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Global phase diagram and momentum distribution of single-particle excitations in Kondo insulators
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Kondo insulators are emerging as a simplified setting to study both magnetic and insulator-to-metal quantum
phase transitions. Here, we study the half-filled Anderson lattice model defined on a magnetically frustrated
Shastry-Sutherland geometry. We determine a “global” phase diagram that applies to both the local-moment and
intermediate-valence regimes. This provides the theoretical basis for understanding how tuning a Kondo insulator
by external parameters can close its hybridization gap, liberate the local-moment spins from the conduction
electrons, and lead to a magnetically correlated metal. We also calculate the momentum distribution of the
single-particle excitations in the Kondo insulating state, and show how Fermi-surface-like features emerge as a
precursor to the actual Fermi surfaces of the Kondo-destroyed metals. The implications for an incipient Fermi
surface and quantum phase transitions of Kondo insulators including SmB6 are discussed.
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I. INTRODUCTION

Quantum criticality in the vicinity of antiferromagnetic
order is of interest to a variety of strongly correlated electron
systems [1]. Heavy fermion systems occupy a special place
in this context [2,3]. These systems are typically described
by a Kondo lattice model, which contains a lattice of local-
moment spins coupled to a band of conduction electrons.
Antiferromagnetic (AF) quantum critical points (QCPs) have
been identified in a host of heavy fermion metals. Experimental
studies at such QCPs [4–7] have provided evidence for a
Kondo-destruction local QCP [8–10], across which the Fermi
surface jumps from “large” (incorporating the f electrons)
to “small” (excluding the f electrons). Experimental efforts
have also been devoted to heavy fermion metals that allow a
systematic tuning of inherent quantum fluctuations, through
magnetic frustration [11–15], dimensionality [16], or other
means [17–19], which shed new light on the emergence of
novel phases. Theoretical considerations of such effects have
advanced a global phase diagram [20–23].

Such developments in heavy fermion metals naturally lead
one to ask whether and how novel phases and their transitions
can be realized in Kondo insulators (KIs) [24]. Such insulating
states arise when the filling is commensurate and the chemical
potential falls in the middle of a hybridization gap [25,26].
If, by analogy with the case of the heavy fermion metals, an
external parameter such as pressure, magnetic field, or doping
tunes the system across a Kondo-destruction transition, the gap
of the Kondo insulator will close. At the same time, the local-
moment spins will be liberated from the conduction electrons,
thereby yielding magnetic states in which the spin-rotational
invariance is either spontaneously broken (e.g., an AF order)
or preserved (a valence-bond solid or a spin liquid). While

these types of qualitative considerations have led to a proposed
global phase diagram for Kondo insulators [27], systematic
theoretical studies have yet to be performed. In addition, the
case of mixed valency that is thought to be relevant for many
Kondo insulators has never been considered in this context.

Studies along this direction are also important to understand
the ongoing experiments on Kondo insulators [24], which in
recent years have been particularly fueled by the search for
topological Kondo insulating states [28] in SmB6 and related
systems. Several developments have in particular motivated
the present work. First, recent experiments [29] in pressurized
SmB6 have provided evidence for quantum criticality of a
transition from a Kondo insulator to an antiferromagnetic
metal [30,31]. Second, torque magnetometry measurements
have revealed a de Haas-van Alphen signal in SmB6 [32–34],
raising the exciting possibility that the Kondo insulator state
harbors an incipient Fermi surface of the same size as the
(small) Fermi surface of LaB6 [33,34]. Third, there is growing
experimental evidence that doping drives a Kondo insulator
through a quantum critical regime into an AF metal, as in
CeNiSn (doped with Pt, Pd, and Cu) [35]. Finally, there are
emerging signatures for quantum criticality in several Kondo
insulating compounds, including CeM2Al10 (where M=Fe,
Ru, Os) [36] and tentatively CeRu4Sn6 [37], suggesting that
they are already in proximity to a QCP. These developments
have made quantum phase transitions in Kondo insulators to be
of both fundamental and topical interest. Thus it is important to
construct a generic theory for how Kondo insulator systems are
tuned across various phase transitions, and how such transitions
influence the electronic properties of the Kondo insulating
state.

Here, we study the periodic Anderson model (PAM) at
half filling. In order to concretely study the effect of tuning
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quantum fluctuations of the local-moment magnetism, we
focus on the model defined on the geometrically frustrated
Shastry-Sutherland lattice (SSL). We are able to (i) map out
the global phase diagram from concrete theoretical calculations
in a well-defined model, (ii) assess the robustness of the
global phase diagram against noninteger f -electron valence
(which is relevant for SmB6), and iii) determine Fermi-surface-
like features in the single-particle excitations of the Kondo
insulating state for both mixed and integer valences.

The PAM model is written as

H =
∑

(i,j ),σ

tij (c†iσ cjσ + H.c.) +
∑
(i,j )

Jij Si · Sj + Hmix, (1)

where c
†
iσ creates a conduction electron of spin σ at site i,

(i, j ) denotes neighboring bonds, tij is a hopping strength,
Jij is a Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction
between the f -electron moments, and Si = d

†
iα (σ αβ/2)diβ .

Hmix is given by

HA = εd

∑
i,σ

nd
i,σ + U

∑
i

nd
i,↑nd

i,↓ + V
∑
i,σ

(c†iσ diσ + H.c.).

(2)
We have introduced na

i,σ = a
†
iσ aiσ , and we focus on the U →

∞ limit, which allows for a representation, diσ = fiσ b
†
i , in

terms of a spinon (fiσ ) and a slave boson (bi ) that are subject
to the constraint b

†
i bi + ∑

σ f
†
iσ fiσ = 1 [38]. The condition

for half filling is nd + nc = 2, where nd = 1
Nsite

∑
i,σ 〈nd

iσ 〉 and

nc = 1
Nsite

∑
i,σ 〈nc

iσ 〉 are the fillings of the f and conduction
electrons, respectively.

The on-site energy εd is variable to cover both the interme-
diate valence (nd < 1) and local moment (nd → 1) regimes.
The Kondo lattice model (KLM) is similarly defined and
represented (see the Supplemental Material [39]).

For the Kondo lattice case away from half filling, the global
phase diagrams of heavy fermion metals have been studied
[23,40,41]. In this work, we consider the PAM away from
integer valence.

II. GLOBAL PHASE DIAGRAM

We consider the two-dimensional (2D) PAM on the SSL
geometry. It contains J1 and J2, the nearest neighbor (NN) and
next nearest neighbor (NNN) RKKY interactions, respectively,
and t1 and t2, the corresponding hoppings.

An important advantage of our treatment is that the large-N
limit [where N corresponds to the generalization of spin de-
generacy from SU(2) to SU(N)] properly captures the valence
bond solid (VBS) phase of the SSL Heisenberg model [42,43].
To study the magnetic state in the physical case of N = 2,
we follow the general procedure of Hubbard-Stratonovich
decouplings [44]: with guidance by the quantum magnetism
effect of the SSL Heisenberg model, we introduce a parameter
x to weight the decoupling of the Heisenberg interaction into
the bond spin-singlet and AF channels, Dij = ∑

σ f
†
iσ fjσ and

Si = f
†
iα (σ αβ/2)fiβ , respectively. The criterion is that the AF

order is accompanied by nonzero singlet correlations, and this
happens in the range 0.6 < x < 0.8125 [23].

FIG. 1. Global phase diagram of Kondo insulators: Zero tem-
perature phase diagram as a function of frustration (J2/J1) and
hybridization strength (V/t1) for the PAM, for half filling nd + nc =
2.0, t2/t1 = 0.25, and εd/t1 = −0.5. The phases and their transitions
are described in the main text.

This procedure leads to

HMF = Cmix −
∑

i

[(b∗
i c

†
iσ fiσ + H.c.) + λ̃if

†
iσ fiσ ]

+
∑
(i,j )

[(tij c
†
iσ cjσ − Q∗

ij f
†
iσ fjσ + H.c.)

+ J̃ij 2Mi · Sj ], (3)

where the sum over σ is implied, and we have defined J̃ij =
(1 − x)Jij . We have Cmix = CA + ∑

(i,j )[2|Qij |2/(xJij ) −
J̃ij Mi · Mj ], where CA = ∑

i λi (|bi |2 − 1), λ̃i = λi + εd , and
the hybridization is bi = V 〈∑σ c

†
iσ fiσ 〉/λi . The Hubbard-

Stratonovich parameters in the resonating valence bond singlet
channel are Qij = xJij 〈Dij 〉/2 and the AF order parameter
is Mi = 〈Si〉 [with an ordering wave vector Q = (π, π )]. For
definiteness, we show the results for x = 0.7; we have checked
that our results are robust for x in the aforementioned range.
The procedure for the KLM is similar [39].

In Fig. 1, we show the phase diagram for t2/t1 = 0.25,
which reveals the three relevant phases. For small V/t1 and
J2/J1 the model is in the AF phase, defined by 0 < |M| < 1/2.
Here, Qij is only nonzero along the vertical and horizontal
bonds and bX = 0. As this phase has no Kondo screening and
is antiferromagnetic, we dub it AFS , where the S denotes a
small Fermi surface. In the limit of large frustration and small
V/t1, the model gives rise to the expected SSL-VBS, where
Qx+y and Qx−y are the only non-zero singlet parameters. In the
limit of large hybridization, all the Qij and bX are nonzero, and
they preserve the symmetry of the Shastry-Sutherland lattice.
The results for the KLM are similar [39].

We find direct transitions between AFS and KI, as well as
between SSL-VBS and KI. Importantly, the notion of Kondo
destruction survives the valence fluctuations inherent in the
PAM.1 While our approach yields first-order transitions (see

1In the incommensurate-filling case [23], there are various interme-
diate phases (between the VBS and heavy Fermi liquid) that break
the underlying symmetry of the Shastry-Sutherland lattice and as a
result exhibit partial Kondo screening. Here, we find these solutions
to be energetically not competitive.
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the Supplemental Material [39]), it is important to see how the
fluctuation effects beyond our approach affect the nature of the
transitions. Based on the studies on the quantum fluctuations
in pertinent quantum impurity models [45] and Kondo lattice
models [46] in the context of extended dynamical mean field
approach [8,10], we expect the transitions to be continuous.

Two remarks are in order. First, the phase diagram we have
found is strikingly similar to the global phase diagram of Kondo
insulators in the integer valence case proposed on qualitative
grounds [27]. More generally, we can think of J2/J1 as a
measure of the strength of quantum fluctuations in the system,
and the phase diagram we have derived is representative of
other means of tuning, by either frustration or dimensionality.
The overall topology of the global phase diagram, consisting
of two paramagnetic phases (one being KI and the other with a
small Fermi surface [47]) and one AF metal phase with a small
Fermi surface, is expected to be robust. Second, each type of
phase transition between the KI phase and either the AFS or
the SSL-VBS is actually a metal to insulator transition. Thus,
there should be significant effects on Fermi surface probes as
the transition is approached from the metallic side as well as
from the insulating side, which we now turn to.

III. SINGLE-PARTICLE EXCITATIONS AND PRECURSOR
OF THE SMALL FERMI SURFACE IN THE KI PHASE

We focus on the KI phase at mixed valence. We are primarily
interested in what effects the underlying Fermi surface of
the conduction electrons have “imprinted” on the properties
of the insulating state. For definiteness, we will denote such
small Fermi momenta by kF , and the large Fermi momenta
that incorporate the f electrons (see below) by k∗

F . Note
that in the mixed valence regime kF is defined as the Fermi
wave vector corresponding to the filling of the conduction
electrons at a specific hybridization strength. To make concrete
connections, we now restrict ourselves to a model defined on
a 2D square lattice with NN couplings only, and therefore
consider one site per unit cell. The results for integer valence
in the Kondo lattice model in two and three dimensions are
similar [39]. In addition, for the KI phase where the magnetic
order parameter vanishes, we no longer consider the effects of
the Heisenberg term in Eq. (1) and set J1 = J2 = 0; this still
keeps the salient properties of the momentum distribution in
this phase. Note that in the following we only have one hopping
parameter t .

We first consider the hybridization gap �Ek as a function
of momentum in the mixed valence regime with V/t = 2.0,
which yields a valence nc ≈ 1.42. Solving for the band struc-
ture in the square lattice case yields two bands, Ek± = 1

2 (εk −
λ̃) ±

√
( εk+λ̃

2 )
2 + b2, where εk = −2t (cos kx + cos ky ) − μ is

the dispersion with a bandwidth W = 8t and chemical po-
tential μ. A Kondo insulator of course has no Fermi surface.
However, plotting the direct hybridization gap �Ek ≡ Ek+ −
Ek− as a function of k reveals a special surface (line) in the
Brillouin zone. As shown in Fig. 2, �Ek is minimized along
the Fermi surface of the conduction electrons marked in red,
which corresponds to the small Fermi surface. We therefore
reach one of our main results, namely �Ek is minimized on
the small Fermi momenta, kF . The magnitude of the direct

FIG. 2. Effects of the underlying Fermi surface on the band gap
in the KI phase at mixed valence. The band gap �Ek is plotted in
momentum space for V/t = 2.0 in the KI phase. The minimum of
the direct band gap is along the underlying small Fermi surface (the
same as for kF with a filling nc ≈ 1.42), marked in red.

and indirect gap in the integer valence limit is discussed in the
Supplemental Material [39].

In addition, we consider the dispersion of the single parti-
cle excitations and momentum evolution of the conduction-
electron spectral function A(k, ω) = −ImGc(k, ω)/π [39]
as shown in Fig. 3. Along the cut kx = ky [Fig. 3(a)], we
find the quasiparticle states dispersing towards the small
Fermi momentum kF ≈ (0.6π, 0.6π ) as the Fermi energy is
approached, although they are eventually gapped out by the
hybridization when k gets too close to kF . This point is also
illustrated in the energy dispersion curves, shown in Fig. 3(c).
The same trend is also observed for the momentum cut ky = 0,
Figs. 3(b) and 3(d), for which the small Fermi momentum is
never crossed.

To appreciate the above observations, we note that the
small Fermi momenta kF are special because, for V = 0

(d)

6 4 2 0 2
40
20

0
20
40
60

Ω t

A
k,
Ω

(c)

6 4 2 0 2 4
40
20
0

20
40
60

Ω t

A
k,
Ω

(a) (b)

FIG. 3. The spectral function for V/t1 = 2.0 along the momen-
tum cuts (a) k = ky = kx and (b) k = kx , ky = 0. The red lines mark
the location of the small Fermi momentum kF . Energy dispersion
curves of the spectral function are shown along the momentum cuts
(c) k = ky = kx and (d) k = kx , ky = 0. Here, each curve is shifted
vertically by an integer corresponding to the wave-number index, and
we have broadened the delta function by a Gaussian of width 0.1t .
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FIG. 4. Momentum distribution of the c electrons nk , for k =
kx = ky . nk versus k for V/t = 2.0 in the KI phase (a) and the metallic
phase with nc = 1.25 (b). The overall shape across kF in both cases
is discussed in the text, while for the metal there is a small jump
at the large Fermi wave vector k∗

F (dashed line) of the size of the
quasiparticle residue.

(but with nc ≈ 1.42), the momentum distribution of the c

electrons, nk = ∑
σ 〈c†k,σ ck,σ 〉, has a jump of exactly 1 across

such momenta. A nonzero hybridization will smear this jump
[38], but this smearing occurs gradually. Indeed, as shown in
Fig. 4(a), near the small Fermi momentum kF , for V/t = 2.0
in the KI phase, we see a step function for V = 0 develop
into an “S” shape pinned at kF . (Without a loss of generality,
we focus on 0 < kx = ky < π .) This smeared jump in the
momentum distribution of the occupation number at kF is
caused by the same physics that induces the small excitation
gap at kF illustrated in Figs. 2 and 3.

The simplicity of the Kondo insulator is that the large Fermi
momenta, k∗

F , are located at the Brillouin zone boundary.
This is to be contrasted with the incommensurate-filling case,
as illustrated in Fig. 4(b) for nc = 1.25 (corresponding to
nc + nd = 2.25). In this case, the features at the small Fermi
momenta, kF , remain similar to the Kondo insulator case.
However, now, k∗

F occurs in the middle of the Brillouin zone.
As is characteristics of a heavy fermion metal [38], nk display
a tiny but sharp drop at k∗

F .

IV. DISCUSSION AND OUTLOOK

Several remarks are in order. First, the global phase di-
agrams shown in Fig. 1 have a number of consequences.
Tuning Kondo insulating compounds (e.g., under pressure or
chemical doping, which varies the ratio of the RKKY to Kondo
interactions) along some tuning-parameter trajectory opens up
the exciting possibility of realizing new types of quantum phase
transitions. Such a tuning can suppress the insulating gap by
destroying the Kondo effect, liberate the local-moment spins,
and lead to either an AF or paramagnetic metallic phase. In
these metallic phases, the Fermi surface is small as defined
earlier. With a continuous closure of the gap, the QCP is of the
Kondo-destruction (local) type and will be interacting (instead
of Gaussian).

Taking a cut in the global phase diagram leads to a schematic
finite temperature phase diagram, as illustrated in Fig. 5 for
the case that the Kondo destruction of the Kondo insulator
creates the AFS phase. Here, both the Néel temperature TN

and the Kondo-destruction energy scale T ∗ go to zero at the
QCP. This provides the theoretical basis to understand why
pressure induces a Kondo insulator to antiferromagnetic metal
transition [29–31] and why signatures of an interacting QCP
such as E/T scaling will accompany such a transition.

FIG. 5. Schematic finite temperature phase diagram as a function
of the control parameter δ. T 0

K is the bare Kondo temperature.)

Second, we have demonstrated that a precursor Fermi
surface appears in a Kondo insulator, which has the form of a
small Fermi surface without incorporating the f electrons. The
implications of this are significant. For example, our results
imply that a Kondo insulator such as SmB6 will have an
incipient Fermi surface taking the form of the actual Fermi
surface of LaB6. Quantum oscillations have recently been
extensively studied in SmB6 [32–34], and there is evidence that
the oscillation frequencies are similar to those of LaB6 [33,34].

In conclusion, we have determined the global phase diagram
of Kondo insulators in both the periodic Anderson and Kondo-
lattice models. Our result allows the understanding that the
pressure tuning of Kondo insulators induces magnetic metal
phases. Our study also underscores the simplification of the
Kondo insulators compared to the heavy fermion metals,
namely the absence of a (conventional) large Fermi surface.
Correspondingly, our results hold the potential to open up an
exciting and new direction, viz., to study antiferromagnetic
and insulator-metal quantum phase transitions in Kondo in-
sulators with varying geometrical frustration, or with varying
dimensionality through thin films or heterostructures. Finally,
we have studied the momentum distribution of the single-
electron excitations in the Kondo insulator phase. We have
demonstrated the imprints of a small Fermi surface in this
distribution, which elucidate the recent de Haas–van Alphen
experiments in SmB6.

Note added. After the submission of this manuscript, two
recent theoretical studies were brought to our attention [48,49];
the motivations of these studies in part overlap with those of
ours.
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