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In this paper, we study examples of systematic biases that can occur in quantum Monte Carlo methods due to
the accumulation of nonlinear expectation values, and approaches by which these errors can be corrected. We
begin with a study of the Krylov-projected full configuration interaction quantum Monte Carlo (KP-FCIQMC)
approach, which was recently introduced to allow efficient, stochastic calculation of dynamical properties. This
requires the solution of a sampled effective Hamiltonian, resulting in a nonlinear operation on these stochastic
variables. We investigate the probability distribution of this eigenvalue problem to study both stochastic errors
and systematic biases in the approach, and demonstrate that such errors can be significantly corrected by moving
to a more appropriate basis. This is lastly expanded to include consideration of the correlation function quantum
Monte Carlo (QMC) approach of Ceperley and Bernu, showing how such an approach can be taken in the full
configuration interaction QMC (FCIQMC) framework.
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I. INTRODUCTION

The introduction of the full configuration interaction quan-
tum Monte Carlo (FCIQMC) method [1–4] has subsequently
seen a large number of new quantum Monte Carlo (QMC)
methods introduced by various groups, making use of an
FCIQMC-like spawning procedure. Such approaches include,
coupled cluster Monte Carlo (CCMC) [5–7], density matrix
quantum Monte Carlo [8,9], model space quantum Monte
Carlo (MSQMC) [10–12], and recently driven-dissipative
quantum Monte Carlo (DDQMC) methods [13], to name only
a few.

In some cases, these QMC methods are stochastic adap-
tations of previously existing deterministic algorithms. Such
stochastic adaptations can offer several advantages, perhaps
most importantly that stochastic sampling often allows for
reduced storage requirements compared to deterministic equiv-
alents, allowing accurate study of extremely large systems in
many cases. However, some significant care is required in
reformulating a deterministic algorithm as a stochastic one.
Many deterministic methods make use of complicated nonlin-
ear operations, often including poorly conditioned problems.
In such cases, it would be potentially careless to assume that a
given deterministic method can be converted to a Monte Carlo
method in a straightforward manner.

Specifically, when estimating a desired quantity, f (x) (for
some other underlying quantity x), QMC methods require a
large amount of averaging to reduce stochastic errors. For a
linear function, f (x) can be estimated by averaging f (q̂ ),
where q̂ is a random variable being sampled by the QMC
method (with E[q̂] = x). However, for a nonlinear function,
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it is well known that E[f (q̂ )] �= f (E[q̂]), and so averaging
must be performed before the function is evaluated, rather than
after. In general, this will negate the benefits of the sparse
Monte Carlo sampling by requiring storage of large parts of
the phase space. In FCIQMC, for example, the variable q̂ is
typically the sampled wave function from a single iteration,
and so estimating E[q̂] requires averaging the entire wave
function, eventually requiring as much memory as a fully de-
terministic approach. One must average until f (E[q̂]) ≈ f (x)
with sufficient accuracy. For some cases, this is simple and the
QMC approach is successful. For others, it is challenging, or
infeasible entirely. A particular issue occurs when the function
is ill-conditioned, meaning that any small error in the stochastic
estimate will lead to a substantial error in the final result. In
such cases, averaging before the function is applied may not
even be practical.

Observables in quantum mechanics can always be written
as (at most) quadratic expectation values of the wave function.
Given the central importance of these pure expectation values,
projector Monte Carlo methods have long sought to compute
these quadratic expectation values in an unbiased fashion, and
techniques such as forward walking and reptation quantum
Monte Carlo have emerged with the aim of removing this non-
linear bias [14–21]. An important example is the calculation
of a reduced density matrix (RDM), such as the two-particle
RDM �pq,rs ,

�pq,rs = 〈�|a†
pa†

qasar |�〉, (1)

which is quadratic in the wave function |�〉. Within the
FCIQMC approach, early attempts to sample the two-particle
RDM in FCIQMC were hampered by the above bias, only
slightly improved by partially averaging the wave function
prior to evaluating �pq,rs [22]. This was later corrected by
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the use of the so-called replica trick [23–25], such that the two
wave functions in the estimate of �pq,rs are made statistically
independent and the expectation value rewritten as a bilinear
functional, formally removing any bias.

While observables are at most quadratic functionals, there
often exists the need to compute beyond-quadratic expectation
values of stochastically derived quantities in QMC techniques,
such as the computation of entanglement measures, or the
sampling and subsequent diagonalization of effective Hamil-
tonians. This solution to a stochastically sampled eigenvalue
problem is a highly nonlinear operation, and so there is
potential for nonlinear biases, and care must be taken. It is
these “beyond-quadratic” operations, which are the focus of
this work, where the above approaches for pure expectation
values are not appropriate.

Direct solution of stochastically derived eigenvalue prob-
lems is not uncommon in QMC methods. Perhaps most
notably, the linear method [26–29], regularly used to optimize
wave function parameters in variational Monte Carlo [30–33]
(both in continuum and discrete spaces), requires solution
of a Hamiltonian eigenvalue problem in a space spanned
by the wave function and its first parameter derivatives. In
other examples of nonlinear operations, FCIQMC has been
recently used to perform complete-active space self-consistent
field (CASSCF) calculations [34,35], requiring nonlinear op-
timization of orbital coefficients, with no resulting difficulties
encountered thus far. The MSQMC method of Ten-no [10–12]
obtains excited states by solving a stochastically sampled
eigenvalue problem, once again with no difficulties reported
and highly accurate results. Furthermore, QMC techniques
have been used to obtain low-energy effective Hamiltonians
for correlated materials [36].

Perhaps the most challenging quantities to sample in QMC
(yet among the most highly sought after) are dynamical proper-
ties, specifically many-body Green’s functions [37]. FCIQMC,
diffusion Monte Carlo (DMC) [31], and other projector QMC
methods perform imaginary-time evolution, allowing access
to imaginary-time Green’s functions as quadratic expectation
values which can be sampled with the techniques above. How-
ever, the transformation from imaginary to real time (or the
frequency domain) is highly nonlinear and ill-conditioned [38],
and so challenging to perform in the presence of noise. This
transformation is typically performed by maximum-entropy
methods [39–43], which, despite sometimes being accurate,
are unsatisfactory in general.

As a further example, we recently introduced a QMC
approach to estimate many-body Green’s functions (and finite-
temperature and excited-state properties in general), denoted
Krylov-projected FCIQMC (KP-FCIQMC) [44]. This method
can be loosely characterized as a stochastic version of the
Lanczos method, and therefore allows access to dynamical
and finite-temperature properties in analogy with dynamical
and finite-temperature Lanczos. Although Lanczos-type algo-
rithms have been performed with QMC previously [45], we are
unaware of their use to this extent, specifically in the calcula-
tion of spectral or finite-temperature properties. KP-FCIQMC
was applied to study one and two-particle Green’s functions
in a one-dimensional Hubbard model, showing that essentially
exact Lanczos results can be reproduced, particularly in low-
frequency regions. However, subtle features (particularly at

high frequencies) were difficult to reproduce. Clearly, there
is an issue with certain eigenvalue problems depending on
their nature, with poor conditioning being an obvious potential
problem. Given the significant utility of being able to solve such
problems, it is worth investigating and discussing such issues,
with the KP-FCIQMC approach constituting the exemplar
approach for these investigations.

In Sec. II, we reintroduce the KP-FCIQMC method.
The theory of many-body Green’s functions is introduced
in Sec. III, including a description of their calculation
by KP-FCIQMC. In Sec. IV, we apply this approach to
one-dimensional Hubbard models in both the weak and
intermediate-coupling regimes, including an investigation of
the probability distributions of the solutions. Section V
presents a theoretical model to explain these errors, and so
demonstrates a solution using trial wave functions. Section VI
extends this idea to the correlation function QMC approach of
Ceperley and Bernu [46], which can partly resolve such biases,
although systematic errors grow eventually. In Sec. VII, we
discuss how excited-state FCIQMC uses orthogonalization to
overcome issues of previous sections, and discuss similarities
between KP-FCIQMC and dynamical DMRG in the errors
observed.

II. KRYLOV-PROJECTED FCIQMC

A. Defining the Krylov subspace

The Krylov-projected FCIQMC (KP-FCIQMC) method is
essentially a stochastic adaptation of the Lanczos method (and
other Krylov subspace methods in general). In the Lanczos
method, one builds the Hamiltonian eigenvalue problem in the
subspace spanned by

K = {|ψ0〉, Ĥ |ψ0〉, Ĥ 2|ψ0〉, . . . , ĤNK−1|ψ0〉}, (2)

where |ψ0〉 is some initial state (that can be varied depending
on the quantity desired) and Ĥ is the Hamiltonian operator. The
states spanning K are “Lanczos vectors,” or for a more general
subspace, “Krylov vectors.” We use the latter terminology,
and refer to the span of K as the Krylov subspace. Typically,
one constructs the Hamiltonian eigenvalue problem in this
subspace (which, for this particular subspace, can be put in
an efficient tridiagonal form). In deterministic approaches, the
Krylov vectors are orthonormalized (implicit in the tridiagonal
form), though this does not alter their span, but improves the
efficiency and numerical stability of the algorithm.

In the FCIQMC method, we sample the vectors (1 −
�τĤ )n|ψ0〉, where n labels the iteration. Thus the Krylov
subspace we work with in KP-FCIQMC is

K = {|ψ0〉, (1 − �τĤ )n1 |ψ0〉, (1 − �τĤ )n2 |ψ0〉,
× . . . , (1 − �τĤ )n(NK −1) |ψ0〉}, (3)

where nl labels the FCIQMC iteration at which the l’th Krylov-
vector is sampled. If both �τ and nl+1 − nl are small, then
the vectors will be similar, potentially leading to near-linear
dependencies and poor conditioning. In practice, we therefore
chose nl such that Krylov vectors are chosen more frequently
at first (as the wave function varies rapidly, and high-energy
states are sampled), and less frequently as the ground state
is approached. For notational convenience, we label the l’th
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Krylov vector |ψl〉 ≡ (1 − �τĤ )nl |ψ0〉, with |ψ0〉 the initial
vector and |ψNK−1〉 the final vector, with NK Krylov vectors
in total.

B. Estimating the subspace Hamiltonian and overlap matrices

After deciding at which iterations of the FCIQMC algorithm
Krylov vectors are to be sampled, the task is to perform those
iterations and sample the Hamiltonian and overlap matrices
between these vectors. It should be remembered that the
“vectors” in this approach are in practice given by sparse,
stochastic walker distributions over instantaneously occupied
determinants. The overlap matrix is simple, as we store all
Krylov vectors next to each other in an array (containing only
determinants sampled in at least one Krylov vector, reduc-
ing memory requirements significantly). Thus, calculating all
overlap elements requires a dot product between each pair of
vectors in this array (naturally parallelized as the array storage
is already distributed). Thus the overlap matrix is calculated
exactly for each pair of vectors. However, each Krylov vector is
stochastically sampled, so noise appears in the overlap matrix
regardless.

Estimation of the Krylov-projected Hamiltonian is more
challenging, but can be formally sampled using the same
spawning dynamics as in standard FCIQMC. To calculate
HK

ij ≡ 〈ψi |Ĥ |ψj 〉 (where HK indicates the Hamiltonian pro-
jected into the Krylov subspace), one cycles through each de-
terminant in |ψi〉 and performs FCIQMC spawning to sample
determinants in |ψj 〉. For some small systems, it is possible
to calculate HK exactly (although we again emphasize that
Krylov vectors are stochastically sampled, so that stochastic
errors remain).

As discussed in the introduction, the calculation of a quan-
tity like 〈ψi |Ĥ |ψj 〉 is biased if 〈ψi | and |ψj 〉 are sampled from
the same QMC simulation, because E[q̂i q̂j ] �= E[q̂i]E[q̂j ], for
random variables q̂i and q̂j , unless they are uncorrelated. This
is resolved by using replica sampling, where two FCIQMC
simulations are performed simultaneously and independently
of each other, removing correlation and therefore bias. We
therefore perform two FCIQMC simulations independently,
with the first used to sample the “bra” Krylov vectors, 〈ψi |,
and the second used to sample “ket” Krylov vectors, |ψj 〉, as
used in estimation of both 〈ψi |ψj 〉 and 〈ψi |Ĥ |ψj 〉 elements.

Thus, using replica sampling, estimates of HK and SK ,
are essentially unbiased. Perhaps the only cause of “bias”
(where “bias” here refers to a systematic discrepancy from
an otherwise-identical deterministic calculation) is the use of
a shift for population control, which typically leads to a neg-
ligible error. When studying probability distribution functions
later, we keep the shift constant throughout, to remove any
theoretical discrepancy in the estimates of HK and SK .

C. Comparison to the Lanczos method

We briefly compare the above approach with the traditional
Lanczos method. Firstly, we note that the subspace spanned is
only formally the same as that in the Lanczos method, Eq. (2),
when a Krylov vector is sampled at every FCIQMC iteration
(nl = l). However, this is not necessary. The only requirement
is that the space sampled is sufficient to span the “important”

features of the desired quantity. For example, in calculating
spectral properties, it is important that the Krylov vectors
contain significant contributions from eigenstates with large
amplitudes in the spectrum.

More significantly, one may wonder why the Krylov vectors
used are not orthogonalized. In the Lanczos algorithm, the
subspace Hamiltonian takes exactly a tridiagonal form, which
means that only three Lanczos vectors need storing, and also
improves numerical stability. For KP-FCIQMC, the situation is
somewhat different. Firstly, performing this orthogonalization
procedure could introduce a bias into the calculation of HK

and SK , compared to a deterministic equivalent, because the
orthogonalization operation is nonlinear. We have recently
introduced the excited-state FCIQMC method, where orthog-
onalization is used and this potential bias is not observed.
Nonetheless, the situation here is rather different, as subsequent
FCIQMC vectors are nearly identical, whereas in excited-
state FCIQMC the orthogonalized vectors are approximately
orthogonal beforehand, resulting in only a small change from
orthogonalization. Secondly, this leads into a practical issue,
as orthogonalizing a vector with respect to all previous Krylov
vectors mostly reduces it to zero, which in a QMC algorithm
means killing almost all walkers. In traditional Lanczos, one
does not ever need to actually perform the orthogonalization,
but in a stochastic setting with approximate vectors, this is
not the case, and HK would never be exactly tridiagonal
regardless.

D. Solution of the subspace eigenvalue problem

The subsequent subspace eigenvalue problem can be solved
by usual methods. This problem can be written as

HKψK = εSKψK. (4)

This is solved with a standard canonical Löwdin orthogonal-
ization procedure, transforming to an orthonormal basis with

ψK = U D−1/2ψL, (5)

where U is the matrix with eigenvectors of SK in its columns,
and D is the matrix with corresponding overlap-matrix eigen-
values on the diagonal. We call this new basis the Löwdin
basis, using superscript label L. The Hamiltonian eigenvalue
problem is then

HLψL = εψL, (6)

with

HL = D−1/2UT HKU D−1/2. (7)

As discussed above, because many of the Krylov vectors will
be nearly linearly dependent, many overlap matrix eigenvalues
will be very small, for the exact deterministic problem. In
the stochastic problem, the overlap matrix will not take the
form of a true overlap matrix, and so will even have negative
eigenvalues. We therefore throw away eigenvectors of SK

with negative or very small eigenvalues. Typically, we keep
10–15 eigenvectors. These remaining eigenvectors form the
final Löwdin subspace, with dimension denoted NL, such that
NL < NK . Restricting NL to only 10–15 means that we only
obtain the same number of final eigenvector solutions, which
is an approximation to the true spectrum (as it is also for the
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dynamical Lanczos approach), but is nonetheless useful for
many situations, for reasons clarified in the next section.

III. MANY-BODY GREEN’S FUNCTIONS
FROM KP-FCIQMC

Green’s functions are key observables in many-body con-
densed matter physics and chemistry, which are directly acces-
sible experimentally, and often allow detailed examination and
understanding of important many-body phenomena. As such,
their accurate and routine calculation represents a high-priority
goal. Unfortunately, they are typically difficult to calculate
accurately, particularly through QMC methods.

KP-FCIQMC, like dynamical Lanczos, can access two-
body Green’s functions, but here we focus on the often-studied
single-particle (retarded, ground-state) Green’s function, de-
fined by

G(k, ω) = 〈�0|akσ

1

ω + μ − (Ĥ − E0) + iδ
a
†
kσ |�0〉

+ 〈�0|a†
kσ

1

ω + μ + (Ĥ − E0) + iδ
akσ |�0〉,

(8)

where ω is the frequency, μ is the chemical potential, a
†
kσ

is a creation operator for a particle with momentum k and
spin label σ , and E0 and |�0〉 are the ground-state energy
and eigenvector (in the N -particle sector), respectively. δ is
a broadening added to give finite width to poles, but is also
related to the rate at which the created quasiparticles decay in
an experiment measuring G(k, ω), so is physically justified.
In the noninteracting limit, this reduces to the often-quoted
expression

G(k, ω) = 1

ω + μ − ξk + iδ
(9)

for single-particle eigenvalues ξk . This is the starting point for
expanding the interacting Green’s function in terms of a self
energy, as performed in methods such as dynamical mean-field
theory (DMFT) [47–49], but we take a more direct approach
here.

The quantity of interest studied here is the spectral function,
A(k, ω), proportional to the imaginary part of the Green’s
function, typically with −1/π as the proportionality factor to
ensure normalization,

A(ω) = − 1

π
�[G(ω)]. (10)

Inserting a resolution of the identity in the appropriate (N + 1)
or (N − 1)-particle sector gives

A(k, ω) =
∑

i

δ

π

∣∣〈�N+1
i

∣∣ a
†
kσ |�0〉

∣∣2[
ω + μ − (

EN+1
i − E0

) ]2 + δ2

+
∑

i

δ

π

∣∣〈�N−1
i

∣∣ akσ |�0〉
∣∣2[

ω + μ + (
EN−1

i − E0
) ]2 + δ2

, (11)

where N + 1 and N − 1 superscripts denote states in the
corresponding sectors in the obvious way. In the limit δ →
0+, this becomes a sum of delta functions at the energy

eigenvalues, with weights given by the transition probabilities
|〈�N+1

i | a
†
kσ |�0〉|2 and |〈�N−1

i | akσ |�0〉|2. In the noninter-
acting limit, this reduces to

A(k, ω) = δ(ω + μ − ξk ), (12)

and so A(k, ω) maps out the single-particle band structure. We
also consider the local single-particle density of states (DOS),
defined as

A(ω) = 1

N

∑
k

A(k, ω), (13)

corresponding to a Fourier transform to the real space spectral
function at the origin.

We now consider how these quantities can be calculated
in KP-FCIQMC. The Lehmann representation expresses the
spectral function as a sum over eigenstates, Eq. (11). The
dynamical Lanczos and KP-FCIQMC methods give access
to a number of eigenstates equal to the size of the subspace
studied, NL in the case of KP-FCIQMC. This will typically
be small compared to the full Hilbert space dimension, and so
this may appear unhelpful. However, the subspace is chosen
such that the important eigenstates will appear as solutions.
The important eigenstates are those with large probability am-
plitudes, |〈�N+1

i | a
†
kσ |�0〉|2 and |〈�N−1

i | akσ |�0〉|2, as these
give the largest contributions to Eq. (11). Thus the key is that the
Krylov subspace is chosen using a

†
kσ |�0〉 as the initial vector

to obtain states in the (N + 1)-particle sector, and akσ |�0〉 as
the initial Krylov state for the (N − 1)-particle sector. Thus
those eigenstates with large contributions in Eq. (11) will have
relatively large components in the Krylov subspaces, and may
be extracted accurately.

The KP-FCIQMC calculation is started from a perturbed
ground state. As such, an FCIQMC calculation is first per-
formed to obtain a stochastic sampling of the ground state.
The perturbation is applied from there, and this whole process
may be repeated to allow averaging of the (unbiased) HK

and SK , before the (biased) eigenvalue estimate is obtained.
This averaging should reduce the systematic error in the
final eigenvalue estimates and probability amplitudes, thus
improving the quality of spectra. This key aspect will be studied
in the following sections.

IV. KP-FCIQMC RESULTS

A. One-body Green’s functions from KP-FCIQMC

We study the one-dimensional, periodic 14-site Hubbard
model at half-filling. In our original KP-FCIQMC study, we
took U/t = 2, but here we take U/t = 1 and U/t = 4 to study
both the nearly free and intermediate-coupling regimes.

Results for U/t = 1 are presented in Fig. 1. This case is
fairly trivial: in this low-coupling regime, the band structure is
close to the noninteracting band structure, where only one or
two eigenstates contribute from each K sector. The stochas-
tically sampled results here accurately reproduce results from
dynamical Lanczos. The number of walkers used was 105. The
initiator adaptation was used, although the initiator error is
negligible. The semistochastic adaptation was also used with a
deterministic space of dimension |D| = 5 × 104, chosen using
the population-based scheme of Ref. ([50]). We set δ = 0.05t .
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(a)
Dynamical Lanczos
KP-FCIQMC
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0.0
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0.8
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ω/t

A
(k

,ω
)

A
(ω

)

FIG. 1. (a) A(k, ω) from k = − 6
7 π (bottom) to k = π (top) for

the 1D, periodic 14-site Hubbard model at U/t = 1, compared to
dynamical Lanczos. (b) The local density of states. In this low-
coupling regime, the situation is simple and easy to calculate by
KP-FCIQMC, with only a small number of low-energy states making
significant contributions.

There are only one or two states of significance to sample in
each K sector, which are well-sampled in the Krylov vectors,
and effectively no bias is noticeable.

In Fig. 2, the same system is studied but with U/t = 4.
Here, the situation is more challenging, with a larger number of
eigenstates making a significant contribution, and low-energy
states generally making a smaller contribution. We use the
same parameters as for the U/t = 1 case, but study walker

populations Nw of both 105 and 106. At Nw = 105, there are
clear errors in the whole spectrum. This could be due to a
number of factors, but we believe that the initiator error is
the biggest issue, as the initiator error is significant even in
ground-state FCIQMC calculations. This is largely resolved at
Nw = 106, where KP-FCIQMC results are in good agreement
with dynamical Lanczos.

This shows that the stochastic Krylov-space approach
presented here can be successful and accurate, even in the
intermediate coupling regime. Because of the sparse sampling
(and therefore relatively low memory requirements), this
approach is possible for systems beyond those treatable by
dynamical Lanczos [although in this particular example, the
density matrix renormalization group (DMRG) method would
be a more efficient approach due to its one-dimensional nature].
Results are particularly accurate at low |ω|, allowing crucial
properties around the band gap to be studied.

Nonetheless, it is informative to study the convergence of
this approach to the exact results. At Nw = 106, results are in
good agreement with dynamical Lanczos, but error remains,
particularly at high |ω|. We have performed multiple repeated
calculations on this system and found that results at high
frequency are largely unchanged, suggesting a systematic bias
rather than statistical error. In the limit of exact sampling,
both HK and SK will be obtained exactly, and so will their
eigenvalues, but it is informative to study how this convergence
comes about.

B. Probability distributions from stochastically sampled
eigenvalue problems

To study this problem in the most detail, we investigate
the probability distribution functions (PDFs) of the underlying
eigenvalue estimates, and also PDFs for transition amplitudes,
〈ψi |a†

k|�0〉. Probability distributions of QMC estimates are

(a)Dynamical Lanczos
KP-FCIQMC

−4 −3 −2 −1 0 1 2 3 4
0.0
0.2
0.4
0.6
0.8 (b)Nw = 105

(c)

−4 −3 −2 −1 0 1 2 3 4

(d)Nw = 106

ω/t ω/t

A
1
(k

,ω
)

A
1
(ω

)

FIG. 2. Results for the 1D, periodic 14-site U/t = 4 Hubbard model, using walker populations, Nw, of both 105 [(a) and (b)] and 106

[(c) and (d)]. At Nw = 105, noticeable error exists, which is significantly corrected at Nw = 106. We believe that this error is largely due to
initiator error, which is significant in the Hubbard model at U/t = 4, although other systematic biases exist. Even at Nw = 106, errors are more
noticeable in the high-frequency regime, which we find to be systematic.
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FIG. 3. Probability distributions for eigenvalues and transition amplitudes from KP-FCIQMC. Dashed lines show exact values. We take
a trivial system, the 1D periodic six-site Hubbard model at half-filling and U/t = 4, in the K = 2π/3 sector. This allows investigation of
probability distributions for solutions of stochastically sampled eigenvalue problems. We aim to study only the three dominant eigenvalues in
the spectrum. Results on the left are for the ground state, and on the right for the two excited states. The stated number of repeats is the number
of repeats over which HK and SK are averaged before the eigenvalue problem is solved. Since the Hamiltonian and overlap matrices themselves
are unbiased, this should reduce biases in eigenvalue solutions. This is indeed found to be the case, with reasonable distributions once averaging
over 1000 repeats is performed. However, for less averaging, significant biases occur for the excited-state estimates (right), in both eigenvalue
and transition amplitudes.

rarely considered; it is usually assumed that such distributions
are Gaussian due to the central limit theorem, but this is not
clear for solutions of poorly conditioned problems. However,
to construct such a distribution requires performing a large
number of repeated calculations (here we perform ∼104). We
therefore consider a much smaller system: the 1D, periodic
six-site Hubbard model at U/t = 4. This somewhat mimics
the above case, but now in a system where only a small Nw is
required. We also only consider the K = 2π/3 sector, again
mimicking a sector with poor results in the above 14-site case.
We use Nw ∼ 100 and a deterministic space of the Hartree-
Fock determinant and all single and double excitations.

For this system, there are only three eigenstates with signif-
icant contributions to the single-particle spectrum. Therefore,
to make the probability distributions clear to view and interpret,
we take NL = 3, i.e., we project the eigenvalue problem into
a space of dimension 3, such that a stochastically sampled

3 × 3 eigenvalue problem is obtained. We compare the eigen-
value estimates to those from a completely deterministic KP-
FCIQMC calculation, but with the same projection into a 3 × 3
problem performed, so that exactly the same eigenvalues will
be obtained in the limit of infinite averaging in the stochastic
case.

We perform ∼104 repeated KP-FCIQMC calculations, each
with a different random number generator (RNG) seed. Within
each of these 104 repeats, we average HK and SK over either
1, 10, 100, or 1000 repeats, before the eigenvalue problem
is solved. As more averaging of the unbiased HK and SK

is performed, any bias in the eigenvalue estimates should be
reduced. The shift is kept constant to avoid any theoretical
population-control discrepancies.

The constructed PDFs are presented in Fig. 3. Results on
the left are for the ground-state solutions, while those on the
right are for the two excited states. Results at the top show
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PDFs for the energy eigenvalues themselves, while those at
the bottom are PDFs for the transition amplitudes, 〈ψi |a†

k|�0〉.
PDFs for the ground state are sensible for all levels of averaging
performed. There is a slight skew occurring when no averaging
is performed (i.e., 1 “repeat”), although even in this case the
PDF mean is approximately correct.

In contrast, PDFs for the two excited states show results
in significant error. For energy eigenvalues (top) with no
averaging, the first excited state is slightly too high, while
the second eigenstate is in error on average by more than 4t ,
with a variance so large that results are smeared out entirely.
Increasing averaging up to 1000 repeats does eventually bring
results to be distributed about approximately the correct values,
although even then with a strong skew.

Transition amplitudes for excited states are also in signif-
icant error until significant averaging is performed. For low
averaging, one of the excited states has a transition amplitude
which is approximately 0 (while the other is too large, such
that two peaks are merged into one), which does not begin to
resolve until averaging over 100 repeats, and not satisfactorily
until averaging over 1000 repeats. Clearly, even though this
is a simple system, significant biases occur in the eigenvalue
estimates of the excited states, although ground-state estimates
are accurate. While the number of walkers is similarly small
with the system size, this should act as a warning for the issues
that can occur in stochastically sampled eigenvalue problems,
even in simple cases. Despite this, given the utility of such
solutions in QMC methods, this issue is usually not so severe.

V. ANALYSIS OF ERROR FOR A TWO-STATE MODEL

We now consider a theoretical model in only two dimen-
sions, where the source of this significant bias can be identified.
Suppose we sample two Krylov vectors of the form

|K0〉 = |ψ0〉, |K1〉 = |ψ0〉 + δ|ψ1〉, (14)

where |ψ0〉 and |ψ1〉 are orthonormal solutions which we
seek to obtain, and δ is a small and positive number. This
mimics what happens in real simulations where there is
one vector (the ground state) making up a relatively large
component of all Krylov vectors. Then the eigenvalue problem
is (

a a

a a + δ2b

)(
x0

x1

)
= ε

(
1 1
1 1 + δ2

)(
x0

x1

)
, (15)

where a = 〈ψ0|H |ψ0〉, b = 〈ψ1|H |ψ1〉, and 〈ψ0|H |ψ1〉 has
been defined as 0 for simplicity.

It can be shown that the eigenvalues of the overlap matrix
are (using zero indexing)

D00 = 2 + O(δ2) D11 = δ2

2
+ O(δ4) (16)

and that the corresponding eigenvectors are

(
1√
2

1√
2

)
+ O(δ2)

( −1√
2

1√
2

)
+ O(δ2). (17)

The Hamiltonian in the Löwdin basis (the final orthonormal
basis) is

HL =
(

a + O(δ2) O(δ)
O(δ) b + O(δ2)

)
. (18)

The eigenvalues of the exact HL matrix are a and b, as expected
by construction.

If this eigenvalue problem were sampled by KP-FCIQMC,
then the stochastic estimate of the Krylov-space Hamiltonian
could be written

HK + η, (19)

where HK is the exact Krylov-space Hamiltonian, and η is the
error matrix (and symmetry is enforced on the Hamiltonian
estimate, so that η10 = η01). If the transformation matrix from
the Krylov to the Löwdin basis is denoted T , then the stochastic
estimate of the Krylov-projected Hamiltonian transforms as

T T(HK + η)T = T T HKT + T TηT . (20)

The first term is the desired HL. We would like the second
term to equal 0. For finite stochastic error, however, this term
can be shown to equal (to leading order in δ)

T TηT =
(

1
4 (η00 + 2η01 + η11) 1

2δ
(η11 − η00)

1
2δ

(η11 − η00) 1
δ2 (η00 − 2η01 + η11)

)
.

(21)

Therefore H L
11 has a large error when δ is small. Roughly

speaking, to obtain an accurate estimate of the Hamiltonian
in the final orthonormal basis, the Hamiltonian in the Krylov
basis must have errors ηij smaller than δ2 ≈ D11. This makes
more rigorous the intuitive notion that eigenvectors with a
small component in the Krylov vectors require a similarly small
associated stochastic error for accurate estimation, quickly
becoming unreasonable. In this case, it is difficult to “extract”
the |ψ1〉 solution accurately from the noise.

The above analysis suggests that the main source of bias is
due to the desired states having small components in the Krylov
vectors. It is therefore informative to study different subspaces,
where the Krylov vectors are constructed to be similar to the
desired excited states.

Such an example is demonstrated in Fig. 4. Here we take
the same system as that studied in Fig. 3. However, while
Fig. 3 took the initial Krylov vector as a

†
k|�0〉, where |�0〉

is the exact ground-state wave function in the N -particle
sector (N = 6) (appropriate for constructing the single-particle
Green’s function), here we take the initial Krylov vector as
the CISD estimate to the first excited state in the same final
sector (N = 7). As can be seen, by choosing the subspace more
appropriately, the bias is effectively removed in the first excited
state estimates. Note that the numerical value for the first
excited state is different between Figs. 3 and 4—this is because
we project into different final three-dimensional subspaces in
each case. However, this is unimportant; here we are simply
assessing biases in the different approaches.
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FIG. 4. Distributions of KP-FCIQMC eigenvalues around the
exact ground and first-excited energies (dashed lines) for the same
system as in Fig. 3, as the number of repeats (over which HK and S
are averaged) is varied. In contrast to Fig. 3, the initial Krylov vector
was here taken as the CISD estimate of the first excited state. Both
ground and first excited states are obtained with relatively small biases
for 1 repeat, and with no visible bias when averaging over 10 or more
repeats.

VI. A CORRELATION FUNCTION QMC
APPROACH IN FCIQMC

The approach considered in Fig. 4 overcame systematic
errors by constructing the subspace in terms of trial wave
functions. This approach is also taken in the correlation func-
tion quantum Monte Carlo (CFQMC) method of Ceperley and
Bernu [46,51–55], which we now briefly consider within an
FCIQMC context. Note that this approach is called correlation
function QMC because the sampled H C

ij and SC
ij (see below) can

be viewed as imaginary-time correlation functions. However,
in this method, one is only interested in eigenvalues and
properties of a small number of low-lying excited states, not
Green’s functions, where the entire spectrum is (in principle)
obtained. Nonetheless, the approach is interesting to consider
in relation to the current question of biases and stochastically
sampled eigenvalue problems.

Suppose one has m trial functions, {|f0〉, |f1〉, . . . , |fm−1〉},
for the m lowest energy eigenstates of a system. Improved
solutions can be formed by taking linear combinations of
the original set of states. The best linear combinations (in
a variational sense) are formed by solving the Hamiltonian
eigenvalue problem, projected into the space spanned by {|fi〉},

HCφi = �i SCφi , (22)

where H C
ij = 〈fi |Ĥ |fj 〉 and SC

ij = 〈fi |fj 〉. The eigenvalue
estimates, �i are variational by MacDonald’s theorem [56]
and so will be improved by using more or better-quality trial
states, |fi〉.

We define projected trial states by

|fi (τ )〉 = e−τĤ |fi〉. (23)

If the Hamiltonian eigenvalue problem is evolved with τ , so
that H C

ij (τ ) = 〈fi (τ )|Ĥ |fj (τ )〉, SC
ij (τ ) = 〈fi (τ )|fj (τ )〉, and

HC(τ )φi (τ ) = �i (τ )SC(τ )φi (τ ), (24)

then since the slowest decaying contributions to each trial state
will span the lowest-lying excited states, in principle, the exact
energy eigenstates and eigenvalues are retrieved in the limit of
large imaginary time, as

lim
τ→∞ �i (τ ) = Ei. (25)

The above approach is that taken in the CFQMC method.
However, the approach above is only stable in the complete

absence of numerical errors, either due to finite precision, or
stochastic noise. This is because for large τ , all states |fi (τ )〉
will converge to the ground state, and the trial states will
exponentially become linearly dependent, and the eigenval-
ues of the overlap matrix will become exponentially small.
Stochastic or numerical errors in HC will therefore be greatly
magnified, and large biases will result, as for KP-FCIQMC,
resulting in a transient estimate of the excited eigenstates in
practice. However, it is usually possible to converge far enough
to obtain good eigenvalue estimates before such issues become
unmanageable.

In the original approach of Ceperley and Bernu [46], this
procedure was performed in real space. However, it is just
as simple to perform it in an FCIQMC framework, as there
one also performs imaginary-time propagation of initial states.
Indeed, the approach is perhaps more convenient here, as it is
simple to construct particularly accurate trial excited states
in finite-dimension Hilbert spaces, using standard quantum
chemistry methods.

Before applying the full CFQMC approach, we first con-
sider what happens when FCIQMC simulations are performed
starting from trial solutions to excited states. This has already
been performed in the excited-state FCIQMC approach, but
in that approach orthogonalization prevents collapse to the
ground state. Here, we consider propagation without orthogo-
nalization. An example of this is considered in Fig. 5, where the
Ne atom is considered in an aug-cc-pVDZ basis set for the five
lowest excited states, initialized from configuration interaction
singles and doubles (CISD) solutions to the states. We use the
following energy estimator:

Ei (τ ) = 〈fi (τ )|Ĥ |fi (τ )〉
〈fi (τ )|fi (τ )〉 , (26)

calculated in the same way as in KP-FCIQMC (using the
spawning procedure to sample pairs of determinants, and the
replica trick). Results of Fig. 5 show that, perhaps surprisingly,
the energy estimates converge accurately towards the exact
eigenvalues for over 6000 iterations before eventually con-
verging to the ground-state energy. One might have expected
the collapse towards E0 to happen much quicker, especially
starting from fairly basic CISD estimates, even for this simple
system. Note that when collapse to the ground state does occur,
some energy estimates diverge to higher values, rather than
directly to the ground state. This is because the component of
the ground state in the two replicas sampling |fi (τ )〉 obtain
opposite signs in early iterations due to stochastic noise,
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FIG. 5. FCIQMC energies (from a variational estimator) during
propagation for the neon atom in an aug-cc-pVDZ basis, with 2 core
electrons frozen. Simulations begin from the CISD estimates of the
five lowest excited states (labelled E1 − E5). Energies converge quite
stably to exact energies (dashed lines) for considerable imaginary
time, before converging towards the ground state. Note that three
states appear to diverge to higher energies, which occurs when the
ground-state component gains an opposite sign in the two replica
simulations, resulting in the denominator of the energy estimator
passing through zero. However, the ground state is converged upon
eventually (not shown). Note also that there are double degeneracies
in two states because the Ag irrep of D2h is used.

causing the denominator, 〈fi (τ )|fi (τ )〉, to pass through 0
during convergence.

The CFQMC procedure then projects Ĥ into the subspace
spanned by these states, and solves the resulting eigenvalue
problem to prevent this collapse. An example of this is shown
in Fig. 6. Here, to allow the study of PDFs, we again study the
same six-site Hubbard model as in Figs. 3 and 4, but here taking
U/t = 2. We consider the first excited state. While the collapse
of the expectation values is prevented in the zero-stochastic-
error (and infinite numerical precision) limit, in a stochastic
setting, the bias on the eigenvalues grows exponentially, as
proven by Ceperley and Bernu in their original presentation
[46]. This exponential growth of bias is clear here. When
performing no averaging, significant error occurs by iteration
200 (τ = 2), although this can be corrected by averaging to
reduce noise on HC and SC.

Despite the eventual breakdown, the first excited state is
sampled with a near-exact energy for a considerable period of
imaginary time before this occurs. This situation is therefore
significantly improved compared to that in KP-FCIQMC, due
to the use of trial solutions, which are already close to spanning
the target subspace, resulting in a well-conditioned problem
where the first excited state has significant amplitude in the
sampled subspace.

VII. DISCUSSION

A. Excited-state FCIQMC

The exponentially growing error in CFQMC with τ is
caused by all states converging to the ground state, resulting in
a poorly conditioned eigenvalue problem. The obvious solution
to this is to orthogonalize each state against all lower-energy
states, to prevent collapse. This approach was taken in our
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FIG. 6. Results from the CFQMC procedure for the first excited
state, for the one-dimensional, periodic six-site Hubbard model at
half-filling and U/t = 2. Simulations began from CISD estimates
to the ground and first excited states. HC and SC were averaged
over 1, 10, and 100 repeated simulations before eigenvalues were
obtained. (Top) Mean eigenvalue estimates as a function of imaginary
time, with standard deviations presented as error bars. The eigenvalue
bias increases exponentially for large τ . (Bottom) PDFs of eigenvalues
for the first excited state at iteration 200 (τ = 2).

excited-state extension to FCIQMC [57]. The projection here
takes the form

|fi (τ + �τ )〉 = Ôi (τ + �τ )[1 − �τ (Ĥ − S1)]|fi (τ )〉,
(27)

with

Ôi (τ ) = 1 −
∑
j<i

|fj (τ )〉〈fj (τ )|
〈fj (τ )|fj (τ )〉 . (28)

Here, the initial ground-state trial wave function, |f0〉, is
evolved exactly as in standard FCIQMC. All higher-energy
states follow a similar evolution, but with Ôi (τ ) applied after
each iteration.

With biases in mind, a possible concern in this approach
is that the orthogonalization operator Ôi (τ ) is nonlinear in
|fj (τ )〉, so that biases may occur. This was considered in some
detail in our initial presentation. Although we believe that some
extreme limits must exist where the nonlinear nature leads to
undesired results, in practice, we have never found this issue to
occur and indeed have obtained extremely accurate results in all
cases tested. For a test Hubbard model example, any bias was
shown to be less than ∼10−4–10−6t for all states studied. For
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FIG. 7. Results for the first excited state of the one-dimensional,
periodic 6-site Hubbard model at half-filling and U/t = 2. Simula-
tions were initialized from CISD wave functions. Free propagation
is shown in red, where large errors occur quickly. The CFQMC
procedure is shown in blue (here HC and SC were averaged over
103 repeated simulations before the plotted eigenvalues were ob-
tained), demonstrating improved stability. The excited-state FCIQMC
approach is shown in green, where orthogonalization ensures stable
convergence to the exact result. Note that under free propagation the
ground state is eventually converged upon, although divergence to
higher energies is observed here; this occurs for the same reason as
in Fig. 5.

the stretching of C2 in a cc-pVQZ basis we found agreement
with DMRG results to ∼10−4Eh, with remaining error almost
certainly from the initiator approach.

As a demonstration, in Fig. 7 we again consider the test case
of the one-dimensional 6-site Hubbard model at half-filling
and U/t = 2, as in Fig. 6. Simulations are initialized from
CISD wave functions, with the aim of sampling the exact
first excited state. A comparison is performed between three
cases: free FCIQMC propagation, the CFQMC procedure, and
the excited-state FCIQMC procedure, performing orthogo-
nalization against the ground-state FCIQMC wave function.
For excited-state FCIQMC results, an RDM-based energy
estimator is used (with replica sampling) [25], for a relevant
comparison. CFQMC is more stable than free propagation,
allowing the first excited state to be accurately sampled for a
longer period of imaginary time. The orthogonalization-based
approach is fully stable. Continuing this simulation for 106

iterations (using ∼80 walkers on average) gives an energy
estimate of −2.55677(23)t , compared to the exact value of
−2.55683t , showing no bias to good accuracy.

A similar orthogonalization approach would not be appro-
priate in real-space projector QMC methods, as the overlap
between two stochastically sampled wave functions in real
space will be zero. Clearly, there are advantages and disad-
vantages to both real-space and finite-space approaches. The
ability to calculate overlaps between two statistically sampled
wave functions, as used in both the excited-state approach and
the unbiased sampling of RDMs, has been a large benefit in
FCIQMC. As such, the problem of sampling a small number of
low-lying states by FCIQMC has, we believe, been effectively
solved by the above orthogonalization approach. However,
the task of computing dynamical properties remains a more
significant and open challenge.

B. Comparison of KP-FCIQMC with DMRG approaches

The KP-FCIQMC approach can be compared to similar
approaches for calculating dynamical correlation functions in
the DMRG framework. Several methods have been attempted
by a variety of approaches [58–62]. An approach based on the
Lanczos algorithm was attempted by Hallberg [58], which is
directly comparable to the KP-FCIQMC approach. A similar
approach has been used recently by Dargel et al. [63,64].
This approach was also investigated by Kühner and White in
1999 [60], who interestingly came to similar conclusions in
DMRG as we have in FCIQMC—they state that “the Lanczos
vector method works very well if only the low-energy part
of the correlation function is of interest, or if the bulk of
the weight is in one single peak.” This makes evident that
these discrepancies are not simply the result of stochastic-type
errors; small systematic errors due to other approximations are
equally problematic.

VIII. CONCLUSION

We have investigated examples of sampling nonlinear
functions in QMC methods, including ill-conditioned prob-
lems. KP-FCIQMC allows sampling of dynamical and finite-
temperature properties by an approach comparable to the
Lanczos method, but with memory limitations removed due to
stochastic sampling. For small Hubbard model examples, we
obtained accurate spectra even in the intermediate-coupling
regime, demonstrating the potential of this stochastic Krylov-
projected approach, which may be appropriate as an impurity
solver for DMFT.

However, in results similar to those obtained from a DMRG-
based approach to the spectral Lanczos method [60], we
find that high-energy spectral features are challenging to
obtain accurately, particularly for poles with small transition
amplitudes. This was demonstrated in a small six-site Hubbard
model, where probability distributions were obtained for the
KP-FCIQMC eigenvalues and transition amplitudes, showing
large errors in relatively high-energy states, eventually cor-
rected by performing further averaging. A simple two-state
theoretical model was considered to explain this issue, showing
that the problem can be traced back to states with small
components in the Krylov vectors, leading to an ill-conditioned
problem, for which QMC is not best-suited.

By moving to a more appropriate subspace, where a desired
excited state has large components in the Krylov vectors,
this bias can be largely removed. An example of this is
the CFQMC method, which largely resolves such issues for
small τ , although biases eventually become significant at large
imaginary time.

A large number of stochastic quantum chemistry methods
have been formulated in recent years in a similar vein to
FCIQMC; we hope that the considerations presented here will
be informative, and beneficial in the appropriate formulation
of such approaches in the future.
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