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Using the multiband d-p model and unrestricted Hartree-Fock approximation we investigate the electronic
structure and spin-orbital order in a three-dimensional VO3 lattice. The main aim of this paper is testing if a
simple d-p model with partly filled 3d orbitals (in vanadium ions) and 2p orbitals (in oxygen ions) is capable of
reproducing correctly nontrivial coexisting spin-orbital order observed in the vanadium perovskites. We point out
that the multiband d-p model has to include partly filled eg orbitals in vanadium ions. The results suggest weak
self-doping as an important correction beyond the ionic model and reproduce the possible ground states with
broken spin-orbital symmetry in vanadium ions: either C-type alternating orbital order accompanied by G-type
antiferromagnetic spin order or G-type alternating orbital order accompanied by C-type antiferromagnetic spin
order. Both states are experimentally observed and compete with each other in YVO3 whereas only the latter was
observed in LaVO3. Orbital order is induced and stabilized by particular patterns of oxygen distortions arising
from the Jahn-Teller effect. In contrast to time-consuming ab initio calculations, the computations using the d-p
model are very quick and should be regarded as very useful in solid-state physics, provided the parameters are
selected carefully.
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I. INTRODUCTION

The spin and orbital ordering found in three-dimensional
(3D) vanadium perovskites is an old but still very interesting
problem with many challenges. It was discussed in numerous
experimental and theoretical papers, considering undoped
[1–24] and doped by charged defects [25–27] vanadium per-
ovskites. On the theoretical side, the first insightful explanation
of the alternating orbital (AO) order was given by Mizokawa
et al. in 1999 [1]. They studied the competition between two
types of spin-orbital order in vanadates within the so-called
lattice model. It was claimed that Jahn-Teller (JT) distortions
of the lattice [28] (see Fig. 1) are primarily responsible for the
onset of this order. Sizable tilting of the apical axes of octahedra
(out of an ideal cubic structure) was assumed to be the main
driving factor which distinguishes between low-temperature
and high-temperature orders in LaVO3 or YVO3 [1].

Easy-to-grasp presentation of the spin and orbital order
in the ground state as perceived today by experimentalists
was presented by Blake et al. [7]. The phase diagram of the
vanadium perovskites RVO3 [21] shows several spin- and/or
orbital ordered phases. In the regime of compounds with low
values of ionic radii rR of rare-earth ions R as in YVO3, two an-
tiferromagnetic (AF) phases with complementary spin-orbital
order appear: (i) G-type AF (G-AF) order accompanied by
C-type alternating orbital order (C-AO) with staggered orbitals
on ab planes and repeated orbitals along the c axis (below
the magnetic transition at TN2 = 77 K) and (ii) C-type AF
(C-AF) order accompanied by G-type AO (G-AO) order for
TN2 < T < TN1, where TN1 = 116 K is the high-temperature
magnetic transition [21].

It is well understood now that at zero temperature, i.e., when
YVO3 is orthorhombic, the zx and yz orbitals on vanadium

FIG. 1. Schematic of cooperative and static Q4 JT distortions
involving rotations of octahedra groups (upper panel) and Q2 distor-
tions (lower panel). For a description and classification of different
JT modes see Ref. [28]. Red/blue dots denote positions of vana-
dium/oxygen ions on the ab plane.
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FIG. 2. Schematic of JT distortions used for Hartree-Fock com-
putations in the low-temperature phase of YVO3. The long bars
denote preferred yz or zx orbitals—their cooperative arrangement
forms C-AO order. Spins are not shown. The numbers shown close to
vanadium positions identify the ions (see the corresponding entries in
Table II). Horizontal and vertical directions on the figure correspond
to x and y axes, respectively; note that the x, y axes are at a 45◦ angle
to the crystallographic a, b axes, i.e., our x direction corresponds to
the crystallographic (1,1,0) direction. The orbital order is repeated in
consecutive layers when moving up along the z axis (this coincides
with the crystallographic c axis).

ions alternate between two sublattices forming orbital C-AO
long-range order and this order resembles AF spin order
on a single ab plane, see Fig. 2, whereas along the c axis
this order is repeated, i.e., there is an analogy to ordinary
spin ferromagnetic order [7]. At the same time the spins
are arranged according to an ordinary 3D Néel state (G-AF
spin order). At intermediate temperatures T > 77 K (when
YVO3 is monoclinic) this order is reversed: the G-AO order
is accompanied by C-AF spin order, see Fig. 3. The magnetic
transition at T = 77 K is triggered by the dimerization in spin-

′ ′

FIG. 3. Schematic of JT distortions used for Hartree-Fock com-
putations in the zero-temperature phase of LaVO3. Here, over the first
layer 1, layer 2 is stacked, and the orbitals {yz, zx} form G-AO order,
i.e., alternate along the c axis. The meaning of other symbols is the
same as in Fig. 2.

orbital chains which requires spin fluctuations at finite tem-
perature [29]. Altogether this transition takes place between
two types of spin-orbital order along the c axis which follow
the complementarity predicted by the Goodenough-Kanamori
rules [30].

The purpose of this paper is to investigate the spin-orbital
order in vanadium perovskites within the multiband d-p
model, i.e., to go beyond the usually used picture of a Mott
insulator with S = 1 spins and t2g orbital degrees of freedom
or the effective degenerate Hubbard model of t2g electrons.
The d-p model includes nonzero on-site Coulomb interactions
defined both on oxygen and on transition-metal ions and takes
into account the possibility of finite self-doping, explained
below and applied before to ruthenium, iridium, and titanium
oxides [31–33]. The d-p model was developed in these papers
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into a realistic method, capable of computationally cheap and
fast realistic investigation of the electronic structure of complex
transition-metal oxides.

Up to now, the on-site Coulomb interactions on oxygen
ions are being neglected in the majority of papers (as a
simplification—to reduce the computational effort). However,
when Coulomb repulsion elements on oxygens are neglected,
the true d-p model parameters are replaced by effective
parameters. In particular, the effective Hubbard repulsion on
vanadium ions Ud is smaller by about 50% than the true Ud

repulsion [33]. Also the so-called self-doping [31–33], see
below, is neglected in traditional effective 3d-electron models
where one assumes that a cation (for example, La in LaVO3 or
Y in YVO3) behaves according to the idealized ionic model,
i.e., donates all valence electrons into a VO3 unit (for La these
are as follows: two 4s electrons and one 3d valence electron).
However, in reality, this charge transfer is smaller—it is not
exactly 3 but (3 − x) instead. Strictly speaking, we mean by
this statement that the occupation number of valence electrons
on La as obtained say by Mulliken (or Bader) population
analysis (during a parallel ab initio computation) will amount
to some finite value of x > 0. This redistribution of electron
charge is called here self-doping.

In the present paper we use up-to-date estimations of
crystal-field splittings, spin-orbit interaction in vanadium ions,
and JT distortions. The model is used to study possible types of
order and to establish the easy spin axis. We also extracted from
our computations highest occupied molecular orbital-lowest
unoccupied molecular orbital (HOMO-LUMO) gaps which
can serve as an estimation of the band gap.

The paper is organized as follows. We define the model
and its parameters in Sec. II. The numerical method and its
caveats are addressed in Sec. III. The results are presented and
discussed in Sec. IV. In Sec. V we present the main conclusions
and a short summary.

II. HAMILTONIAN

We introduce the multiband d-p Hamiltonian for the VO3

3D cluster which includes five 3d orbitals in each vanadium ion
and three 2p orbitals in each oxygen ion (with the parameters
given in Table I),

H = Hkin + Hso + Hdiag + Hint, (2.1)

where Hkin stands for the kinetic energy, Hso stands for spin-
orbit coupling, Hdiag stands for the diagonal part of kinetic
energy (also including local crystal-field splittings), and Hint

stands for the intra-atomic Coulomb interactions. Optionally

TABLE I. Parameters of the multiband model (2.1) (all
in eV) used in the calculations. For the hopping integrals we
adopt the values from Refs. [36,45], i.e., (pdσ ), (pdπ ), (ppσ ),
(ppπ ) = −2.2, 1.1, 0.6, −0.15 eV which correspond to V-O dis-
tances of 2.0 Å (we use Slater notation [34]). The charge-transfer
energy (defined for bare levels) is taken as � = 5.0 eV.

ζ Ud J t
H J e

H Up J
p

H

0.026 8.0 0.8 0.9 4.4 0.8

one can add the JT part HJT, and this will be discussed in
Sec. III A. The cluster geometry and precise forms of different
terms are standard; for the detailed formulas see Refs. [31,32].

The kinetic part of the Hamiltonian is as follows:

Hkin =
∑

{iμ;j,ν},σ
(ti,μ;j,νc

†
i,μ,σ cj,ν,σ + H.c.), (2.2)

where we employ a general notation with c
†
j,ν,σ standing for

the creation of an electron at site j in an orbital ν with
up- or down-spin σ =↑,↓. The model includes all five 3d

orbital states ν ∈ {xy, yz, zx, x2 − y2, 3z2 − r2} and three 2p

oxygen orbital states ν ∈ {px, py, pz}. Alternatively, i.e., when
choosing a more intuitive notation, we can write d

†
j,ν,σ for d

orbitals, whereas we can write p
†
j,ν,σ for p orbitals. The matrix

ti,μj,ν is assumed to be nonzero only for nearest-neighbor
vanadium oxygen d-p pairs and for nearest-neighbor oxygen
oxygen p-p pairs. The next-nearest hopping elements are
neglected. (The nonzero ti,μ;j,ν elements are listed in the
Appendix of Ref. [31]; we use the Slater notation [34]). As
a side remark we recall that models taking into account only
three t2g orbitals and neglecting the remaining two eg orbitals
are not accurate enough [35].

The spin-orbit part Hso = ζ
∑

i Li · Si , is a one-particle
operator (the scalar product of angular momentum and spin
operators at site i), and therefore it can be represented in the
form similar to the kinetic part Hkin [36–39],

Hso =
∑

i

⎧⎨
⎩

∑
μ �=ν;σ,σ ′

t so
μ,σ ;ν,σ ′d

†
i,μ,σ di,ν,σ ′ + H.c.

⎫⎬
⎭, (2.3)

with t so
μ,σ ;ν,σ ′ as the elements restricted to single vanadium sites.

They all depend on spin-orbit strength ζ (ζ = 0.026 eV; this
value was adopted from Ref. [40]), which is weak, but it can
have an influence on the preferred spin direction. For a detailed
formula and tables listing ti ν,σ ′;μ,σ elements, see Refs. [31,37].

The diagonal part Hdiag depends only on electron number
operators. It takes into account the effects of local crystal fields
and the difference in reference orbital energies (here we employ
the electron notation),

� = εd − εp, (2.4)

between d and p orbitals (for bare orbital energies). We can
fix the reference energy εd = 0 for d orbitals to zero and use
only � = −εp as a parameter, thus we write

Hdiag =
∑

i;μ=x,y,z;σ

εpp
†
i,μ,σpi,μ,σ

+
∑

m;μ=xy,yz,...;σ

f cr
μ,σ d†

m,μ,σ dm,μ,σ . (2.5)

The first sum is restricted to oxygen sites, whereas the sec-
ond one runs over vanadium sites. The crystal-field splitting
strength vector (f cr

μ,σ ) describes the splitting within t2g levels.
For example, in YVO3 the xy orbital is lowered by ∼0.017 eV
(according to Ref. [15]). At the same time, the {yz, zx}
doublet is also split (this was discussed in some papers,
most clearly in Refs. [11,19]) in accordance with local JT
distortion of a particular VO6 octahedron. We assume ad
hoc that either yz is lower than the zx orbital which should
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correspond to an O4 square (on the ab plane) when distorted
from an ideal square into an elongated along the y-direction
rhombus or the opposite: zx is lower than the yz orbital which
should correspond to O4 distorted into an elongated along the
x-direction rhombus (compare Figs. 1 and 2). This splitting
value should be 0.1–0.2 eV which is an educated guess
(compare with the estimation from Ref. [15]).

The distance between t2g levels and eg levels is large,
1.5–2.0 eV [20,22,41]). We do not take into account a possible
splitting within eg levels as from our previous experience with
transition-metal perovskites, and we do not expect it to be an
important factor.

The on-site Coulomb interactions Hint (d ) for d orbitals take
the form of a degenerate Hubbard model [42],

Hint (d ) =
∑

m,μ<ν

(
Ud − 5

2
J d

μν

)
nmμnmν

+Ud

∑
mμ

nmμ↑nmμ↓ − 2
∑

m,μ<ν

J d
μν

	Smμ · 	Smν

+
∑

m,μ �=ν

J d
μνd

†
mμ↑d

†
mμ↓dmν↓dmν↑. (2.6)

where nmμ = ∑
σ nmμσ is the electron density operator in

orbital μ, {μ, ν}’s enumerate different d orbitals, and Jd,μν is
the nontrivial tensor of on-site interorbital exchange (Hund’s)
elements for d orbitals; Jd,μν has different entries for the {μ, ν}
pairs corresponding to two t2g orbitals (J t

H) and for a pair of
two eg orbitals (J e

H) and still different for the case of cross-
symmetry terms [43,44]; all these elements are included, and
we assume the Racah parameters: B = 0.1 eV and C = 4B.

The local Coulomb interactions Hint (p) at oxygen sites (for
2p orbitals) are analogous,

Hint (p) =
∑

i,μ<ν,σ

(
Up − 5

2
J

p

H

)
niμniν

+Up

∑
iμ

niμ↑niμ↓ − 2J
p

H

∑
i,μ<ν

	Siμ · 	Siν

+J
p

H

∑
i,μ �=ν

p
†
iμ↑p

†
iμ↓piν↓piν↑, (2.7)

where the intraatomic Coulomb repulsion is denoted as Up and
all off-diagonal elements of the tensor J

p
μν are equal (as they

connect the orbitals of the same symmetry), i.e., Jp
μν ≡ J

p

H . (Up
to now, as already mentioned above, Hint (p) was neglected in
the majority of studies, i.e., for simplicity it was being assumed
that Up = J

p

H = 0.)
In the following we use the parameters Ud, J d

μν, Up, and
J

p

H similar to those used before for titanium oxides [32,33]; for
the hopping integrals we follow the studies by Mizokawa and
Fujimori [36,45]. The value of Up ∼ 4.0 eV was previously
used in copper oxides [46,47], but in addition in some test
computations we considered a larger value of Up = 6 eV.
(This choice, i.e., Up = 6 eV is advocated and reasonably
explained in Refs. [47,48].) Concerning the parameter � an
educated guess is necessary as no information for the vanadium
perovskites is available. However, we have found before that
in titanium oxides � = 6.5 eV is reasonable [32,33]. Here for
vanadium oxides a smaller value should be more appropriate.

Old-fashioned computations, such as those reported in the
classical textbook of Harrison [49] and shown in tables therein
suggest a value lower by 1.5 eV (i.e., � = 5.0 eV); a still
lower value of 4.0 eV was suggested by Bocquet et al. and
Imada et al. [50] (note that in these papers the parameter Up

enters only indirectly). We have tried all values in the range
of 4.0 < � < 6.5 eV and found that the most interesting and
sensible physical results could be obtained for � = 5.0 eV.

Our reference system is LaVO3 where the total electron
number in the d-p subsystem is Ne = 17 + 3 = 20 per one
VO3 unit provided we assume an ideal ionic model with no
self-doping (x = 0), i.e., all three La valence electrons are
transferred to the VO3 unit. Another possibility is when the
self-doping is finite: We consider x = 0.5 (then the cation
La donates not 3 but rather on the average of 3–0.5 = 2.5
electrons and Ne = 20 − x = 19.5); or the extreme Ne = 19
when the self-doping is x = 1.0. Note that in the following for
our computations we use only certain discrete numbers for x

as the studied cluster is finite and the total electron number
must be an even integer; moreover the total electron number
should hit some magic number so that the ground-state wave
function of the studied small cluster is a closed shell and not
an open shell.

The problem of how to fix x is a difficult question. If
one wants to be sure what is a precise value of x, then the
best way would be to perform independent auxiliary ab initio
or local density approximation with Coulomb interaction U

(LDA + U ) computations and extract the electronic population
on the cation R (in RVO3) analogously, such as was performed
in Ref. [33]. This is however rather expensive. Without such
auxiliary ab initio computations one is left with speculations.
It seems that for the case of a La or a Y cation a safe guess
is that x ∈ [0.0, 0.5], i.e., all three, or almost all three 5d16s2

valence electrons are transferred to the vanadium octahedron.

III. NUMERICAL STUDIES

A. Computational problems concerning
the Jahn-Teller Hamiltonian

The important part of the electronic Hamiltonian in per-
ovskites, namely, the influence of JT distortions on the elec-
tronic structure rarely can be treated in a satisfactory way
during the computations. Let us explain what we mean by
this statement. An effective Hamiltonian which describes
cooperative JT lattice distortions for octahedra in the vanadium
perovskites can be assumed in the complicated form which
is quadratic in JT distortions and contains in addition the
terms ∝d

†
iνσ diμσ coupled linearly with JT distortions, for

details and an explicit (quite complicated) formula, see, for
instance, Ref. [51]. JT distortions {Qi} (i = 1, . . . , 6) (used
notation is the same as in Ref. [28]) can be treated as
quasiclassical continuous variables. There should be appended
(to all Q’s) an additional (extra) subscript m to distinguish
between different octahedra which could have (in principle)
different, one from another, distortions. Let us recall that (see
Ref. [28]) {Q4,Q5,Q6} modes cause tilting (rotations) of the
VO6 octahedron. The Q2 mode causes a distortion of the
squares formed by four oxygens (on the ab plane a square
undergoes distortion into an elongated rhombus), whereas
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the Q3 mode causes differences in apical vanadium oxygen
bond lengths (tetrahedral distortion).

In the course of normal computations (when looking for
a ground-state energy minimum) the search for the energy
minimum due to the electronic degrees of freedom must be
supplemented with an extra search for the optimal values of
continuous classical degrees of freedom (Qi modes). Then
the Hamiltonian becomes intractable, even so for very small
clusters, even so if the cooperative pattern of JT distortions is
explicitly assumed. Let us remark that assuming a cooperative
and static pattern of JT distortions (with a certain amount of
symmetry) would mean that instead of Q2m,Q3m, . . . (a lot
of separate sets of Q2m,Q3m, . . ., one set for each individual
octahedron m) one can consider a single set of |Q2|, |Q3|, . . .
and the dependence on the octahedron number m within the
lattice is realized through alternating plus/minus signs to indi-
vidual Q’s and changing them according to the assumed global
symmetry of the static-cooperative JT distortions. Anyway,
even with this great simplification there are at least five extra
{Qi} variables which makes looking for ground-state energy
minimum during HF iterations extra expensive.

To overcame this difficulty most often a semiempirical
treatment of JT terms is used: namely, one assumes an explicit
form and the magnitudes of the lattice distortions, usually
suggested by the experiment. Thus the distorted lattice is
frozen, and we take this as an experimental fact (and do not
ask any more about the origin of these distortions). Then com-
putations become more feasible. The Q2m,Q3m, . . . modes
and the JT Hamiltonian do not enter computations anymore—
their only role was to deform the lattice and to change V-O
distances. Instead, one collects all V-O and O-O bond lengths
(as suggested by experiment) and because of modified bond
lengths one modifies the matrix of kinetic hopping parameters.
In this respect quite popular is the Harrison scaling [49] when
the difference in V-O bond lengths (versus some reference
bond lengths, for example, those in the hypothetical undistorted
crystal of ideal cubic symmetry) causes renormalization of
the hopping elements. The second important consequence of
changed V-O distances is the creation of local crystal fields
acting upon central V ions: These will split yz/zx doublets as
already discussed above for Hdiag and f cr

μ,σ .
To simplify the numerical effort, we performed exactly such

computations but only for the scenario shown in Fig. 2, i.e.,
only Q2 distortions were included, whereas the Q4 distortions
were neglected. This choice is purely pragmatic: Nonzero
Q4’s, Q5’s, and Q6’s significantly increase the computational
effort by drastically lowering the symmetry and therefore
increasing the complexity of the kinetic hopping matrix. We
emphasize that the d-p model is definitely not an ab initio
approach thus it can account only for a qualitative description
of generic physical properties; one should not expect that
all the physical details will be described properly. Therefore
certain simplifications in modeling are not a capital offense.
In this respect one can still ask if indeed octahedral tilting
and finite Q4 distortions are mandatory for spin-orbital order
to emerge. Numerous experimental and theoretical papers
addressed directly and indirectly these questions: (i) Quoting
Ref. [52] where the proof was given that V-O-V angles
deviating strongly from 90◦ are not primarily a driving force
stabilizing C-type orbital order in vanadates or that (ii) orbital

fluctuations (at zero temperature) are not strong but, in fact,
almost suppressed [18]. For a more general discussion of these
problems see Ref. [21]. We suggest that for the description
of the onset of spin-and-orbital order, our simplified scenarios
with local crystal fields and with geometries depicted in Figs. 2
and 3 are quite enough and that the apical axes nonzero tiltings
influence only the distances between the true HF ground state
and other (higher in energy) stable HF states.

To summarize, and, at the same time, to give an explicit
example: In YVO3 we studied the zero-temperature geometry
as shown in Fig. 2 with repeating layer 1 (along the c axis): the
V-O bond lengths were set as 2.042, 1.99, and 1.99 Å [7,8]
for a long, a short, and an apical bond, respectively. The
Slater integrals were scaled following Harrison’s rules [49]
to fit the experimental V-O bond lengths. The changes in O-O
bond lengths caused by JT distortions were neglected (they
are expected to be small and less important). On top of it the
values of local crystal-field splitting of the yz/zx doublet were
assumed to be ±0.1 eV.

B. Unrestricted Hartree-Fock computations

We use the unrestricted HF approximation (with a single
determinant wave function) to investigate the model (2.1).
The technical implementation is the same as that de-
scribed in Refs. [26,31,32,36,45,53] featuring the averages
〈d†

m,μ,↑dm,μ,↑〉 and 〈p†
i,μ,↑pi,μ,↑〉 (in the HF Hamiltonian)

which can be treated as order parameters. At the beginning
some initial values (a guess) have to be assigned to them.
During HF iterations the order parameters are recalculated
self-consistently until convergence. If in the course of com-
putations all the averages 〈d†

m,μ,↑dm,μ,↑〉, . . . would be treated
as independent, convergence (if any) would indeed be too slow.
Therefore the common strategy is to employ an explicit type
of symmetry of the order in the ground state (which lowers
the number of order parameters) and to perform HF iterations
strictly under this assumption. During the present computa-
tions the chosen scenarios for the ground-state symmetry were
those with either: (i) the orbital order of G type, C type, or
absent; (ii) the spin order of G-AF, C-AF, or absent; (iii) the
x or z easy magnetization axis. One remark: The hypothetical
ground-state symmetries which would violate Goodenough-
Kanamori rules [30] were also considered (these are as follows:
a ground state with C-AF spin order and C-type orbital order
and a ground state with G-AF spin order and G-type orbital
order; during computations we found such states to be locally
stable in unrestricted HF for some parameters, but they never
became true ground states).

Within each of the above scenarios the number of in-
dependent order parameters is lowered, but still it is large
enough so that the HF convergence is rather poor. This was
caused mainly by not imposing any restrictions on order
parameters associated with oxygens (no orbital equivalence by
symmetry and no assumption on oxygen magnetic properties)
and not imposing any symmetry restriction on order parameters
associated with vanadium eg orbitals. We found that imposing
any such restrictions is quite risky as any symmetries and
orbital equivalences as could be a priori assumed, in fact,
turn out to be too restrictive and only approximate ones. This
happens at least for scenarios shown in Figs. 2 and 3. For
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computations and a quick scan of the phase diagram we used
a 2×2×4 cluster. (A single HF run on an ordinary desktop can
be performed in about 10 min; bigger 4×4×4 clusters require
from several hours up to one day).

The simplified and popular remedy for poor HF conver-
gence is the so-called dumping technique. A better remedy is
the technique known in quantum chemistry and called level
shifting [54]. It is based on replacing the true HF Hamil-
tonian by a different Hamiltonian—the one with the identi-
cal eigenvectors (one-particle eigenfunctions) as the original
Hamiltonian and with identical occupied eigenenergies. The
original eigenenergies of virtual states are however uniformly
shifted upwards by a fixed constant value. Thus if we apply the
shift say by 5.0 eV, then the gap between the HOMO-LUMO
gap we obtain will be artificially enlarged exactly by 5.0 eV.
(So, it has to be corrected by subtracting from the obtained
HOMO-LUMO gap the fixed value of 5.0 eV).

When applying virtual level shifting we can obtain some
additional information. Namely, when the HOMO-LUMO
splitting (after correcting for the shift) is negative, then the
single-determinant HF ground state we obtained is not correct
(this assumes that a sufficient number of different HF starting
conditions was tried). One possibility is that the true ground
state is conducting, another is that a single-determinant HF
wave function breaks down due to very strong electronic
correlations and the multiconfiguration HF method is required.

IV. RESULTS AND DISCUSSION

A. Zero-temperature ground state in LaVO3

The symmetry of LaVO3 at zero temperature is mon-
oclinic [12,55] which should correspond to G-type orbital
order (which is induced, or to say it directly, is enforced by
cooperative crystal-field splittings of yz/zx doublets). The
bond lengths at zero temperature were difficult to find in
the literature—following Ref. [4] we took 2.04 Å/1.98 Å for
long/short V-O distances within the ab plane and 1.98 Å for
apical V-O bonds. With this choice we assumed the following
local crystal-field values: 1.8 eV as the distance between t2g

levels and eg levels and an ad hoc choice: ±0.10 eV as splitting
between yz/zx orbitals, also the xy orbital energy is lowered
(due to tetragonal distortion of V-O apical bonds) by 0.1 eV.

The experimentally found spin order is C-AF with average
magnetic moment |〈m〉| ∈ (0.6, 0.7) and easy magnetization
axis c [55,56]. The estimations of the band gaps are in between
1.1 and 1.8 eV [20,22,23,57]; the most popular value is
1.1 eV. Below in Table II we collected the obtained results
for hypothetical self-dopings x = 0, 0.5, 1.0 (we recall that
we do not know which one of these values is closest to the true
one). Some comments about the legend in Table II: the indices
m = 1 and 2 in 〈n1,xy,↑〉, . . ., etc., stand for two nonequivalent
vanadium ions, see Fig. 2. EHF is the HF energy per one
VO3 unit, G is the HOMO-LUMO gap, 〈m〉 is an average
magnetic moment per V ion (when expressed in μB , it should
be two times larger). In Table II the spin-order type with an
easy magnetization direction is indicated, and finally x is the
self-doping level which was fixed during computations.

Now we summarize the results obtained for different elec-
tronic filings of VO3 octahedra (self-doping). We start with

TABLE II. Spin and orbital order and the electron occupations on
vanadium ions for the zero temperature HF ground states of LaVO3

and YVO3. Subscripts x and z in C-AFx and C-AFz denote the axis
of easy-magnetization (compare Fig. 2).

x 0.0 0.5 1.0

LaVO3 (monoclinic)
orbital order G-AO G-AO none
spin order C-AFz C-AFz C-AFx

EHF (eV) 32.555 26.573 20.673
G (eV) 3.92 1.99 2.89
|〈m〉| 0.99 0.77 0.52

YVO3 (orthorhombic)
orbital order C-AO C-AO none
spin order G-AFz G-AFz C-AFx

EHF (eV) 32.734 26.802 20.935
G (eV) 3.99 2.02 2.86
|〈m〉| 0.99 0.77 0.52

electron occupations both for LaVO3 and YVO3

〈n1,xy,↑〉 1.00 0.86 0.54
〈n1,xy,↓〉 0.05 0.06 0.54
〈n1,yz,↑〉 1.00 0.60 0.12
〈n1,yz,↓〉 0.04 0.06 0.12
〈n1,zx,↑〉 0.09 0.23 0.12
〈n1,zx,↓〉 0.06 0.08 0.12
〈n1,x2−y2,↑〉 0.10 0.12 0.13
〈n1,x2−y2,↓〉 0.08 0.10 0.13
〈n1,3z2−r2,↑〉 0.13 0.16 0.18
〈n1,3z2−r2,↓〉 0.10 0.13 0.18

〈n2,xy,↑〉 0.05 0.06 0.54
〈n2,xy,↓〉 1.00 0.86 0.54
〈n2,yz,↑〉 0.06 0.08 0.12
〈n2,yz,↓〉 0.09 0.23 0.12
〈n2,zx,↑〉 0.04 0.06 0.12
〈n2,zx,↓〉 1.00 0.60 0.12
〈n2,x2−y2,↑〉 0.08 0.10 0.13
〈n2,x2−y2,↓〉 0.10 0.12 0.13
〈n2,3z2−r2,↑〉 0.10 0.13 0.18
〈n2,3z2−r2,↓〉 0.13 0.16 0.18

self-doping x = 0 which stands for an ideal ionic model. The
best HF ground state reproduces the experimental spin-orbital
order found in LaVO3, see the x = 0 column of Table II.
However, the next candidate for the HF ground state with
C-AF spin order is parallel with the x axis (see Fig. 2),
which corresponds to the (1,1,0) crystallographic direction and
is only by 0.3 meV energetically higher (not shown). Note
that when spin-orbit interaction is neglected the change is
here insignificant: instead of 0.3 meV we obtained a 0.2-meV
energy difference. (A general discussion of the role played
by spin-orbit interaction in the vanadium perovskites was
presented in Refs. [10,58,59]).

For spin order along the z axis site m = 1 corresponds
to magnetization m1 � 0.99 and, site m = 2 corresponds to
m2 � −0.99. We observe that when quantum fluctuations are
absent as in our calculation, the magnetization is somewhat
reduced due to minority-spin electron density in the occupied
t2g orbitals, whereas this reduction is almost fully compensated
by majority-spin electron density in the empty t2g and two
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eg orbitals. In this way we arrive at |〈m〉| � 0.99 which
results from electron delocalization by d-p hybridization. It
is remarkable that total electron density in eg orbitals is close
to 0.40 which definitely shows that eg orbitals contribute to the
electronic structure. What concerns the average occupation of
2p electrons: (i) On oxygens aligned along the x axis (see
Fig. 2) it is 5.80 with average moments either 0.0 or ±0.01
(changing not randomly but in a regular way); (ii) for oxygens
aligned along the y axis the corresponding numbers are 5.86
for the charge and 0.0 or ±0.01 for the moments; (iii) for
oxygens aligned along the z axis (this coincides with the
crystallographic c direction) the occupation is 5.80, and no
moments are found. The next HF stable state is by 1.3 meV
higher than the true ground state—it has G-AF spin order
parallel to the z axis. Note that this state violates Goodenough-
Kanamori rules [30].

The states with different spin orders are almost degenerate.
Most probably a more complicated geometry featuring sizable
octahedral axes tilting should account for bigger differences,
such as those reported in Ref. [1]. Summarizing, spin-orbital
order for x = 0 is ideally reproduced with respect to the present
paradigm of spin-orbital order in vanadates [7], but the average
spin and band gap we obtained do not agree too well with the
experimental values.

Consider now doping x = 0.5: The best HF ground state
we obtained here also reproduces correctly the experimental
spin-orbital order found in LaVO3, see the third column of
Table II. The next candidate for the ground state is the one
with C-AF spin order but this time aligned along the x axis (see
Fig. 2). Actually, it is by 2.0 meV higher; note that the spin-orbit
interaction is here more important and responsible for so large
an energy difference; when this interaction is absent one finds
instead the energy difference of 0.6 meV. The magnetization of
|〈m〉| � 0.77 corresponds better to the experiment—one finds
here definitely weaker magnetization contributions from two
occupied t2g orbitals but a larger magnetization in the third t2g

orbital. Altogether, electron density in t2g orbitals is lower than
that at x = 0, but at the same time the eg-electron density (but
not magnetization) is somewhat enhanced.

The oxygen electron occupations indicate charge delocal-
ization by d-p hybridization in the presence of spin-orbit cou-
pling: (i) For oxygens along the x-axis electron density is 5.73
whereas magnetic moments are ±0.01; (ii) for oxygens along
the y axis electron densities of 5.57 and 5.59 are accompanied
by ±0.01 moments (arranged with a suitable regularity, both
spins, and the tiny charge modulation); (iii) for oxygens along
the z axis (this coincides with the crystallographic c axis)
occupations are 5.81 with zero moments or 5.76 with ±0.02
moments—again both spins and tiny charge-density wave are
arranged with a suitable regularity. Note that the average spin
value of 0.77 and the HOMO-LUMO gap of 1.99 eV fit rather
well to the experimental results. Thus we suggest that for
LaVO3 the self-doping is x ≈ 0.5 and that the entries from
the third column in Table II are a rather faithful description of
the experimental situation.

At this point we would like to make a short digression and
explain in a more transparent way why a weak (x = 0.5) self-
doping effect is important in LaVO3. It is true that the spin and
orbital order for x = 0 and x = 0.5 are qualitatively identical.
However, the average magnetization (per V ion) is ∼1.0 for

the pure ionic model x = 0, and this is unrealistic. At the same
time for x = 0.5 the average computed magnetization value
drops to 0.77—this is more realistic and quite close to the
experimental value. We conclude that self-doping reduces the
order parameter by including the covalency effect.

There is also a second argument: The band gap we computed
for x = 0.5 is much closer to the experimental value than
the band gap we computed for x = 0. It is well known
that Hartree-Fock computations tend to overestimate band
gaps. And indeed, for x = 0.5 we obtained G ≈ 2.0 eV,
whereas the experimental values indicate 1.1 < G < 1.8 eV.
However our overestimation of the gap (probably by ≈30%)
is not that severe as in the case of x = 0 where we obtain
G ≈ 4.0 eV. These two facts clearly suggest that including
the weak self-doping effect is important for realistic modeling
of the vanadium perovskites.

For large self-doping x = 1.0 orbital order disappears.
Only xy orbitals are occupied by approximately one electron,
whereas all the densities in all other (t2g and eg) orbitals are
close to 0.25 with a somewhat enhanced density of 0.36 in
3z2 − r2 orbitals. Note that this large density follows from
the delocalization of 2p electrons from oxygen ions. The
ground state has solely spin C-AF order with the x easy
axis of magnetization. This state contradicts experimental
observations and excludes so high a self-doping level. No entry
in the last column of Table II provides direct evidence that
the spins align indeed along the x axis. To supplement this
information we must make another digression. Thus we note
that at the mth vanadium ion 〈d†

m,μ,↑dm,μ,↑〉 = 〈d†
m,μ,↓dm,μ,↓〉,

i.e., the average zth spin component vanishes. Then we inspect
the real parts of a subclass of complex order parameters
(which we get on convergence from the HF output), namely,
〈d†

m,μ,↑dm,μ,↓〉. When the summation over μ is performed, i.e.,

if we calculate Re{∑μ〈d†
m,μ,↑dm,μ,↓〉}, we obtain the value

0.52 which is just the average spin component along the x

direction. The imaginary part of the same sum (here it is
zero) corresponds to the average spin component along the
y-direction. This ends our digression.

B. Zero-temperature ground state in YVO3

The symmetry of YVO3 at zero temperature is orthorhom-
bic [7,12]. This corresponds to C-AO order accompanied by
G-AFz spin order. The bond lengths and average magnetization
values were reported in Refs. [2,5,7,12,14]; the band gaps are
1.2–1.6 eV [23,57].

Our HF results on occupation numbers are virtually the
same (two digits accuracy), such as those for LaVO3 (shown in
Table II). As about spin order just like it was shown in detail for
LaVO3 the z and x easy spin directions are degenerate within
1-meV accuracy (at least for our simplified geometries shown
in Figs. 2 and 3). The T = 0 ground state for YVO3 has C-AO
order coexisting with G-AFc spin order and is best reproduced
by HF results for self-doping x ≈ 0.5. For x = 1.0 we find that
the orbital order vanishes.

C. Zero-temperature ground state in BaVO3

To test how accurately the d-p model works in the vanadium
perovskites we decided to test one more completely different
case: perovskite quasicubic BaVO3 (with V-O bonds equal to
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approximately 2.0 Å), which is known to be a conductor [60]
down to T = 0. This time we cannot use crystal-field splittings
as the substance is indeed very close to cubic, all octahedra are
undistorted, and therefore t2g levels remain unsplit. The other
significant difference (with respect to LaVO3) is that the Ba
cation donates not three but two electrons into one VO3 unit.

With this input we run our computations only to find
that for any doping (including the ideal-ionic picture with
zero self-doping) and for any starting conditions the obtained
HOMO-LUMO gaps (after correcting for virtual level shift)
are negative. This is a clear indication that BaVO3 is a con-
ductor in nice agreement with the experimental findings. The
same conclusion would be also reached for CaVO3—although
CaVO3 is not quasicubic, and local crystal fields do split t2g

levels. Here the decisive factor is probably not symmetry but
the number of electrons transferred from a Ca cation to a VO3

unit which is at most 2 (ideal ionic model) or (very likely)
much smaller, say within the (1.0,1.5) interval.

D. Remarks on the high-temperature (T > 77-K)
ground state of YVO3

First we should clearly state that for T > 0 K the HF
computations of the ground state should not apply directly as
we do not know the value of entropy and do not determine the
minimum of the thermodynamic potential. However just out
of curiosity we did them anyway.

The bond lengths and average magnetization values were re-
ported in Refs. [2,5,7,12,14]; band gaps are 1.2–1.6 eV [23,57].
The symmetry of YVO3 for T > 77 K is monoclinic [7,12].
Our HF occupation numbers we obtained are very close to
those shown in Table II. The symmetry of the obtained ground
state is G-AO order with C-AFz spin order in accordance with
the experiment.

The only disagreement with the experiment is that exper-
imentally [14] the easy axis of magnetization is neither in
the c direction nor it is strictly located on the ab plane; one
finds spin components of both types. Such a possibility was
not investigated during our computations. However, to be on
the defensive side, let us recall once more that (like it was
shown in detail for LaVO3) the z and x easy spin directions are
degenerate within 1.0-meV accuracy (at least for our simplified
geometries presented in Figs. 2 and 3).

V. SUMMARY AND CONCLUSIONS

In some examples we have shown that the d-p model is
capable of reproducing spin-orbital order in the vanadium
perovskites. The three basic fundamentals leading to nonzero

orbital order are as follows: (i) The electronic configuration
of V ions which is close to V 3+; (ii) nonzero local crystal
fields (originating from collective JT deformations) which
split yz/zx orbitals; (iii) zero or small self-doping due to
cations (i.e., electron donors to the VO3 lattice). With these
ingredients orbital order is generic—it comes out correctly for
any reasonable Hamiltonian parameter set.

However the question what kind of magnetic order ac-
companies orbital order is more subtle. In particular different
spin easy-axis orientations are difficult to find as the states
stable in HF (candidates for being the true ground state) are
almost energetically degenerate. In addition to this problem
the stability and the type of dominating magnetic order de-
pend strongly on tiny effects occurring on oxygens: small
(±0.01) spin modulations and small charge modulations, i.e.,
±(0.01 − 0.03). If one imposes the same additional assump-
tions (for example, the assumption that oxygens on ab planes
are nonmagnetic—which may seem to be obvious but which
is incorrect) with the hope that HF convergence will improve
then the order in which the types of magnetic order appear may
even come out completely wrong.

The above problem (i.e., how to include tiny magnetization
modulations on oxygens) is nonexistent for ab initio LDA or
LDA with local Coulomb interactionU (LDA+U ) approaches
but at a cost of a manyfold increase in computational time and
effort. On the other hand, the d-p model is not ab initio, and
HF computations performed on the d-p model cannot reach
the level of physical reliability, such as the LDA + U does, but
still, for extremely cheap and quick preliminary computations
in new perovskite materials with orbital and spin degrees of
freedom, they are indeed of invaluable help.

Summarizing, the multiband model considered here repro-
duces the experimentally observed coexisting G-AO and C-AF
spin orders in the vanadium perovskites. We emphasize that
the minimal multiband model for the vanadium perovskites
has to include all five 3d orbitals on vanadium ions. Electron
densities in eg orbitals are typically even larger than that in
the nominally empty third t2g orbital. This redistribution of
electron charge follows from rather strong d-p hybridization
with two eg orbitals which contribute to the total electronic
charge and magnetization of vanadium ions. Our calculations
suggest finite but rather low self-doping of x = 0.5 in the
vanadium perovskites.

ACKNOWLEDGMENT

We kindly acknowledge support by Narodowe Centrum
Nauki (NCN, National Science Centre, Poland) under Project
No. 2016/23/B/ST3/00839.

[1] T. Mizokawa, D. I. Khomskii, and G. A. Sawatzky, Phys. Rev.
B. 60, 7309 (1999).

[2] H. Kawano, H. Yoshizawa, and Y. Ueda, J. Phys. Soc. Jpn. 63,
2857 (1994).

[3] H. C. Nguyen and J. B. Goodenough, Phys. Rev. B 52, 324
(1995).

[4] H. Sawada, N. Hamada, K. Terakura, and T. Asada, Phys. Rev.
B 53, 12742 (1996).

[5] H. Nakotte, L. Laughlin, H. Kawanaka, D. N. Argyriou,
R. I. Shedon, and Y. Nishihara, J. Appl. Phys. 85, 4850
(1999).

[6] Y. Ren, T. T. M. Palstra, D. I. Khomskii, A. A. Nugroho,
A. A. Menovsky, and G. A. Sawatzky, Phys. Rev. B 62, 6577
(2000).

[7] G. R. Blake, T. T. M. Palstra, Y. Ren, A. A. Nugroho, and
A. A. Menovsky, Phys. Rev. Lett. 87, 245501 (2001).

085119-8

https://doi.org/10.1103/PhysRevB.60.7309
https://doi.org/10.1103/PhysRevB.60.7309
https://doi.org/10.1103/PhysRevB.60.7309
https://doi.org/10.1103/PhysRevB.60.7309
https://doi.org/10.1143/JPSJ.63.2857
https://doi.org/10.1143/JPSJ.63.2857
https://doi.org/10.1143/JPSJ.63.2857
https://doi.org/10.1143/JPSJ.63.2857
https://doi.org/10.1103/PhysRevB.52.324
https://doi.org/10.1103/PhysRevB.52.324
https://doi.org/10.1103/PhysRevB.52.324
https://doi.org/10.1103/PhysRevB.52.324
https://doi.org/10.1103/PhysRevB.53.12742
https://doi.org/10.1103/PhysRevB.53.12742
https://doi.org/10.1103/PhysRevB.53.12742
https://doi.org/10.1103/PhysRevB.53.12742
https://doi.org/10.1063/1.370042
https://doi.org/10.1063/1.370042
https://doi.org/10.1063/1.370042
https://doi.org/10.1063/1.370042
https://doi.org/10.1103/PhysRevB.62.6577
https://doi.org/10.1103/PhysRevB.62.6577
https://doi.org/10.1103/PhysRevB.62.6577
https://doi.org/10.1103/PhysRevB.62.6577
https://doi.org/10.1103/PhysRevLett.87.245501
https://doi.org/10.1103/PhysRevLett.87.245501
https://doi.org/10.1103/PhysRevLett.87.245501
https://doi.org/10.1103/PhysRevLett.87.245501


d-p MODEL AND SPIN-ORBITAL ORDER IN … PHYSICAL REVIEW B 98, 085119 (2018)

[8] R. T. A. Khan, J. Bashir, N. Iqbal, and M. Nasir Khan,
Mater. Lett. 58, 1737 (2004).

[9] G. Khaliullin, P. Horsch, and A. M. Oleś, Phys. Rev. Lett. 86,
3879 (2001); Phys. Rev. B 70, 195103 (2004).

[10] P. Horsch, G. Khaliullin, and A. M. Oleś, Phys. Rev. Lett. 91,
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(2013).
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Acta Phys. Pol., A 133, 356 (2018).

[34] C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[35] J.-Q. Yan, J.-S. Zhou, J. G. Cheng, J. B. Goodenough, Y. Ren,

A. Llobet, and R. J. McQueeney, Phys. Rev. B 84, 214405 (2011).

[36] T. Mizokawa and A. Fujimori, Phys. Rev. B 54, 5368 (1996).
[37] L. V. Poluyanov and W. Domcke, J. Chem. Phys. 137, 114101

(2012).
[38] H. Matsuura and K. Miyake, J. Phys. Soc. Jpn. 82, 073703

(2013).
[39] L. Du, L. Huang, and X. Dai, Eur. Phys. J. B 86, 94 (2013).
[40] D. Dai, H. Xiang, and M.-H. Whangbo, J. Comput. Chem. 29,

2187 (2008).
[41] J. Reul, A. A. Nugroho, T. T. M. Palstra, and M. Grüninger,

Phys. Rev. B 86, 125128 (2012).
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