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Stochastic lists: Sampling multivariable functions with population methods
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We introduce the method of stochastic lists to deal with a multivariable positive function, defined by a self-
consistent equation, typical for certain problems in physics and mathematics. In this approach, the function’s
properties are represented statistically by lists containing a large collection of sets of coordinates (or “walkers”) that
are distributed according to the function’s value. The coordinates are generated stochastically by the Metropolis
algorithm and may replace older entries according to some protocol. While stochastic lists offer a solution to the
impossibility of efficiently computing and storing multivariable functions without a systematic bias, extrapolation
in the inverse of the number of walkers is usually difficult, even though in practice very good results are found
already for short lists. This situation is reminiscent of diffusion Monte Carlo and is hence generic for all population-
based methods. We illustrate the method by computing the lowest-order vertex corrections in Hedin’s scheme for
the Fröhlich polaron and the ground-state energy and wave function of the Heisenberg model in two dimensions.

DOI: 10.1103/PhysRevB.98.085102

I. INTRODUCTION

We are interested in the solution F (x) of equations of the
type

F (x) = F0(x) + K[F (x)], (1)

where the coordinate x is high-dimensional. The (generically
nonlinear) functional K can involve a number of integrations,
multiplications, and summations, but we do not consider
differentiations. Ultimately, the solution of (1) is often used
to compute integrals involving F and some other, simpler
functions. A straightforward approach to solve Eq. (1) is by
fixed-point iterations: Starting from a guess F (0), one computes
the right-hand side, plugs the newly obtained F (1) into the
right-hand side, and continues this iteration until, ideally,
convergence is reached. However, as soon as the dimension is
higher than 3 it becomes very difficult to efficiently compute
and store the function F .

Equations of the above type typically occur in the self-
consistent formulation of quantum field theory, such as the
Hedin equations [1], the Schwinger-Dyson equations [2,3],
parquet equations [4,5], etc. They can also occur in the presence
of spontaneous symmetry breaking, such as the BCS theory,
when the ordering field has to be determined self-consistently.

Whereas the Green’s function, the self-energy, the polarization,
and the effective interaction are typically two-dimensional
in the case of rotational and translational symmetry [i.e.,
there is one spatial (or momentum) coordinate and one time
(or frequency) coordinate] and can be stored efficiently with
standard grids, the irreducible three-point vertex is already five-
dimensional in three dimensions. Studies attempting to solve
the Hedin equations therefore often treat the vertex function
as just a bare vertex, leading to the GW approximation. Alter-
natively, the full function is represented by an infinite number
of contributions that involve only relatively simple integrals
(see the expansion of the Luttinger-Ward functional [6] in the
Baym-Kadanoff effective action [7,8] (or its generalization to
bosons [9,10]) popular in the context of electronic structure
calculations).

This problem, sometimes referred to as the curse of dimen-
sions, is among the most prominent ones faced by diagram-
matic Monte Carlo (DiagMC) methods. This is unsatisfactory
because the premise of the DiagMC simulation is precisely to
deal with high dimensions while maintaining the central limit
theorem. In this work, we introduce stochastic lists, a method
in which the high-dimensional function F (x) is represented by
a stochastic list of coordinates x1, x2, . . . , xP , with P being the
length of the list. Specifically, a positive F is considered as a
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probability function with norm N and is faithfully represented
as

1

N

∫
F (x)dx ↔ 1

P

P∑
j=1

δ(x − xj). (2)

The entries in the stochastic list are obtained by some Markov
process [which will be discussed later; the key property is that
the values of F (x) do not explicitly enter into the equation
used for generation of the list entries] and can be refreshed
by some protocol, which is non-Markovian. The list provides
a faithful statistical representation of F (x): Any quantity of
interest which can be written as some integral over F can be
computed. In this work we assume that F is positive.

We benchmark the approach by considering two different
systems. First, we study the Hedin equations for the Fröhlich
polaron by computing the lowest-order vertex corrections
self-consistently. Second, we formulate the power method to
find the ground state of a Hamiltonian in the language of
stochastic lists and study the ground-state energy and wave
function of the two-dimensional Heisenberg model. We find
that, in practice, short lists give already remarkably accurate
results. Typically, a power law extrapolation can be attempted
over several decades in 1/P . However, we found deviations for
longer lists (in our examples when P � 106), which makes any
extrapolation difficult (unless the stochastic error dominates at
this point).

As is clear from the power method example, stochastic
lists share a number of properties with the diffusion Monte
Carlo method. An exponential scaling for diffusion Monte
Carlo was reported previously in the literature and was related
to the correlation within the population of walkers as a
consequence of the population control mechanisms [11]. It
seems therefore that all population-based methods ultimately
scale exponentially, implying that for sufficiently large (and
hard) systems the extrapolation cannot be done reliably to
eliminate the systematic bias. This outcome also questions the
practicality of the method for arbitrary (bosonic) problems.
Nevertheless, for many realistic cases this scaling will not be
seen (due to the dominance of the stochastic error), and with
sufficient insight into the problem (such as choosing a very
good guiding wave function) the prefactor can be substantially
reduced such that the scaling is not an issue. This we can also
demonstrate for stochastic lists.

This paper is structured as follows. In Sec. II, we study the
noncrossing approximation and the lowest nontrivial order ver-
tex corrections for the Fröhlich polaron problem. In Sec. III, we
proceed with the ground-state energy of the two-dimensional
Heisenberg model, with a special emphasis on the numerical
convergence of the stochastic process. We conclude in Sec. IV.

II. THE HEDIN EQUATIONS FOR THE FRöHLICH
POLARON PROBLEM

As a first application, we consider the Hedin equations for
the Fröhlich polaron. This system has a positive expansion
and is known to be convergent at any finite temperature.
It is hence free from the most important restriction on the
DiagMC method, which is the series convergence. (Since the
DiagMC algorithms work by iteration, they typically require

a finite region of convergence.) Sign-positive representation
also implies that there is no need to take special care of
the diagram topologies, and one can proceed with standard
Metropolis-Hastings sampling techniques [12,13]. Therefore,
the study of the Fröhlich polaron provides an ideal opportunity
to benchmark the idea of stochastic lists in the context of vertex
corrections.

A. Model

The Fröhlich polaron model describes the interaction be-
tween an itinerant electron and longitudinal optical phonons
in insulators. Historically, it was the first problem to which the
DiagMC method was applied [14–16] and for which it was able
to provide definite answers regarding the polaron spectrum and
arbitrarily precise polaron energies for any coupling strength.
The Hamiltonian in the thermodynamic limit is given by
(h̄ = 1)

H = Hel + Hph + Hel−ph,

Hel =
∫

d3k

(2π )3

k2

2m
a
†
kak,

Hph =
∫

d3q

(2π )3
ωqb

†
qbq = ωph

∫
d3q

(2π )3
b†qbq, (3)

Hel−ph =
∫

d3k d3q

(2π )6
V (q)(b†q − bq)a†

k−qak,

V (q) = iωph

q (2mωph)1/4

(
4πα

V

)1/2

= iα̃

q
.

The operators ak and bq are annihilation operators for electrons
of mass m with momentum k and phonons with momentum q,
respectively. The phonon frequency ωq ≡ ωph can be taken to
be momentum independent for optical, longitudinal phonons.
The dimensionless coupling constant is α. Typical values for
α range from 0.023 for InSb over 0.29 for CdTe to 1.84 for
AgCl [17].

Here we focus on the T = 0 case. In the imaginary-
time representation, the bare propagator reads G0(k, τ ) =
−θ (τ ) exp [−( k2

2m
− μ)τ ]. The phonon propagator D(q, τ ) =

(α̃/q )2 exp(−ωphτ ) remains unrenormalized and is disper-
sionless. We absorbed the modulus squared of the electron-
phonon interaction potential into the phonon propagator for
convenience (the two factors always enter the technique as
a product). The method of stochastic lists cannot deal with
momentum or frequency conservation because all coordinates
of the vertex function are generated by the list without re-
strictions. We therefore need to work in the imaginary-time,
real-space representation, where the propagators for phonons
and electrons read D(r, τ ) = α̃2

4πr
exp(−ωphτ ) and G0(r, τ ) =

−θ (τ )( m
2πτ

)3/2 exp(−mr2

2τ
+ μτ ), respectively.

B. The noncrossing approximation

As a first application to set the ideas, we solve the Fröhlich
polaron problem in the noncrossing approximation (NCA),
which corresponds to the first-order skeleton diagram. The
coupled set of NCA equations reads [we employ both (k, ωn)
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and (r, τ ) representations to simplify these equations]

�(1)(r, τ ) = D(r, τ ) G(1)(r, τ ) ,

G(1)(k, ωn) = 1

G−1
0 (k, ωn) − �(1)(k, ωn)

. (4)

Reference NCA data can be found in the lecture notes in
Ref. [18].

In order to solve these equations with stochastic lists,
we cast the entire setup as a single self-consistent nonlinear
integral equation of the form (1):

G(1)(X) = G0(X) +
∫

I d4X1 d4X2,

I = G0(X1) G(1)(X2−X1) D(X2−X1) G(1)(X−X2),

(5)

where we introduced the four-dimensional space-time position
vectors X = (r, τ ), X1 = (r1, τ1), and X2 = (r2, τ2). We then
pretend that G(1)(X) cannot be evaluated and stored as a
function, but its properties can be represented by a collection,
the list, of X coordinates generated stochastically by sampling
the right-hand side of (5) using standard DiagMC techniques.
There is no gain in using rotational symmetry for the coordi-
nates in the list since symmetrized elements will just be called
more often from the list in order to sample the space possessing
this symmetry.

The minimal set of updates consists of switching between
the two sectors corresponding to the first and second terms
on the right-hand side of (5). The known integral over the first
term,N0 = ∫ |G0(X)|d4X = 1/|μ|, is used for normalization:
The Monte Carlo statistics for any property is properly nor-
malized once multiplied by the factor N0/Z1, where Z1 is the
number of samples that belong to the first term. For example,
the normalization integral NG = ∫ |G(1)(X)|d4X is obtained
as NG = N0(Z/Z1), where Z is the total number of samples
(no matter whether they belong to the first or second term).

In order to go from the first to the second term, we draw a
random variable τ1 according to an exponential distribution
∝ |μ|e−|μ|τ1dτ1 and then generate three random numbers
(x1, y1, z1) according to a Gaussian distribution with zero mean
and variance τ1/m; the corresponding probability density is
based on the G0 function. Next, we choose coordinates X3

and X4 uniformly from the existing list; they define X2 =
X1 + X3 and X = X2 + X4 by translation invariance. The
probability 1/P 2 for selecting these two variables from the
list is a faithful representation of the probability G(1)(X2−
X1) G(1)(X−X2) d4X2 d4X/N 2

G, which follows from Eq. (2).
In the reverse update taking the simulation from the second
to the first term, the coordinates of the free propagator are
again determined by the probability density based on G0: an
exponential random number for the time and three Gaussian
random numbers for the space.

The key property behind the list technique is that all the
values of the unknown function G(1) cancel in the acceptance
ratio: The unknown full Green’s functions appear in both
the proposed configuration weight and the probability density
used to generate new variables. For the same reason all
exponential and Gaussian factors cancel G0(X1). This results
in an acceptance ratio R = D(X2−X1)N 2

G (and 1/R for the
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FIG. 1. Comparison of the Green’s function dependence on imag-
inary time at zero momentum −G(p = 0, τ ) obtained in the NCA
approximation between the stochastic list method (stoch. list) and an
explicit evaluation. Data are shown for α̃ = 5, μ = −4 and the list
length P = 106.

reverse update). The update is then accepted with probability
min(1, R), according to the Metropolis-Hastings algorithm.
One thus arrives at a protocol of dealing with a function without
knowing/revealing its explicit form.

In this implementation, we work with an existing list from
which we draw random coordinates while simultaneously
preparing a new list which we consecutively fill after each
Monte Carlo update by recording the current value of X (in
both sectors). When the new list is full, it replaces the existing
one, and the new list is reset to zero. To initialize the procedure,
we start with a short list based on random coordinates that we
draw from the G0 distribution, which we let grow by a small
factor of the order of 1.001/1.01 until the maximum length is
reached.

The results for a moderate coupling α̃ = 5 are shown in
Fig. 1. Within the level of resolution of the plot, there is no
difference between the exact NCA result and the one obtained
with stochastic lists of the length P = 106. We postpone
the discussion of convergence properties until Sec. III. Here
we simply note that for P = 106 any systematic bias was
subdominant to the statistical noise. Also, there is no need for
fast Fourier transforms (cf. Ref. [18]) when employing lists
and thus no need to take care of the asymptotic behavior of the
Green’s function for large frequencies.

C. First-order vertex corrections

We now consider the Hedin scheme [1] where the vertex
function takes into account both the zeroth-order term and the
first-order corrections. The system to solve consists of three
equations, two of which are shown graphically in Fig. 2, and
the third one is the Dyson equation for the Green’s function.
Our implementation involves two stochastic lists: one for the
Green’s function G(X), as before, and the other one for the
three-point vertex �(X1, X2), the latter containing six spatial
and two temporal coordinates. (As before, there is no gain
in exploiting symmetries to reduce the number of spatial
coordinates.) We set up one stochastic Markov chain process to
sample both quantities. The algorithm itself is a straightforward
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FIG. 2. Top: Lowest-order contributions to the three-point vertex
in the (imaginary-time, real-space) representation. Bottom: Self-
energy in terms of the three-point vertex in the (imaginary-time,
real-space) representation.

extension of the one discussed above, and we will not elaborate
here on minute technical details.

Reference data were obtained from the algorithms discussed
in Ref. [18], where we used the bare-series code with the up-
dates “insert-remove” and “dress-undress” switched on and the
“swap” update switched off. Starting from an arbitrary Green’s
function diagram, the insert update attempts to insert a new
D-propagator without dressing any of the existing vertices;
that is, none of the vertices covered by the new D propagator
remains unlinked on the updated time interval. Remove is the
complementary update. The dress update attempts to insert a
new D propagator that covers precisely one vertex; the undress
update is its complementary partner. This set of updates is
not ergodic for the full problem (e.g., no diagrams in which
a D propagator covers two or more nonlinked vertices can be
reached), but it accounts for all diagrams covered by Fig. 2.

The results of benchmark comparison are shown in Fig. 3.
We see that perfect agreement is reached for the Green’s
function at zero momentum as a function of imaginary time
for a list of length P = 106 (the same length is used for both G
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FIG. 3. Comparison of the Green’s function dependence on
imaginary time at zero momentum −G(p = 0, τ ) obtained by the
stochastic list method applied to the scheme illustrated in Fig. 2 with
a list of length P = 106 (“P=1M”) versus the result obtained by a
conventional DiagMC simulation restricted to sample the same set of
diagrams from the bare series (see text).

and �). The method of stochastic lists seems thus promising to
study vertex corrections in the context of (bosonic) dynamical
mean-field theory and its cluster extensions. However, as we
will see in the next section, establishing the convergence of the
answer can be done only on a case-by-case basis at best.

III. GROUND STATE OF THE ANTIFERROMAGNETIC
HEISENBERG MODEL

In this section, we consider the spin-1/2 Heisenberg anti-
ferromagnet (HAF) on a square lattice,

H = J
∑
〈i,j〉

Si · Sj = J

2

∑
〈i,j〉

(
S+

i S−
j + S−

i S+
j + 2Sz

i S
z
j

)
, (6)

with spin exchange amplitude J > 0. The sum is over nearest-
neighbor sites, and the lattice is of size L × L. By performing
the unitary transformation Sx

i → −Sx
i , S

y

i → −S
y

i , Sz
i →

Sz
i on one of the sublattices, the sign of the amplitude in front of

the raising and lowering terms is reversed. The matrix elements
of C − H , for an appropriately chosen constant C = JL2/2,
are then all positive in the usual Sz basis. The eigenvalue
problem

(C − H )ψ = (C − E0)ψ (7)

can be considered a power method when the state ψ is
iteratively represented by the stochastic list. It yields the
absolute value of the largest eigenvalue in magnitude, whose
eigenfunction can always be chosen to be positive for a positive
matrix. With the above transformations, this corresponds to
projecting onto the antiferromagnetic ground state (and not the
ferromagnetic antiground state). This problem is challenging
because of the gapless spectrum of elementary excitations in
the thermodynamic limit and the large dimension of the Hilbert
space, growing exponentially with system size.

The coordinates in the list now consist of L2 bits represent-
ing the spins on the lattice. We add to the sampled configura-
tion space a dummy spin-independent term for normalization
purposes; the equation to solve thus contains a normalization
constant CN as well as the matrix-vector multiplication term.
The key updates are switching between these two terms. To
go from the former to the latter, we pick randomly an entry
from the stochastic list of length P , which provides us a
coordinate (Fock state) j . The probability of this selection is
1/P or, according to Eq. (2), |ψj |/Nψ , where Nψ = ∑

j |ψj |
is the normalization sum (estimated using the same procedure
as described above for NG). Next, we have to determine all
nonzero Hamilton matrix elements Hij when acting on the state
corresponding to coordinate j . We assume that the Hamilto-
nian is too large to be stored explicitly, so that this step must
be repeated in every Monte Carlo update. For sparse matrices,
there are very few possible final coordinates i. We choose the
final coordinate i according to the heat bath algorithm, i.e., with
probability pi = Hij/H̄j , where H̄j = ∑

i Hij . The resulting
Metropolis-Hastings acceptance ratio is just R = NψH̄j /CN

(and 1/R for the reverse update). The update is accepted
with probability min(1, R). We also occasionally employed the
Metropolis-like algorithm, in which one of the nonzero matrix
elements Hij is chosen with uniform probability instead of the
heat bath algorithm. It did not lead to significant differences in
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FIG. 4. Difference between the exact energy per site (taken from
Ref. [19]) and the one obtained either with a stochastic list of length P

(see text for an explanation of the different protocols) or in a diffusion
Monte Carlo simulation with Nw walkers (“Hetherington,” with k =
128; see text). The system is a 2D Heisenberg model with linear size
L = 10 with J = 1.

the autocorrelation times. A good choice for the dummy term
constant is CN = 2JL2 (to compensate the typical value of the
H̄j sum). Measurements of the parameter Nψ and recordings
of the new list entries are performed only in the matrix-vector
multiplication sector.

Apart from the previously discussed protocol (protocol 1)
where the current list is replaced by the new one once the
latter is completed, we also applied protocol 2. Here there is
only one list updated at each Monte Carlo step by drawing a
random integer in the interval m ∈ [0, P [ and replacing the
existing entry m with the new coordinate. In protocol 3 the
list is continuously growing as a function of the Monte Carlo
steps according to P = √

τMC/κ . The list grows then by one
entry whenever the integer part of

√
τMC/κ increases by 1;

otherwise, an existing entry is overwritten when measuring the
list. As will be clear from the results, the differences between
these protocols are not of leading importance.

The above algorithm works remarkably well for small
matrices, even if they are poorly conditioned. For a system
of size L = 4, the systematic error can easily be made smaller
than the statistical noise. When P exceeds 1000, we find that
the systematic error decreases as 1/P . However, at larger
system size (meaning L = 10 and larger), this extrapolation
law is no longer valid: Longer lists are needed, which need
to be iterated much longer to converge. We also observe that
the converged results cannot be extrapolated as a power law in
1/P (even though the results are remarkably accurate already
for short lists). This gets worse with increasing system size,
and the marginal gain of using longer lists diminishes further.
We also see in Fig. 4 that the scaling does not depend on
which protocol we use, suggesting that the reason for the
inefficiency of the simulation must be found in the buildup
of autocorrelations scaling unfavorably with the system size:
Due to the overwriting of the entries in the stochastic list, a few
Fock states tend to dominate, and the superposition of those is
not the exact ground state. Protocol 3 appears to yield results
that can be extrapolated by a single power law over several
decades in 1/P and may hence look superior. Some care with
this observation is, however, needed because we could not

reach lists that are as long as in protocols 1 and 2; that is,
it might be that the law P = √

τMC/κ is still too fast when
P � 105.

The method of stochastic lists applied to the power method
is highly reminiscent of diffusion Monte Carlo, which has also
been applied to the Heisenberg model with impressive results
[20–25]. We make a comparison here with an implementation
motivated by the original algorithm by Hetherington [20] and
the reconfiguration ideas of Ref. [25]. In this scheme, Nw walk-
ers propagate through the Fock space, but instead of satisfying
a detailed balance condition, they acquire multiplicative weight
factors (these are the previously introduced H̄j sums), which
fluctuate at an extensive scale. After a number of generations
k, a population-control mechanism is applied to keep the
number of walkers fixed. Walkers with high weight are more
likely to reproduce, and walkers with a low weight are more
likely to be eliminated. The resulting bias is compensated by
global factors 〈H̄ (1)〉, . . . , 〈H̄ (k)〉 (i.e., the H̄ values averaged
over all walkers in every generation); see Refs. [20,25] for
details. In Fig. 4 we see that the above algorithm with k = 128
yields results that are more accurate than the list when there
are few walkers but that the scaling is the same as for the
list. We checked that the same holds for k = 12. It has been
known since the early days of diffusion Monte Carlo that the
population size might easily lead to the dominant source of
error; more recently, Nemec claimed an exponential scaling
[11], and population size bias was also found by Boninsegni
and Moroni [26]. The explanation given by Nemec apparently
also applies to stochastic lists.

It is well known that diffusion Monte Carlo can significantly
be enhanced by using a good guiding wave function. For the
HAF model, and certainly for small system sizes, excellent
variational Jastrow wave functions are known [27]. We em-
ployed here a simpler but faster to evaluate Gutzwiller ansatz,
reminiscent of perturbation theory,

ψG ∼
∏
〈i,j〉

exp
( − bSz

i S
z
j

)
, (8)

where b is a variational parameter (note, however, that we
have no proof that our final answer for the ground-state energy
is variational). For b > 0 antiferromagnetic correlations are
enhanced. The only change to the code is that the Hamiltonian
matrix element is replaced by Hij = ψG(i)Hij/ψG(j ), where
ψG(i) denotes Eq. (8) evaluated for spin configuration i. We
performed the simulation for various values of b using protocol
3. We show in Fig. 5 the convergence for b = 0.8, which is very
close to optimal. We find that the energies differ by an amount
8 × ∼10−6 for the longest lists we have studied, P ∼ 8 × 105.
Figure 5 makes clear, however, that the energy still drifts as
a function of 1/P . If we extrapolate, the results agree within
error bars (of the order of 4 × 10−6) with Sandvik’s stochastic
series-expansion results [19] and with the diffusion Monte
Carlo results of Ref. [25]. These results are hence up to two
orders of magnitude more precise than the results without using
the guiding wave function. However, a poor guiding wave
function can lead to severe slowing down and, recalling our
main goal of studying vertex corrections, one has to recognize
that good (and easy to evaluate) guiding schemes are not
available in general.
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FIG. 5. Absolute value of the energy per site as a function of
1/P using protocol 3 (with κ = 1) with a Gutzwiller guiding wave
function with b = 0.8, which is (close to) optimal. The error bars
were obtained from ten independent runs. The data are compared
with the value E/J = −0.671549(4) per spin, plotted as a thin blue
line with its error bars shown as thin dot-dashed green lines, obtained
by Sandvik using the stochastic series-expansion method [19]. The
data were extrapolated linearly (shown as a solid line) according to
E(x ) = E0 − bx with x = 1/P , resulting in a = 0.671555(4) and
b = 11.3(4). The system is a 2D Heisenberg model with linear size
L = 10 with J = 1.

IV. CONCLUSION

We have introduced the method of stochastic lists, which
allows one to accurately emulate properties of a multivariable
function F (x). The repeatedly refreshed list consists of a large

set of coordinates x distributed according to the F (x) values.
The list of length P represents only a tiny fraction of the
full coordinate space of F , but after it is refreshed multiple
times, a faithful representation of the entire F (x) function
is obtained. The method was benchmarked by computing
vertex corrections self-consistently for the Fröhlich polaron
model and by applying the power method for obtaining the
ground-state energy and wave function of the antiferromag-
netic Heisenberg model. The method gives reasonably accurate
results for most problems in practice and can apparently
be extrapolated as a power law over several decades in the
inverse list length. However, for very long lists we could
observe deviations, rendering a controlled extrapolation for an
arbitrary problem difficult. This behavior seems inherent in all
population-based methods. Nevertheless, stochastic lists are
extremely promising for many problems where clever guiding
functions for the stochastic sampling are known. Here the
systematic error can be reduced to such a degree that it becomes
irrelevant in practice.

The open data for this project, including an open source
implementation for Fig. 5, are available online [28].
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