
different orbital occupation. The sign change of the magnetic
interaction driven by different orbital occupation, known as
Goodenough-Kanamori rules [31,32], often contributes to
complex magnetic orderings in the presence of orbital degrees
of freedom. We argue here that this effect also mediates an
interaction between the excited orbital and the spinon (see
Fig. 2) that plays out differently for the excitations with and
without a spin flip.
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FIG. 2. Illustration of the effective spinon-orbiton repul-
sion/attraction. In (a) and (b), orbital excitations without/with spin flip
are created; the spinon and orbiton are located on the same spot. In (c)
and (d), the orbiton has moved two sites, leaving behind the spinon.
Broken vertical bars between sites indicate spinons; solid bars denote
violations of Goodenough-Kanamori rules on bonds with alternating
orbitals.

In (short-range) AFM order, the excited electron after a
process [Eq. (4)] with spin flip has the same spin as its two
neighbors in lower-energy orbitals [see Fig. 2(b)], exactly the
situation energetically favored by the first term of (8). If the
excited orbital (i.e., the orbiton) moves away, leaving behind
a domain wall (i.e., the spinon), it is generally found between
spins of opposite sign, so that only one bond can profit from
FM exchange. The other bond, indicated by a red vertical bar
in Fig. 2(d), is AFM and raises the energy for separating the
spinon and orbiton; the orbiton and spinon thus see an attractive
potential. In contrast, an orbital excited without a spin flip
in process [Eq. (3)] has spin opposite to its two neighbors
[see Fig. 2(a)], and both bonds pay energy. Separated from the
spinon and sitting between an up and a down spin, it has spin
parallel to one of its neighbors [see Fig. 2(d)], which reduces
energy cost. Accordingly, the spinon and orbiton repel each
other here.

However, the illustration shown in Fig. 2, with its perfectly
ordered Ising spins, overemphasizes spinon-orbiton attraction
because it suggests that the domain wall costs energy ∝
J = 4t2

U
anywhere except at the site of the orbiton. This

interaction, indicated by broken vertical bars in Fig. 2, would
be independent of JH and indeed binds the spinon and holon
together in the t-J z model [33]. While the effect has been found
too weak to induce a bound state in the spin-isotropic t-J model
with its half-filled spinon-sea ground state, it is sizable on finite
chains [12].

Fortunately, Hund’s-rule–driven spinon-orbiton interaction
can be distinguished from this “baseline” interaction even on

small systems by use of open boundary conditions (OBC).
To do so, we set the crystal-field splitting to a negative value
at one site i2 = L

2 near the center of an OBC chain. In the
ground state, orbital 2 thus has one electron at site i2, and the
AFM state in orbital 1 has at least one domain wall, which
can sit either around site i2 or at the open ends. At JH = 0,
both positions have equal weight. In the presence of JH > 0,
the preferred position depends on total Sz = 1

2 (N↑ − N↑): For
Sz = 1 (describing the case with a spin flip), the domain wall
is found predominantly around i2 while it prefers the open
chain ends for Sz = 0, indicating attraction and repulsion,
respectively. Numerical spectra in Fig. 1 do not show bound
states, but the buildup of spectral weight at lower (higher)
excitation energies can be explained by including such a
spinon-holon interaction into a phenomenological description
[23] in terms of a spinon and a holon.

V. CONCLUSIONS

Fractionalization of the electron into spin and charge has
long been realized as an intriguing property of one-dimensional
systems. The question of interactions between the fractional-
ized parts then naturally arises, even if they are not strong
enough to glue the electron back together. We find here
that orbital excitations can offer insights into this aspect of
spin-charge separation that are not easily accessible from
one-particle excitations.

Orbital excitations had been shown to exhibit spin-orbit
separation in analogy with spin-charge separation, with the
orbiton taking the role of the holon. We have seen here that
Hund’s rule leads to an attraction or repulsion between spinon
and orbiton, depending on whether the excitation includes a
spin flip or not. Their microscopic origin can be understood as
a dynamic signature of the Goodenough-Kanamori rules that
favor FM (AFM) spins on bonds with different (identical) or-
bitals. Hund’s-rule–induced interactions are not strong enough
to induce (anti)bound states, but they lead to clear signatures
by shifting spectral weight to the upper (lower) edge of the
one-spinon–one-orbiton part of the spectrum.
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