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From topologically protected coherent perfect reflection to bound states in the continuum
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A mechanism for perfect reflection is proposed for the dielectric medium beyond the total internal reflection and
band gaps. It arises from the coherence of multiple propagating modes, and can be determined by the topological
vortex of a transmission coefficient with a nonzero winding number in parameter space. Based on the coherent
perfect reflection, a generalized waveguide condition is derived analytically. In a photonic crystal slab, the modes
that satisfy this condition are precisely bound states in the continuum. Our findings may have many potential
applications in guided-wave optics.
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Guiding light is significant in classical and modern optics.
As the basis of guided-wave optics, the total internal reflection
plays a key role in modern optical fiber communication
networks [1]. Complete reflection can also be achieved by
the interference of light reflected from the upper and lower
boundaries of a thin film. If a single boundary is considered,
photonic band gaps can provide another mechanism for guiding
light in addition to index guiding [2–4]. Band-gap confinement
is extensively adopted in the miniaturization and integration
of optical components [5]. Both of the above mechanisms
require an essential element, a mirror to reflect and guide light.
With the mirror, the corresponding radiation channels can be
closed. Recently, a topologically nontrivial mirror has received
considerable interest in photonic systems [6]. If a topological
phase transition takes place, namely, that the topology of the
frequency band is different across an interface, edge states
are guaranteed to exist within the bulk gap, which leads to
the robust unidirectional propagation of light and other remark-
able phenomena [7–16].

Here, we propose a mechanism for designing the mirror,
called coherent perfect reflection (CPR). Compared to the total
internal reflection and band gap working for an individual
ray or Bloch mode, this CPR comes from the coherence of
propagating modes supported in the photonic structure. It
is demonstrated that a transmission vortex can exist if the
coefficient ratio of the propagating modes is chosen properly.
This effect is topological since the complex transmission
coefficient has a nonzero winding number in parameter space.
In contrast to a topologically nontrivial mirror [6] with working
frequencies in the bulk band gaps, the CPR has its working
frequencies in the passing bands. With this type of mirror,
the conventional waveguide condition (total internal reflection
and resonance condition) for the planar dielectric waveguide
can be generalized to the CPR and resonance conditions. In a
photonic crystal (PC) slab, the topological singularity of the
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transmission coefficient can be maintained while light travels
along the waveguide if the mode satisfies the generalized
waveguide condition.

This generalized waveguide condition can be associated
with the well-known bound states in the continuum (BICs).
As a type of bound state embedded in the continuum, the BIC
was first proposed in a quantum system [17] and later revealed
to be a general wave phenomenon [18]. It has been extended in
various physical systems such as photonics [19–26], acoustics
[27,28], and water waves [29,30]. The infinitely high-quality
factor of BICs renders many applications possible [31–34].
Recently, the topological nature of BICs in PC slabs has
been demonstrated, which corresponds to vortex centers in the
polarization directions of far-field radiation [22]. The robust
existence of BICs in periodic structures is therefore connected
to topological physical phenomena beyond the band-structure
analysis [22,26,28,35]. Here, we demonstrate that the BICs can
be naturally obtained as a result of the generalized waveguide
condition by combining the proposed CPR and resonance
conditions.

The mechanism for the CPR is presented in Fig. 1. Total
internal reflection takes place outside the light cone as sketched
in Figs. 1(a) and 1(c). The corresponding incident angle
has to exceed the critical angle and is usually large if the
relative refractive index is not too high. Within the light cone,
the propagating modes will transmit through the interface.
However, there may exist multiple modes sharing the same
parallel component of momentum as shown in Figs. 1(b)
and 1(d). For an incident wave indexed by n, the corresponding
complex coefficients of transmission t (n) are nonzero. If there
are N modes in total impinging on the interface, intriguingly,
there is a special kind of perfect reflection named CPR, coming
from the destructive interference of these modes. The CPR
condition is such that

∑
t (n) = 0. (1)

The cancellation of all the complex coefficients can be sketched
in the complex plane, shown by a phasor diagram in the inset
of Fig. 1(b). This condition can be reached by controlling the
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FIG. 1. (a) Schematic of total internal reflection. It occurs below
the light line ω = ck/n< as shown in (c). (b) Transmission of multiple
incident modes. These modes share the same parallel component of
wave vector ky while possessing a different normal component kz

inside the light cone, as shown in (d).

relative ratio of complex amplitudes between these modes. It
offers a mechanism for designing a mirror to reflect light inside
the light cone if there are multiple propagating modes sharing
the same parallel component of momentum.

With this type of mirror, light can be further guided based
on the CPR mechanism. In Fig. 2, a special waveguide that
supports multiple propagating modes is considered. an and
rn are the complex coefficients of the incident and reflected
waves for the nth mode. Assuming that the CPR condition
Eq. (1) is satisfied for the upper interface with a properly chosen
incidence (a1, a2, . . .), the reflection coefficients (r1, r2, . . .),
however, will become the corresponding incidence for the
lower interface. The CPR condition can be maintained for the
lower interface as long as

rn/an = const for arbitrary n. (2)

FIG. 2. A waveguide mode based on coherent perfect reflection
(CPR). The condition of CPR can be maintained if the relative ratios of
propagating modes are kept the same at the upper and lower interfaces
when the light bounces back and forth in the waveguide. A ray model
is sketched and the phase shift is indicated by an additional distance
(dashed line).

In other words, the relative ratio of these modes should
be preserved after a bounce. In fact, only a phase factor can
exist since these modes are totally reflected. In guided-wave
optics, the resonance condition is another essential point in
addition to the total internal reflection [36]. This condition can
also be extended for multiple rays of light. At the interface,
each reflection is accompanied by a phase shift ϕ(n)

r for the
nth propagating mode. The round-trip phase shift of each
propagating mode should be an integer multiple of 2π , and
the generalized resonance condition is

k(n)
z h + ϕ(n)

r = m(n)π, (3)

where h is the thickness of the waveguide, and m(n) is an
integer. Equations (1)–(3) can be treated as the generalized
waveguide condition for this special waveguide. This general-
ized condition gives the waveguide modes inside the light cone,
which are BICs precisely. Combining these three equations we
have rn/an = ±1 for the symmetric waveguide. The positive
and negative signs correspond to the even and odd symmetries
of the waveguide mode.

To demonstrate the CPR, we take a one-dimensional (1D)
PC as example. This PC is periodic in the y direction with
a period a and uniform in the x direction, as schematically
shown in Fig. 3(a). The alternating dielectric layers have a
thickness d1 and d2, and permittivity ε1 and ε2, respectively.
The dielectric constant of the background medium is set as εb.
Transverse electric (TE) waves are considered without loss of
generality. The dispersion relation can relate the frequency ω,
the parallel component of the wave vector, and the Bloch wave
vector (kz and q), given in the Supplemental Material [37].

The complex band structures for the TE waves are shown in
Fig. 3(b). Here, the parameters are chosen as ε1 = 1, ε2 = 4.9,
d1 = d2 = 0.5a, and q = 0.6π/a. In addition to the normal
dispersion for extended states (red) with k2

z > 0, the evanescent
states (blue) with k2

z < 0 are also shown. These evanescent
modes will decay (or grow) along the z direction, and cannot
be neglected in the boundary conditions at the PC interface.
Note that for a fixed frequency ω, there always exist a finite
number of propagating modes (red) while an infinite number
of evanescent modes (blue) as the imaginary kz goes to infinity.

Considering a series of modes in the PC impinging on the
PC interface, (a1, a2, . . .) are the complex coefficients for the
incident waves with a fixed frequency ω and Bloch wave vector
q. The electromagnetic field can be written as the superposition
of all the propagating and evanescent modes. In region I shown
in Fig. 3(a), one has

EI
x (y, z) =

∞∑

n=1

(
ane

ik
(n)
z z + rne

−ik
(n)
z z

)
u(n)

q (y)eiqy, (4)

where rn is the complex coefficient of the reflected waves.
u(n)

q (y) is the periodic-in-cell part of the Bloch wave function
for the nth state.

In region II, similarly we have

EII
x (y, z) =

∞∑

m=−∞
tmei(ky,my+kz,mz), (5)

where ky,m = q + 2πm/a, q = √
εbk0 sin θ , and kz,m =√

εbk2
0−k2

y,m. θ is the refraction angle. tm is the complex co-
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FIG. 3. Topologically protected coherent perfect reflection for a
truncated photonic crystal. (a) Schematic of a semi-infinite 1D PC
truncated at the z = 0 plane. (b) Complex band structure for a fixed
Bloch wave vector q. The extended and evanescent modes are shown
by the red and blue dashed lines, respectively. In the region marked in
gray, there exist only two propagating modes (u(1) and u(2)), while
an infinite number of evanescent modes if the imaginary kz goes
to infinity. (c) Coherent perfect reflection in the parameter space
[Re(a2/a1), Im(a2/a1)] as a function of ω. In the box enclosing the
red dot, the vector fields of {Re(t0), Im(t0)} are shown by the arrows in
the inset of (c). (d)–(f) Field profiles of Re(Ex ) at ω = 1.2(πc/a). (d)
is the superposition of (e) and (f), where the transmission cancels out
exactly and forms coherent perfect reflection. (e) and (f) correspond
to the single mode incidence with only the mode u(1) and u(2). Here,
the parameters are chosen as d1 = d2 = 0.5a, ε1 = εb = 1, ε2 = 4.9,
q= 0.6π/a.

efficient of total transmission for the mth diffraction order.
Note that in Eq. (1), t (n) comes from a single channel with
the incidence an �= 0 and an′ �=n = 0 for all the n′th mode.
Therefore, the total transmission tm is the summation of
t (n)
m contributed from all the individual channels n. At the

interface, the boundary conditions (continuity of tangential E

and H fields) should be satisfied. Including the evanescent
mode near the PC interface will naturally give the additional
boundary conditions in the Maxwell equations [38,39]. These
boundary conditions can be rewritten by applying a Fourier
transform [40].

We first consider the simplest case of semi-infinite PC
truncated at a plane of z = 0. All the evanescent modes
that increase away from the interface should be excluded.
Therefore, the incidence will be (a1, a2, . . . , aL) and an>L = 0

if the number of propagating modes isL in total and all the other
modes are evanescent. In contrast, the evanescent modes can
appear in the reflection and all rn are allowed in principle. With
the boundary condition, the relation between the coefficients
(an, rn, tm) can be derived. The reflection and transmission
properties of this semi-infinite PC are determined by the above
complex coefficients [37]. The CPR condition for the truncated
1D PCs is simply that tm = 0 for all the diffraction channels
inside the light cone.

If the frequency ω lies in the gray region shown in Fig. 3(b),
there are only two propagating modes (an = 0 for n > 2) in
the PC, namely, u(1) with a smaller kz and u(2) with a larger
kz. Furthermore, there might be leaky channels to the free
space for the diffraction order with m �= 0. Here, we focus
on the case where there is only zeroth-order transmission
(t0), and all other diffraction channels for m �= 0 are closed
since the corresponding transmitted evanescent waves will not
give rise to a leakage of energy. This theory can be directly
generalized to a case with high-order diffraction channels. In
Fig. 3(c), a set of points satisfying the CPR condition (t0 = 0)
are exhibited in the parameter space [Re(a2/a1), Im(a2/a1)]
as a function of ω. In general, t0 is a complex function and
the CPR corresponds to the node of this complex function.
In the inset of Fig. 3(c), a two-dimensional (2D) vector field
{Re(t0), Im(t0)} is introduced to represent the complex t0.
Interestingly, the CPR is the center of the vortex of transmission
shown in the box (red dot). The corresponding winding number
around the CPR point is +1, manifesting that the effect of
CPR is topological in nature. And as the frequency varies,
the locus of this topological singularity in the complex plane
[Re(a2/a1), Im(a2/a1)] also changes and forms a path of CPR
as indicated in Fig. 3(c). Therefore, the CPR can be precisely
achieved by controlling the ratio of the complex coefficient of
the two propagating modes.

The spatial field profiles of Re(Ex ) at ω = 1.2(πc/a)
corresponding to the red dot in Fig. 3(c) are shown in Fig. 3(d).
In simulations, the two Bloch waves in the semi-infinite PC
can be reproduced by periodic point sources [37]. We can thus
separate the two Bloch waves for the incidence. Figures 3(e)
and 3(f) correspond respectively to the single mode incidence
with only the mode u(1) and u(2) impinging on the PC interface.
When the ratio of these two incidence waves, namely, a1

and a2, are set to match the CPR condition, the outgoing
waves in Figs. 3(e) and 3(f) will have the same magnitude
but opposite phase. Hence, the superposition of Figs. 3(e) and
3(f) leads to an efficient suppression of transmission and forms
the CPR shown in Fig. 3(d). These simulated results confirm
our theoretical prediction.

Distinct from the semi-infinite PC, a PC slab with a finite
thickness can support evanescent waves with both positive
and negative attenuation. The CPR condition at two interfaces
requires that the relative phase and amplitude of all the modes
remain the same after a bounce. Therefore, the previous
condition an = 0 (n > L for all the evanescent modes) in the
boundary conditions for the truncated PC should be replaced
by Eq. (2) for the PC slab. Equations (1) and (2), and
the resonance condition Eq. (3) for the propagating modes
(n � L), are thus forming the generalized waveguide condi-
tion. Some isolated states, such as states C and D satisfying
the generalized waveguide condition, are marked in Fig. 4(a),
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FIG. 4. Characterization of bound states in the continuum. Two
schemes are considered: (a) a PC slab illuminated by an external plane
wave, and (b) multiple Bloch modes incident inside a PC slab. The
simulated reflection spectra are shown in (a). The theoretical results
calculated by the generalized waveguide conditions are marked by
A, B and C, D, corresponding to the at-� and off-� BICs, respec-
tively. The region with only one leaky channel and two propagating
modes in the PC is enclosed by the dotted black and white lines.
In (b), the vortex of transmission t0 is shown for state D under
the condition that r1/a1 = r2/a2 [Eq. (2) applied only for the two
propagating modes]. The ratio of evanescent waves exemplified by
r3/a3 is plotted in the color scale. Two conditions for the BICs should
be satisfied: vortex of transmission and rn/an = 1 for the evanescent
modes. Here, the thicknesses of the slab is set as 1.4a, and other
parameters are the same as those in Fig. 3(a).

indicating that the CPR condition can be strictly maintained
for each bounce and the leaky channels are closed for this
mode. These nonradiating modes can also be verified by the
reflection spectra of the PC slab. If this slab is illuminated
by an external plane wave, a reflection peak will appear if a
resonant mode exists. In the PC slabs, the BICs have been
theoretically identified and experimentally observed on the
dispersion curves of guided resonant modes since they cannot
be excited by the external waves [19–24]. In Fig. 4(a), the
reflection spectra as a function of q and ω are shown in the
color scale. The reflection peaks disappear at points A, B, C,
and D, agreeing well with the theoretically predicted results.

It should be mentioned that u(1) is an antisymmetric mode at
the � point. Its corresponding zeroth-order Fourier component
ũ

(1)
q,0 = 1

a

∫ a

0 u(1)
q (y)dy = 0, therefore all the coefficients an and

rn for n > 1 will vanish following from Eqs. (S2) and (S3)
[37]. This antisymmetric mode at the � point decouples from
the external radiation naturally due to the symmetry property,
and forms another kind of symmetry-protected BIC rather than
a CPR-based BIC.

To investigate the topological properties of these
special waveguide modes residing inside the light cone,
the vector field of {Re(t0), Im(t0)} in the complex plane of
[Re(a2/a1), Im(a2/a1)] is plotted in Fig. 4(b) for state D in
Fig. 4(a). In contrast to the case of a semi-infinite PC in Fig. 3(a)
where we set an = 0 (n > 2 for all the evanescent modes), here
we fix the ratio of the propagating modes r1/a1 = r2/a2 and
release the condition for the evanescent waves. The ratio of
coefficients rn/an (n > 2) for the evanescent waves can be
solved from the boundary conditions. As an example, |r3|/|a3|
is plotted in the color scale. The bound state D takes place
at the vortex center of t0 as expected. Moreover, |r3|/|a3| = 1
is satisfied at the vortex center, which will give rise to a BIC
exactly. The CPR condition can be maintained since the relative
phase and magnitude of all the coefficients (a1, a2, . . .) and
(r1, r2, . . .) are preserved for any bounce at the PC interface.

In conclusion, we have demonstrated a different kind of
perfect reflection, which is associated with a topological vortex
of transmission. This mechanism is based on the coherence
of multiple modes sharing the same parallel component of
momentum, and can work for any frequency and wave vec-
tor. Based on the CPR, a generalized waveguide condition
is derived. Through the generalized conditions, the special
waveguide modes in the PC slab, or BICs, can be fixed
analytically. This perfect reflection therefore offers a scheme
to design the mirror and is of both theoretical and practical
interest in guided-wave optics.
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Soljačić, and H. Chen, Sci. Rep. 6, 31908 (2016).

[24] Y. Zhang, A. Chen, W. Liu, C. W. Hsu, B. Wang, F. Guan, X. Liu,
L. Shi, L. Lu, and J. Zi, Phys. Rev. Lett. 120, 186103 (2018).

[25] S. Weimann, Y. Xu, R. Keil, A. E. Miroshnichenko, A.
Tünnermann, S. Nolte, A. A. Sukhorukov, A. Szameit, and Y. S.
Kivshar, Phys. Rev. Lett. 111, 240403 (2013).

[26] E. N. Bulgakov and D. N. Maksimov, Phys. Rev. Lett. 118,
267401 (2017).

[27] N. A. Cumpsty and D. S. Whitehead, J. Sound Vib. 18, 353
(1971).

[28] Y. X. Xiao, G. Ma, Z. Q. Zhang, and C. T. Chan, Phys. Rev. Lett.
118, 166803 (2017).

[29] R. Porter and D. V. Evans, Wave Motion 43, 29 (2005).
[30] C. M. Linton and P. McIver, Wave Motion 45, 16 (2007).
[31] K. Hirose, Y. Liang, Y. Kurosaka, A. Watanabe, T. Sugiyama,

and S. Noda, Nat. Photonics 8, 406 (2014).
[32] A. Kodigala, T. Lepetit, Q. Gu, B. Bahari, Y. Fainman, and B.

Kanté, Nature (London) 541, 196 (2017).
[33] A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A.

Khanikaev, J. H. Connor, G. Shvets, and H. Altug, Proc. Natl.
Acad. Sci. USA 108, 11784 (2011).

[34] J. M. Foley, S. M. Young, and J. D. Phillips, Phys. Rev. B 89,
165111 (2014).

[35] Y. Guo, M. Xiao, and S. Fan, Phys. Rev. Lett. 119, 167401
(2017).

[36] A. Yariv and P. Yeh, Photonics: Optical Electronics in
Modern Communications (Oxford University Press, New York,
2006).

[37] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.98.081405 for the dispersion relation, ad-
ditional boundary condition, incidence of a single propagating
mode, relation between the CPR and topological vortices, and
perturbation of CPR.

[38] C. S. Ting, M. J. Frankel, and J. L. Birman, Solid State Commun.
17, 1285 (1975).

[39] R. L. Chern, D. Z. Han, Z. Q. Zhang, and C. T. Chan, Opt.
Express 22, 31677 (2014).

[40] P. Sheng, R. S. Stepleman, and P. N. Sanda, Phys. Rev. B 26,
2907 (1982).

081405-5

https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/s41467-017-01515-2
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1038/natrevmats.2016.48
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1038/nature12289
https://doi.org/10.1038/nature12289
https://doi.org/10.1038/nature12289
https://doi.org/10.1038/nature12289
https://doi.org/10.1103/PhysRevLett.113.037401
https://doi.org/10.1103/PhysRevLett.113.037401
https://doi.org/10.1103/PhysRevLett.113.037401
https://doi.org/10.1103/PhysRevLett.113.037401
https://doi.org/10.1103/PhysRevLett.113.257401
https://doi.org/10.1103/PhysRevLett.113.257401
https://doi.org/10.1103/PhysRevLett.113.257401
https://doi.org/10.1103/PhysRevLett.113.257401
https://doi.org/10.1038/srep31908
https://doi.org/10.1038/srep31908
https://doi.org/10.1038/srep31908
https://doi.org/10.1038/srep31908
https://doi.org/10.1103/PhysRevLett.120.186103
https://doi.org/10.1103/PhysRevLett.120.186103
https://doi.org/10.1103/PhysRevLett.120.186103
https://doi.org/10.1103/PhysRevLett.120.186103
https://doi.org/10.1103/PhysRevLett.111.240403
https://doi.org/10.1103/PhysRevLett.111.240403
https://doi.org/10.1103/PhysRevLett.111.240403
https://doi.org/10.1103/PhysRevLett.111.240403
https://doi.org/10.1103/PhysRevLett.118.267401
https://doi.org/10.1103/PhysRevLett.118.267401
https://doi.org/10.1103/PhysRevLett.118.267401
https://doi.org/10.1103/PhysRevLett.118.267401
https://doi.org/10.1016/0022-460X(71)90707-3
https://doi.org/10.1016/0022-460X(71)90707-3
https://doi.org/10.1016/0022-460X(71)90707-3
https://doi.org/10.1016/0022-460X(71)90707-3
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1103/PhysRevLett.118.166803
https://doi.org/10.1016/j.wavemoti.2005.05.005
https://doi.org/10.1016/j.wavemoti.2005.05.005
https://doi.org/10.1016/j.wavemoti.2005.05.005
https://doi.org/10.1016/j.wavemoti.2005.05.005
https://doi.org/10.1016/j.wavemoti.2007.04.009
https://doi.org/10.1016/j.wavemoti.2007.04.009
https://doi.org/10.1016/j.wavemoti.2007.04.009
https://doi.org/10.1016/j.wavemoti.2007.04.009
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1038/nphoton.2014.75
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/nature20799
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1073/pnas.1101910108
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevB.89.165111
https://doi.org/10.1103/PhysRevLett.119.167401
https://doi.org/10.1103/PhysRevLett.119.167401
https://doi.org/10.1103/PhysRevLett.119.167401
https://doi.org/10.1103/PhysRevLett.119.167401
http://link.aps.org/supplemental/10.1103/PhysRevB.98.081405
https://doi.org/10.1016/0038-1098(75)90688-2
https://doi.org/10.1016/0038-1098(75)90688-2
https://doi.org/10.1016/0038-1098(75)90688-2
https://doi.org/10.1016/0038-1098(75)90688-2
https://doi.org/10.1364/OE.22.031677
https://doi.org/10.1364/OE.22.031677
https://doi.org/10.1364/OE.22.031677
https://doi.org/10.1364/OE.22.031677
https://doi.org/10.1103/PhysRevB.26.2907
https://doi.org/10.1103/PhysRevB.26.2907
https://doi.org/10.1103/PhysRevB.26.2907
https://doi.org/10.1103/PhysRevB.26.2907



