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We discuss electronic properties and their evolution for the linear chain of H2 molecules in the presence of a
uniform external force f acting along the chain. The system is described by an extended Hubbard model within
a fully microscopic approach. Explicitly, the microscopic parameters describing the intra- and intersite Coulomb
interactions are determined together with the hopping integrals, by optimizing simultaneously the system ground
state energy and the single-particle wave functions in the correlated state. The many-body wave function is taken
in the Jastrow form and the variational Monte Carlo (VMC) method is used in combination with an ab initio
approach to determine the energy. Both the effective Bohr radii of the renormalized single-particle wave functions
and the many-body wave function parameters are determined for each f , which is the only external parameter in
the whole analysis. Hence the evolution of the system can be analyzed in detail as a function of the equilibrium
intermolecular distance, which in turn is determined for each f value. The transition to the atomic state, including
the Peierls distortion stability, can thus be studied in a systematic manner, particularly near the threshold of the
dissociation of the molecular into an atomic chain. We also show that interelectronic correlations enhance the
Peierls distortion. The computational reliability of the VMC approach is also estimated.
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I. INTRODUCTION

Theoretical description of electronic systems, demanding a
consistent incorporation of interelectronic correlations, is one
of the most challenging tasks of condensed matter physics.
At least two complementary strategies for finding a proper
description of these complex systems are usually considered:
(i) ab initio oriented techniques and (ii) parametrized-model
approaches. The former refers primarily to the application of
quantum-chemical methods, for instance the density functional
theory based techniques (e.g., DFT+U, LDA+DMFT), exact
diagonalization (ED), post-Hartree-Fock methods such as
the configuration interaction (CI), Møller-Plesset perturbation
theory, etc., applied to particular physical or chemical systems.
The latter approaches use, e.g., the Hubbard [1] or t-J [2]
models and their variants to encompass the essential features
of electronic correlations such as an unconventional supercon-
ductivity observed in the cuprates [2,3], or the Mott-Hubbard
[1,4] transition in transition metal oxides. Another example is
the problem of the solid (molecular) hydrogen metallization at
extreme pressure [5]. In fact, the last issue comprises the most
of challenges, which are characteristic for both of the above
mentioned methods [6–8]. It is believed that the metallization
may occur by means of a transformation from the molecular
crystal into the atomic one, i.e., H2 molecules dissociation
into atomic structure, which becomes metallic at a critical
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pressure. This transition was first proposed by Wigner and
Huntington [5] and is still under an intensive debate [9,10].
While the phase diagram of the solid hydrogen is surprisingly
complex [11–13] and the predicted phase boundaries strongly
depend on subtle effects such as a precise inclusion of the
lattice dynamics [6,14,15], the simplified models may provide
an insight into the electronic properties in the vicinity of the
pressure-induced molecular-to-atomic crystal transformation.
As an illustration of this, we may quote the Mott-Hubbard-like
transitions proposed by us recently in the low-dimensional
hydrogenic systems [16,17].

Previously, we have used the exact diagonalization +
ab initio (EDABI) method [18–23] and could handle only
a relatively small number, typically up to N < 16 [22–24]
atoms. Therefore, we have decided to replace here the exact
diagonalization of the Hamiltonian matrix by means of a
variational Monte Carlo (VMC) solution [25–27]. This allows
us to analyze the model of molecular hydrogen chain consisting
of dozens of atoms and in turn to provide the quantities
hardly obtainable from the exact methods, e.g., the charge
gap for both the atomic and molecular phases. Moreover,
the considered model can be regarded as an extension of the
computational “benchmark” results for an equally spaced chain
composed of hydrogen atoms [28–30], thus complementing the
exact results for small-size systems. According to the Peierls
theorem [31], such a chain for one electron per atom, i.e.,
at the half-filling, is unstable against spontaneous alternating
distortion. However, this statement has been proved only in
the absence of electron-electron correlations. The energetic
stability of the electronically interacting and distorted chain
were carried out both for the parametrized models (cf., e.g.,
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Refs. [32–34]), as well as within the paradigm of ab initio
methods; see, e.g., Refs. [24,28,29]. The Peierls dimerization
in Hn rings and (finite) chains within the full-CI formalism with
the maximal n = 14 atoms and open boundary conditions were
studied by Giner et al. [24]. The linear hydrogen chain and
its metallic properties in the framework of the VMC method
were analyzed by Stella et al. [28]. The state-of-art methods
regarding this topic were reviewed recently by Motta et al.
[29]. The dimerized H2 chains but for the limited range of the
lattice spacing were also investigated in the framework of the
diffusion Monte Carlo method (DMC) [35].

Here we follow a different approach, in which we start from
the molecular H2 chain, the stability of which is tuned by
an external force applied along the chain. We thus provide
methodology analogous to our earlier EDABI-based studies
[18–23]. Applying the axial force (regarded as generalized
pressure) to the system—which is the sole control parameter—
we are able to construct the phase diagram and analyze
electronic properties of the chain both in the molecular (low-
pressure) and nearly atomic (high-pressure) regimes. Namely,
we study the chain distortion as a function of pressure and
discuss the role of the system size via the finite-size-scaling
procedure. In this manner, we extend the benchmark type of
approach by following the system evolution from molecular
(“Peierls-distorted”) phase to the atomiclike (metallic) phase.

In the following sections we describe the model, its
parametrization, and provide computational details (cf.
Sec. II). Next, we analyze the phase diagram and electronic
properties of the system from the perspective of the force-
induced dissociation into atomic phase. We also analyze
explicitly the effect of system size as a factor of the dissociation
process by performing the finite-size scaling in Sec. III. We
conclude and list further related issues to be scrutinized next.

II. MODEL AND METHOD

A. Molecular chain

We consider a linear hydrogeniclike molecular chain (MLC)
characterized by intermolecular distance (lattice parameter)
a and bond length b (cf. Fig. 1). Note that for b = a/2 the
system reduces to an atomic linear chain (ALC). While each
molecule consists of two atomic centers assigned as α and β,
the corresponding Wannier functions are wi,α (r) and wi,β (r)
for the ith molecule. Orbitals wi,μ(r), where μ = {α, β}, are
assumed to be finite contractions of 1s Slater atomic orbitals:

ψ
μ

i (r) ≡
√

ζ 3

π
e−ζ |r−Rμ

i |, (1)

where ζ may play the role of a variational parameter and Rμ

i

is its atomic position. In that situation

wi,μ(r) ≈
L(i,μ)∑
j (i,ν)

∑
ν∈{α,β}

cjνψ
ν
j (r), (2)

with L(i, ν) and j (i, ν) being specific functions mapping the
indices to the assumed cutoff radius rf = 3a in the tight bind-
ing approximation. Additionally, we impose the orthogonality
of {wi,μ(r)} basis, i.e.,

〈wi,μ(r)|wj,ν (r)(r)〉 = δμνδij , (3)

FIG. 1. (a) Schematic representation of molecular chain, charac-
terized by lattice parameter a and bond length b; the atomic centers of
molecule are labeled as α or β. (b) Hopping terms range extends up to
2a. Note that only one atom α (blue circle) is marked for the sake of
clarity. However, by symmetry the same hopping configuration holds
for β centers. (c) Same as in (b), but for the intersite (K) interactions.

which in practice is ensured in terms of performing the Löwdin
symmetric orthogonalization for a block of molecules of
size exceeding the interactions range (see next section). The
expansion coefficients cjν are taken for both atoms forming the
central molecule in a block and the resulting Wannier functions
wi,μ(r) are repeated periodically. This procedure allows one
to assure their mutual orthogonality within desired accuracy.

B. Hamiltonian and microscopic parameters

As in our previous works [16,17,20,22], we assume that
Hamiltonian is of the extended Hubbard form, i.e.,

Ĥ =
∑
iμ

ε
μ

i n̂i +
′∑

ijμνσ
t
μν

ij ĉ
†
iμσ ĉjνσ + U

∑
i,μ

n̂iμ↑n̂iμ↓

+ 1

2

′∑
ijμν

K
μν

ij n̂iμn̂jν + 1

2

∑
ij

2

|Ri − Rj| , (4)

where ĉ
†
iμσ (ĉiμσ ) is the fermionic creation (anihilation) oper-

ator and the local particle number operator is n̂iμσ ≡ ĉ
†
iμσ ĉiμσ

and counts electrons of spin σ at lattice site i and for atom
labeled μ = α, β. We also define the total particle-number
operator per site n̂iμ ≡ n̂iμ↓ + n̂iμ↑. The primed summations
emphasize the exclusion of cases related to i = j ∧ μ = ν.
One-electron matrix elements, atomic energy ε

μ

i ≡ t
μμ

ii and
hopping amplitudes t

μν

ij , are defined (in the atomic units) so
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that

t
μν

ij ≡ 〈wi,μ(r)| − ∇2 −
NS∑
l=1

2

|Rl − r| |wj,ν (r)〉, (5)

where NS is the number of neighbors in the interaction cutoff
sphere characterized by radius rin. The intrasite U and intersite
K

μν

ij parameters are the special cases of the general form of the
interaction matrix elements

V
μντρ

ijkl ≡ 〈wiμ(r)wjν (r′)| 2

|r − r′| |wkτ (r)wlρ (r′)〉, (6)

i.e., U = V
μμμμ

iiii = V νννν
iiii and K = V

μν

ijij . We ensure that all
integrals are well defined by means of assumption that rin =
2a < Rcf , i.e., Eq. (2) is always fulfilled. For the sake of brevity
we number all the considered hoppings t

μν

ij and interaction
parameters K

μν

ij , as in Fig. 1. According to the fact that
single-electron wave functions wi,μ(r) are real and taking into
account system symmetries, selected hopping and interaction
parameters are identical.

The last term in Hamiltonian (4) describes Coulomb inter-
actions between ions which we treat in a classical manner. We
neglect lattice dynamics and electron-phonon coupling, which
is in principle possible to include in the VMC scheme [36,37].
In this context, its inclusion would complicate excessively our
computational procedure.

C. Variational Monte Carlo

We employ the VMC method for finding an approximate
ground state of the system described by Hamiltonian (4). As a
variational ansatz for N -electron wave function we choose the
trial state |�N

T 〉 of the form
∣∣�N

T

〉 ≡ P̂|�FE〉, (7)

where P is the Jastrow factor

P̂ = exp

[
−

′∑
iμ,jν

λiμ,jν n̂iμn̂jν −
∑
iμ

λiμn̂iμ↑n̂iμ↓

]
, (8)

specified by the set of variational parameters {λiμjν, λiμ},
which provides a sufficient flexibility to include electronic
correlations, while |�FE〉 is the solution for the system of
noninteracting electrons, i.e., for the case U = K

μν

ij = 0. The
uncorrelated solution |�FE〉 may be written as an expansion
in the basis {|x〉} spanning N -electron Fock space, i.e.,

|�FE〉 =
∑

x

cx |x〉, (9)

with

|x〉 ≡ |x↑〉 ⊗ |x↓〉 =
n↑(|x↑〉)∏
iμ(|x↑〉)

ĉ
†
iμ↑

n↓(|x↓〉)∏
jν(|x↓〉)

ĉ
†
jν↓|0〉, (10)

where iμ, jν are the single-particle state indices and the
total number of spin-up and spin-down electrons (n↑, n↓,
respectively) are mapped from the spin-configuration sectors
|x↑〉 and |x↓〉, with |0〉 being the vacuum state. The average of

an operator Ô is given as

〈Ô〉 ≡
〈
�N

T

∣∣Ô∣∣�N
T

〉
〈
�N

T

∣∣�N
T

〉 =
∑

x

〈
�N

T

∣∣x
〉〈

x
∣∣Ô∣∣�N

T

〉
∑

x

〈
�N

T

∣∣x
〉〈

x
∣∣�N

T

〉 , (11)

and may be expressed in terms of its local value Oloc(x),

〈Ô〉 =
∑

x

ρ(x)Oloc(x), (12)

where

Oloc(x) ≡ 〈x|Ô∣∣�N
T

〉
〈
x
∣∣�N

T

〉 (13)

and

ρ(x) ≡
〈
�N

T

∣∣x
〉〈

x
∣∣�N

T

〉
∑

x’

〈
�N

T

∣∣x’
〉〈

x’
∣∣�N

T

〉 (14)

is regarded as the probability density function. Eventually,
sampling M states |x〉 from the distribution governed by
ρ(x)—in our case performed in a standard manner, i.e., by
means of application of the Metropolis algorithm—allows one
to obtain an approximate value 〈Ô〉 in the form

〈Ô〉 ≈ 1

M

m=M∑
m=1

Oloc(xm). (15)

In particular, the total trial energy is

ET ({λiμ,jν, λiμ}, ζ ) = 〈Ĥ〉 (16)

and its variance

σ 2
ET

({λiμ,jν, λiμ}, ζ ) ≡ 1

M

∑
x

[〈Ĥ〉 − Hloc(x)]2 (17)

can be computed. The trial energy, its variance, or a linear
combination of both may be used for the optimization leading
to an approximate ground state.

D. Numerical procedure

We analyze the possibility of the molecular-chain dissoci-
ation into the atomic, possibly metallic state, within a fully
microscopic approach developed and tested by us earlier. The
external, collinear force f is regarded here as an applied
pressure on this translationally invariant 1D system. This is the
sole factor, which controls such an atomization. For simplicity,
we also impose the periodic boundary conditions (PBC) to
eliminate the boundary effects. The proper thermodynamic
potential in this case is the enthalpy [16,17] of the form

H

N
= h ≡ f

a

2
+ E

N
, (18)

where h is the enthalpy per particle and E is the system
internal energy. The equilibrium value of h and the structural
parameters a and b, as well as ζ at given f , are all found by
means of minimization of the functional

h(f ; a, b, ζ ) = f
a

2
+ E(a, b, ζ )

N
. (19)

In practice, in order to perform the optimization one must
be able to compute the E(a, b, ζ ) (cf. Fig. 2). The optimization
run of VMC is carried out by minimizing of σ 2

ET
defined
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FIG. 2. Energy calculation flow chart.

by Eq. (17). This provided us with the satisfying numerical
stability and is viewed as standard method in the VMC
procedure [38]. Note that apart from the optimization of the
Jastrow parameters, the energy must be minimized with respect
to ζ . The energy which is optimized with respect to ζ in a
given range of a and b allows one in turn to determine minima
of h(a, b). The main computational effort is optimization with
respect to ζ for each considered pair (a, b). The algorithm con-
sists of (i) single-particle basis orthogonalization according to
Eq. (3), (ii) computation of microscopic parameters according
to Eqs. (5) and (6), and (iii) optimization with respect to Jastrow
variational parameters and ζ . We assume the cutoff radius
for Jastrow factor parameters as rP = rin = 2a and, therefore,
the number of interaction parameters, hoppings (with on-site
atomic energy present), and the Jastrow variational parameters
are equal, which amounts to seven independent quantities.
The results of calculations presented in the following sections
are obtained by means of self-developed codes, available

FIG. 3. Energy per electron for four different chain configura-
tions, all as a function of variational parameter ζ for N = 10. The
symbols refer to the data obtained by means of VMC and the solid
lines are results of the exact diagonalization (EDABI). The size of the
symbols is larger than the estimated statistical error, i.e., ∼10−3 (Ry)
per electron.

from our computational library quantum metallization tools
(QMT) [39].

III. RESULTS

A. Reliability of results

While the quality of results obtained by means of utilization
of the selected wave-function ansatz [Eq. (7)] is not a priori
known, we have performed the testing calculations for N = 10,
i.e., the number of particles, for which our exact treatment is
still attainable [16–23]. Precisely, we have applied the EDABI
method to inspect the validity of the data obtained by means of
VMC. As one may deduce from Fig. 3, where the total system
energy per electron versus ζ is plotted, the agreement between
the exact and VMC results is very good; typical differences
do not exceed the statistical error. The energy of the system
depends on ζ ; in some cases, e.g., for a = 1.6a0 and b = 0.5a0

(wherea0 is Bohr radius), is reduced even by factor of two when
compared to the nonrenormalized case (i.e., for ζ = a−1

0 ). This
observation confirms the fact that even though it increases
computational complexity, the optimization with respect to
ζ is important, if not indispensable. An additional remark is
in place. By regarding ALC strictly as a specific variant of
MLC, the number of microscopic parameters is reduced with
respect to the MLC (e.g., t1 = t5). However, this implies also
a similar reduction of the number of λiμjν parameters. The
number of independent λiμjν can be increased by extending the
correlation radius, but in such a scenario ALC would be solved
for a different form of the many-body wave-function ansatz.
Therefore, we have decided to introduce a small distortion
δb = 10−5 to the a/2 = b situation, i.e., b → b − δb. In this
manner, we treat ALC as a nearly undistorted MLC to conform
to the mutual consistency of the phase diagram. Results for
a/2 = b cases and those presented in the following subsections
mean that, strictly speaking, a/2 ≈ b − δb.
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B. Phase diagram of finite system

We have performed detailed calculations for the systems
consisting of N = 10, 18, 26, 34, 42, 50, 66, and 74 elec-
trons with the corresponding number of ions to attain the
charge neutrality, and with imposed PBC. In a single VMC
run, it is desired to ensure that the number of considered
electrons allows for formation of a configuration closed shell
[25] for the selected trial wave function. We have found out
that the selection of N = 34, 42, 50, 66, and 74 meets this
requirement; it is not the case for N = 10, 18, and 26. Despite
this shortcoming, the results obtained for N = 10 seem to
be reasonable as might be deduced from Fig. 3, where we
compare the robustness of our approach with respect to the
exact treatment. However, in the finite-size-scaling analysis we
utilize data obtained for five of the largest considered systems,
i.e., for N = 34, 42, 50, 66, and 74. For each N we have
scanned the (a, b) plane to determine the pressure (force) at
which the system undergoes a transition to the atomic state.
The size and range of the mesh was varied with N , since the
energy landscape depends on it (see next subsection). We have
assumed a constant resolution, �a = �b = 0.025a0.

A methodological remark concerning the computational
procedure is in place here. There are two factors introducing
an error: the mesh resolution and the statistical error, both
encoded in the bivariate interpolation. However, as the E(a, b)
variation is of the order of 10−1 Ry in the considered mesh
range and the estimated statistical error is of the order of
10−3 Ry, the possible oscillations in the interpolation function
are subtle. Namely, they are identified by us at the scale of
resolution. We decided to check these interpolation affected
results and, after performing the optimization procedure, we
have inspected the mesh in the vicinity of (af , bf ) obtained at
given f . This means that we identified the closest mesh nodes
related to (af , bf ). Next, we have been reexamining h(a, b) by
means of increasing/decreasing f by δf to make the enthalpy
at the neighboring nodes of (af , bf ) the smallest possible in the
mesh. In this manner, we estimated the error of f . Therefore,
fc in Fig. 9 is always related to (af ± 0.025a0, bf ± 0.025a0).
We have been also computing h(af , bf ) by means of the VMC
procedure and the obtained results never differed by more than
an order of 10−3 from those obtained by the interpolation. It
means that the interpolation is reliable and the results obtained
by VMC are consistent. Precisely, we can only say that at
given f (which is the only parameter) af and bf are in the
ranges af ± 0.025a0 and bf ± 0.025a0. Note that the mesh
resolution was not taken ad hoc, but after many tests, which
provided us with the compromise between required precision
and computational time consumption.

For the sake of clarity, in this subsection we present results
obtained for N = 50 which are representative for the whole
set, whereas the important conclusions obtained from the finite-
size-scaling analysis are discussed in the following subsection.
Note that the results for N = 66 and N = 74 have been
obtained for the subrange of (a, b) when compared to those for
N � 50, due to the computational time limitations. However,
we can still use these data to perform the finite-size-scaling
analysis.In Fig. 4 we plot the total energy as a function of b for
the selected a isolines. With the increasing a = 1.7a0, 1.85a0,
and 2.0a0, the two symmetric (for b < a/2 and b > a/2) min-
ima appear and indicate the molecular chain stability (at fixed

FIG. 4. Total energy as a function of b for selected a =
1.5a0, 1.7a0, 1.85a0, and 2.0a0 obtained by means of QVMC for
N = 50. At fixed a = 1.5a0 the system approaches ALC solution,
i.e., the energy minimum is for b = a/2.

a). Results referring to b > a/2 are those obtained for b < a/2
reflected with respect to the line b = a/2, in accordance with
the system symmetry. The evolution of the location of the
minima of the enthalpy (cf. Fig. 5) are reflected in the relation
between a and b (cf. Fig. 6). As the force value is below fc, the
system persists in molecular state, i.e., a/2 > b, whereas at fc

it becomes atomic. We observe that, while the bond length a de-
creases monotonically, this is not the case for b. In the vicinity
of the critical force, but for f < fc, the value of b increases—
following the prior decrease—and finally attains the critical
value ≈a/2. Note that the latter observation concerns maximal
error. However, such a behavior is present for each considered
system size. Therefore, we do not regard this as a random in-
accuracy caused by the statistical noise or interpolation error.

C. Ground state energy and the critical force: Finite size scaling

As mentioned above, the results obtained for N = 50 repre-
sent qualitatively the trend for the other N studied. Namely, we
observe atomization of the chain for each considered system
size. However, we find out differences between them. In Fig. 7
we plot the energy as a function of b for a = 1.7a0, for the
specified values of N . The shape of the energy per atom vs b for
a fixed a depends on the system size not only quantitatively, but
also differs qualitatively. Namely one sees (Fig. 7) that the E
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FIG. 5. Enthalpy as a function of a and b for the selected values of
f and for N = 50. The dashed line indicates ALC. Plots are obtained
from the mesh with resolution �a = �b = 0.025a0 by smoothing it
within bilinear interpolation for the sake of clarity.

minimum evolves from that corresponding to ALC for N = 18
as to that for N = 26, where it becomes flatter, suggesting
a tendency towards the molecular solution. In effect, it takes
place for N � 42. The energy values do not differ substantially
for b � 0.7a0, i.e., when the system is deep in the MLC state.

We observe a shift of the minimum referring to the first
occurrence of ALC on the E(a, b) plane, i.e., to the highest
possible a/2 = b ≡ adim as a function of the system size (adim

marks the value of a, at which the dimerization appears). This
behavior was also observed for the finite chains and rings by
Giner et al. [24]. Note that existence of adim > 0 in the ther-
modynamic limit is a necessary but not sufficient condition for
the suppression of the Peierls-like state. Therefore, we checked
(within the accessible accuracy), if adim(1/N → 0) > 0 in the
energy landscape. To answer the question if the dimerization
is suppressed under for a value of force in a thermodynamic
limit, we analyzed both adim and fc as functions of 1/N

for N = 34, 42, 50, 66, and 74, in the closed-shell cases
[25]. The adim(1/N ) for the considered N exhibits a linear
behavior (cf. Fig. 8) so that adim(1/N → 0) ≈ 1.77. Therefore,
to elucidate if dimerization is suppressed in the thermodynamic
limit at a certain value of the applied force, we have performed
finite size scaling of fc which is shown in Fig. 9. We classify
the system as ALC at f = fc, which corresponds to abrupt
decrease of a and concomitant abrupt increase of b, so that
a/2 ≈ b (cf. Fig. 6). In Fig. 9 we also mark fc(1/N ) with
the specified polynomial function fitted to the data, obtaining
fc(1/N → 0) ≈ 6.02 ± 0.22(Ry/a0). This value may seem to

FIG. 6. Equilibrium structural parameters a and b as a function of
external force f for N = 50. Note that we plot a/2 instead of a to help
the identification of MLC → ALC transition a/2 → b. The critical
force value is fc ≈ 4.64 Ry/a0. The inset contains corresponding
dependence ζ (f ). The estimated maximal error for a and b is related
to the mesh resolution, i.e., ±0.025a0.

be overestimated, since the tendency for N = 66 and N = 74
is to slightly suppress the distorted (Peierls-like) state.

For the sake of comparison we have performed also
calculations of the electronically noninteracting system (cf.
Sec. V). We observe that the distortion at f = 0 (for which
this approach predicts absolute minimum of the enthalpy)
is very small, i.e., a − 2b = 1.3988a0 − 2 × 0.6919a0 ≈
0.015a0. Therefore, it may be concluded that in the regime
of the lower range of f (i.e., for a/2 > b), the correlations
enhance the distortion magnitude.

FIG. 7. Ground-state energy per electron for fixed value of a =
1.7 as a function of b for the selected N . Note the double minimum
(marked by the arrows) appearing with the increasing system size.
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FIG. 8. Relation between adim and inverted system size N . The
line indicates the linear fit.

IV. ELECTRONIC PROPERTIES

From the finite-size scaling it follows that ALC is a stable
configuration for finite f value in the thermodynamic limit.
Therefore, we provide next the basic electronic properties for
both the MLC and ALC states, particularly in the regime
a/2≈b.

A. Charge energy gap

To provide evidence for an insulating or metallic character
of MLC close to the ALC solution we have estimated the
charge energy gap [4,40,41]

� ≡ [−2E(N ) + E(N − 4) + E(N + 4)]/4. (20)

This form of � allowed us to accomplish the closed-shell
configuration, since for the considered system sizes (i.e., for
N ∈ {34, 42, 50, 66, 74} we observe the fourfold degeneracy
(including spin) in |�FE〉 for the highest occupied and the
lowest unoccupied levels. Note that N , which can be identified
as the number of atomic centers, is also the number of electrons
since we consider the half-filling case. We intended to isolate
the size N as a single scaling parameter and we have not
been able to perform the conclusive scaling for a(1/N ) and
b(1/N ) due to the limited accuracy and maximal available
value of N . Moreover, performing the scaling of �(1/N )
for given f provides an additional complication, namely at
given f the two systems of the different size, N1 < N2, may
correspond to ALC and MLC solutions, respectively, which
in turn reduces the available number of points to be fitted,
especially close to the ALC boundary. On the other hand,
we have intended to single out, at least qualitatively, the
electronic characteristics of the molecular and atomic systems.
Therefore, we have computed � for N ∈ {34, 42, 50, 66, 74}
for configurations a(f ), b(f ) referring to those obtained for
N = 50. This means that microscopic parameters (hoppings,
interactions, and ion repulsion) remained functions of f

disregarding N . In Fig. 10 we present exemplary �(1/N )
dependence. We have performed a set of linear fits (cf. Fig. 10)
to obtain the �(1/N → 0) limit by means of extrapolation,

FIG. 9. (a) Critical force fc versus the inverse system size. Points
with the error bars indicate obtained values. Solid line is a polynomial
fit (explicitly written at the bottom), whereas dashed line marks the
estimated value of fc(1/N → 0). The line separates the molecular
(MLC) from atomic (ALC) configurations; (b) critical force for
the considered chain lengths. Note that for N < 34 the closed-
shell configuration is not fulfilled—their inclusion also prevented
conclusive extrapolation and therefore they were disregarded in the
final analysis. The lines are a guide for the eye.

which eventually provided �(f ) dependence (Fig. 11). The
MLC system exhibits insulating characteristics as expected
for the Peierls-like state; however, in the vicinity of ALC the
gap seems to be small or vanishing. In the ALC state the
gap is closed, indicating the appearance of a metallic state,
in agreement with the full Hamiltonian solution obtained by
Stella et al. [28]. Indeed, for f = 5 Ry/a0, the ALC is stable
with a/2 ≈ b = 0.776a0. This value refers to the range of
a/2, where a hydrogenic atomic linear chain is claimed to be
metallic [28]. Note also that sudden decrease of � to ≈0 at fc

coincides with that shown in Fig. 6 corresponding to molecular
dissociation. The � quantity has also a clear dependence on
the hopping ratios −t2/t4 and t3/t4 (cf. Appendix A for all the
values of microscopic parameters), as is shown in Figs. 12(a)
and 12(b). The t2 is positive and the ratio −t2/t4 increases with
increasing f . The charge gap closes at ≈t2/t4 ≈ 0.32, where
remains close to the value of t2, reaching unity in the ALC limit,
as expected. The charge gap closure with the increasing −t2/t4
resembles behavior observed in the t − t ′ Hubbard model,
where the metallicity is induced by the increasing ratio between
the second (t ′) and nearest (t) neighbor hopping amplitudes
[41]. The relative (to t4) increase of the hopping amplitude,
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FIG. 10. Exemplary finite-size scaling of the charge gap � at f =
3 Ry/a0. The solid line represents the linear fit.

which we observe for t0, t1, t2, and t3, thus plays a role in the
microscopic mechanism of the metallization.

B. Correlation functions

As in related studies [23,42–44] we consider next the
density-density and spin-spin correlation functions to provide
evidence (if any) for the charge density and spin order in the
system. We define the density-density correlations via

Ciμ,jν ≡ 〈n̂iμn̂jν〉 − 〈n̂iμ〉〈n̂jν〉, (21)

and the spin-spin correspondents

Siμ,jν ≡ 〈(n̂iμ↑ − n̂iμσ )(n̂jν↑ − n̂jνσ )〉 = 〈
Ŝz

iμŜz
jν

〉
. (22)

In Fig. 13 we plot an exemplary density-density correlation
function for both α and β sites. The oscillations of Ciμjν decay
at relatively short distances. In fact, the amplitude exceeds
the statistical noise only for the nearest and the next nearest

FIG. 11. Extrapolated charge gap �(f ) for a(f ), b(f ) referring
to N = 50 (see text). The vertical line separates MLC and ALC (for
N = 50), whereas the dashed line is a guide for the eye.

FIG. 12. Charge energy gap as a function of the selected ratios
between hoppings.

neighbors which correspond to the distances rjν = b and rjν =
a − b, respectively. In effect, we have not found any long-range
charge/spin order in both the MLC and ALC states. This may
originate from the form of the trial wave function, which does
not include long-range correlations.

V. SUMMARY AND CONCLUSIONS

In this work, we have analyzed the case of uniform com-
pression of the molecular-hydrogen linear chain by means
of the variational Monte Carlo method combined with the
ab initio approach, with the help of which we have deter-
mined among others the renormalized single-particle wave
function in the correlated state. Thus we have complemented
the benchmark model of the atomic linear chain with the
analysis of its stabilization under influence of the external
force, starting from the linear arrangement of the molecules
(MLC). We have investigated the possibility of dissociation
of the molecular chain into the atomic linear chain within
available accuracy. With the help of the finite size scaling
analysis we have obtained the conditions for stabilization of
the atomic phase. However, we are far from claiming that the

FIG. 13. Density-density correlation functions plotted for the
results obtained at f = 4.5 Ry/a0 and N = 50 for both α (a) and
β (b) sites, respectively.

085112-8



ATOMIZATION OF CORRELATED MOLECULAR-HYDROGEN … PHYSICAL REVIEW B 98, 085112 (2018)

distortion is completely suppressed at a finite force according to
the numerical precision, applied wave-function ansatz, and the
simplified form of the Hamiltonian. Despite this uncertainty,
we emphasize that a particular system configuration and its
electronic state is tuned solely by means of a single controllable
external parameter—the force f . In that sense, by considering
one-dimensional enthalpy h, we provided a thermodynamic
solution for the system at T = 0 K. It is also sometimes
postulated for the solid hydrogen phases to become metallic
before occurrence of the expected atomization, i.e., it is in
the molecular state by means of the band gap closure [45].
Therefore, we have analyzed the charge gap for the molecular
chain in the vicinity of the arrangement close to the atomic
state to find out if it exhibits metallic properties. With attainable
precision, we observed a vanishing gap indicating the presence
of a metallic state which coincides with the chain atomization.
A qualitative analysis of the correlation functions allowed us
to show the absence of a nontrivial charge and spin order.

The role of an external force f is crucial. Previously, we
analyzed the ladder-type stacking of H2 molecules [16] and
have shown that such a lateral arrangement is energetically
stable even for f = 0. This is not the case here and physically
the role of the force f may be played by a substrate on which
the chain is placed. In the situation in which the substrate lattice
parameter is commensurate with the intermolecular distance,
we can regard the force f as a uniform compressing action on
the chain. A variable force could appear by changing either
the substrate parameter or studying the system on different
substrates.

Our analysis allows for the Peierls-distortion evolution to
be characterized by the parameter

δ ≡ a − 2b

a
. (23)

Namely, one sees that the correlations enhance the distortion
in the molecular state, but it practically ceases to exist at
the atomization (metallic) threshold. Our results describe a
systematic study of the distortion stability. Only a very small,
residual value of δ �= 0 remains in the metallic phase. The two
latter results are represented in Figs. 14 and 15, respectively.
Explicitly, in Fig. 14 we present schematically together the a/2
and b distances, the Peierls distortion δ, and the charge gap,
defined by Eq. (20). Those quantities characterize the atomiza-
tion (a) at f = fc, the associated disappearance of appreciable
Peierls distortion, originally caused by the chemical bonding
into the molecular state (b), and disappearance of the charge
gap at that point (c). All these characteristics, in conjunction
with behavior of the density and spin correlations (cf. Fig. 13),
show that the atomization takes place for a standard type of
metallic state. This conclusion has been also reached in our
analysis of metallization of H2 ladders [16] that the atomic
phase is close to a moderately, if not weakly, correlated and
thus standard, metallic state. However, this means that the role
of the electron-lattice interaction in the atomized state may
also become important, as stated in a number of recent papers
(see, e.g., Ref. [46]), but this subject will not be discussed
here. Finally, one may ask a basic question: how does the
ordinary Peierls distortion picture fit into the above picture,
since the results depicted in Fig. 14(b) do not show any δ �= 0
for f � fc? To address this question, we have plotted concrete

FIG. 14. Schematic representation of the essential results.

data for δ in the correlated [cf. Fig. 15(a)] and noninteracting
[cf. Fig. 15(b)] cases, respectively. One sees that a spontaneous
Peierls distortion δFE in that case is about one order of
magnitude smaller than that (δ) in the correlated state. The δFE

is practically on the border of our numerical accuracy with the
increasing value of f .

Whereas we believe that we have included a remarkable
part of electronic correlations in our model, we address the

FIG. 15. Distortion evolution parameter obtained by means of the
VMC and with N = 50 (a) and for the noninteracting electrons (b).
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TABLE I. Optimized hopping integrals and atomic energy obtained for N = 50.

f (Ry/a0) t0 (Ry) t1 (Ry) t2 (Ry) t3 (Ry) t4 (Ry) t5 (Ry) ε (Ry)

2.25 0.0820379 yy − 0.167832 0.67744 − 2.02135 − 2.45895 − 0.27246 − 5.59409
2.5 0.105143 − 0.215954 0.807776 − 2.42219 − 2.79632 − 0.316906 − 5.54753
2.75 0.114176 − 0.231839 0.86109 − 2.57243 − 2.957 − 0.339721 − 5.50698
3 0.125698 − 0.262781 0.928341 − 2.80194 − 3.1156 − 0.355215 − 5.45454
3.25 0.13296 − 0.281589 0.971221 − 2.94012 − 3.21935 − 0.366422 − 5.41488
3.5 0.143846 − 0.300785 1.0376 − 3.12185 − 3.42089 − 0.395242 − 5.33852
3.75 0.147344 − 0.310661 1.05893 − 3.19222 − 3.47167 − 0.400123 − 5.31453
4 0.157736 − 0.344547 1.12335 − 3.4169 − 3.61479 − 0.410421 − 5.23649
4.25 0.167423 − 0.362063 1.18503 − 3.58491 − 3.80312 − 0.436923 − 5.14978
4.5 0.175007 − 0.384558 1.23421 − 3.741 − 3.92157 − 0.448203 − 5.08056
4.635 0.184093 − 0.43643 1.2946 − 4.00422 − 4.00438 − 0.437029 − 4.99011
5 0.188949 − 0.444742 1.32733 − 4.08934 − 4.1061 − 0.451405 − 4.9376

necessity to cover the remaining matrix elements in the Hamil-
tonian, e.g., correlated hoppings, direct exchange interactions,
or even three- of four-center integrals to answer if provided
conclusions are undoubtedly valid. Moreover, an inclusion of
lattice dynamics and of electron-phonon coupling may provide
a valuable outcome both in view of computational (benchmark)
aspects and physical mechanisms in such phenomenon as con-
jectured room temperature superconductivity in the metallic
hydrogen [47,48].
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APPENDIX A: MICROSCOPIC PARAMETERS

In Tables I and II we provide all principal microscopic
parameters (i.e., t

μν

ij , ε, K
μν

ij , and U ), numbered as in Fig. 1

for the range of forces considered in Fig. 6 for N = 50. Note
that f = 4.64(Ry/a0) and f = 5(Ry/a0) refer to a nearly
atomic phase. The hopping amplitudes between α and β

sites are negative, whereas those between sites from the same
sublattice are positive. In the atomic phase [f � 4.64(Ry/a0)],
t1 ≈ t5 and t3 ≈ t4, as follows from the symmetry of the atomic
system. Similar relations hold for the interaction parameters,
i.e., K1 ≈ K5 and K3 ≈ K4. Note that, although U value is the
highest, the intersite interactions are up to ∼2/3 of U , which
means that we can easily have the situation with 2K ≈ U ,
which drives the molecular system towards metallization, in
addition to the single-particle energy.

APPENDIX B: JASTROW VARIATIONAL PARAMETERS

For the sake of completeness we also present Jastrow
variational parameters (cf. Table III) numbered in a similar
manner to microscopic parameters. As expected, their ampli-
tudes correspond directly to the magnitude of the interaction
parameters.

TABLE II. Electron-electron interaction integrals considered in the optimized state N = 50.

f (Ry/a0) K0 (Ry) K1 (Ry) K2 (Ry) K3 (Ry) K4 (Ry) K5 (Ry) U (Ry)

2.25 0.478449 0.627356 0.934136 1.56622 1.63987 0.641265 2.61841
2.5 0.514304 0.675894 1.00048 1.67231 1.72609 0.686352 2.72896
2.75 0.527862 0.693729 1.02576 1.71076 1.76321 0.704012 2.77628
3 0.544872 0.717087 1.05719 1.76318 1.80322 0.725021 2.8324
3.25 0.555068 0.73093 1.07595 1.79338 1.82756 0.737749 2.86468
3.5 0.570171 0.750606 1.10399 1.83494 1.86954 0.757562 2.91719
3.75 0.575004 0.757181 1.11288 1.84936 1.88109 0.763578 2.93283
4 0.589371 0.776929 1.1393 1.89326 1.91453 0.781249 2.97984
4.25 0.60242 0.793848 1.16348 1.92871 1.95109 0.798424 3.02543
4.5 0.612516 0.80744 1.18195 1.95763 1.97542 0.811095 3.05687
4.635 0.624954 0.825457 1.20478 1.99996 1.99997 0.825457 3.09791
5 0.631417 0.833722 1.21668 2.01667 2.01819 0.834038 3.11952
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TABLE III. Jastrow wave-function variational parameters for N = 50 numbered in the same manner as the microscopic parameters; cf.
Table I.

f (Ry/a0) λ0 λ1 λ2 λ3 λ4 λ5 λU

2.25 0.0494324 0.0857595 0.151032 0.233874 0.226763 0.0906117 0.543334
2.5 0.0510948 0.0920228 0.161314 0.246269 0.241465 0.0961716 0.567389
2.75 0.0437915 0.0770094 0.131836 0.205208 0.200832 0.0786332 0.479059
3 0.0488745 0.0915902 0.16175 0.244208 0.242687 0.0957701 0.562443
3.25 0.0447105 0.082466 0.144809 0.221195 0.219908 0.0852848 0.513539
3.5 0.0419956 0.0788773 0.141055 0.217371 0.216265 0.0813463 0.504218
3.75 0.0442797 0.0830695 0.143916 0.218546 0.215457 0.0844753 0.502372
4 0.0432848 0.0814832 0.140217 0.21298 0.212156 0.0831675 0.491849
4.25 0.0430579 0.0815563 0.138759 0.210457 0.208788 0.080752 0.484049
4.5 0.0415801 0.0789011 0.135518 0.204778 0.205013 0.0795609 0.472317
4.635 0.0396584 0.0752711 0.128925 0.195331 0.195577 0.0755712 0.450903
5 0.0423223 0.080441 0.13515 0.202073 0.201048 0.0800144 0.461985
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