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Conserved spin current for the Mott relation
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The conserved bulk spin current [Shi et al., Phys. Rev. Lett. 96, 076604 (2006)], defined as the time derivative
of the spin displacement operator, ensures automatically the Onsager relation between the spin Hall effect (SHE)
and the inverse SHE. Here, we reveal another desirable property of this conserved spin current: the Mott relation
linking the SHE and its thermal counterpart, the spin Nernst effect (SNE). According to the Mott relation, the
SNE is known once the SHE is understood. In a two-dimensional Dirac-Rashba system with a smooth scalar
disorder potential, we find a sign change of the spin Nernst conductivity when tuning the chemical potential.
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In the rapidly expanding fields of spintronics and spin
caloritronics, the spin Hall effect (SHE) [1,2] and its thermal
counterpart, the spin Nernst effect (SNE) [3–11], have played
important roles. When describing the SHE and SNE in terms of
the bulk spin current in the presence of a band-structure spin-
orbit interaction, there exists a well-known ambiguity about the
definition of a transport spin current when the transported spin
component is not conserved. A conserved bulk spin current
has been proposed by Shi, Zhang, Xiao, and Niu (hereafter
referred to as the SZXN spin current) [12,13] and has been
studied intensively [14–21]. The SZXN spin current operator
is described as the time derivative of the spin displacement
operator (see below). The so-defined spin current has a natural
conjugate force and represents a transport current. The Onsager
relation can thus be established automatically between the SHE
and inverse SHE of this SZXN spin current [12,14,18]. In this
Rapid Communication, we reveal another desirable property of
the SZXN spin current: the Mott relation between the SHE and
SNE. The Mott relation [22] can be viewed as a fundamental
link between the transport current responses to the electric
field and to the temperature gradient in independent-carrier
systems with elastic scattering off disorder. According to the
Mott relation, the SNE is known once the SHE is understood.

As applications, we show that, in the weak disorder-
potential regime, both the SHE and SNE can be finite in a
two-dimensional (2D) Dirac-Rashba system with a smooth
disorder potential, contrary to the vanishing SHE [20,21] and
SNE in a Rashba 2D electron gas. A sign change of the
spin Nernst conductivity is found when tuning the chemical
potential.

Generalized Mott relation. The out-of-equilibrium aver-
age value of an observable Ô in a single-particle system
reads δO = Tr〈Ôeq(δρ̂)〉 + Tr〈ρ̂eqδÔ〉 in the linear response
regime. Here, ρ̂ is the single-particle density matrix with
ρ̂eq and δρ̂ the equilibrium and linear-response components,
respectively. Ôeq and δÔ have analogous meanings, and 〈· · · 〉
denotes the disorder averaging. The usual external perturba-
tions driving nonequilibrium steady states in experiments are
the electric field E and temperature gradient −∇T/T . For
transport effects, the temperature gradient can be equivalently

replaced by the gradient −∇ψ/c2 of a fictitious gravitational
potential ψ introduced by Luttinger (c is the speed of light)
[23]. The first term of δO arises from the density-matrix
linear response δρ̂ = δEρ̂ + δψ ρ̂, whereas the second term
comes from the linear response of the observable operator itself
with respect to external perturbations δÔ = δEÔ + δψÔ. As
a result, the linear response of any transport current Ô of a
single-electron system with respect to the dc uniform E and
−∇ψ/c2 reads (α, β = x, y)

δOα = Loe
αβEβ + L

oQ
αβ

(−∂βψ

c2

)
, (1)

where L
oξ
αβ = D

oξ
αβ + M

oξ
αβ with Doe

αβEβ ≡ Tr〈Ôeq
α δEρ̂〉,

D
oQ
αβ ( −∂βψ

c2 ) ≡ Tr〈Ôeq
α δψ ρ̂〉, Moe

αβEβ ≡ Tr〈ρ̂eqδEÔα〉, and

M
oQ
αβ ( −∂βψ

c2 ) ≡ Tr〈ρ̂eqδψÔα〉. The basic considerations for

obtaining δE,ψ ρ̂ and δE,ψÔ can be found in the classical
treatment in Ref. [22], where the electric field enters the
total single-carrier Hamiltonian Ĥ t via the dipole term
−er̂ · E. This is the case in the level of the full Hamiltonian
[24,25], while in the level of an effective Hamiltonian, the
canonical position r̂ may not be the physical one r̂phy and
an anomalous dipole e(r̂phy − r̂) (usually related to effective
spin-orbit interactions [26,27]) couples to the electric field
[24]. This situation needs a separate treatment [25,26]. In the
present study we neglect this complexity and take r̂phy = r̂
approximately even when the transport is calculated in the level
of effective Hamiltonians [28]. Thus the spin-orbit interactions
with an external electric field and with a disorder potential
[24–26] do not appear throughout this Rapid Communication.

D
oξ
αβ is generally given by the Bastin version of the Ôα − ĵ

ξ
β

correlation function [29], which can be cast into [30]

D
oξ
αβ = D

oξ,I (a)
αβ + D

oξ,I (b)
αβ + D

oξ,II
αβ (2)

with

D
oξ,I (a)
αβ = − h̄

2π

∫
dε

df 0(ε)

dε
Tr

〈
Ôeq

α ĜR (ε)ĵ eq,ξ

β ĜA(ε)
〉
,

D
oξ,I (b)
αβ = h̄

2π
Re

∫
dε

df 0(ε)

dε
Tr

〈
Ôeq

α ĜR (ε)ĵ eq,ξ

β ĜR (ε)
〉
,
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and

D
oξ,II
αβ = h̄

2π
Re

∫
dεf 0(ε)Tr

〈
Ôeq

α ĜR (ε)ĵ eq,ξ

β

dĜR (ε)

dε
− Ôeq

α

dĜR (ε)

dε
ĵ

eq,ξ

β ĜR (ε)

〉
.

Here, ĵ
eq,ξ

β stands for the equilibrium electric current (ξ = e) and heat current (ξ = Q) operators ĵ
eq,e

β = ev̂β , ĵ
eq,Q

β =
1
2 {Ĥ eq − μ, v̂β}. ĜR/A(ε) = (ε − Ĥ eq ± i0+)

−1
with Ĥ eq the single-particle Hamiltonian at equilibrium, f 0 is the equilibrium

Fermi distribution, and μ is the chemical potential. Now we derive a general relation between D
oQ
αβ and Doe

αβ . By using

(ĜR/A)
2 = −dĜR/A/dε, we get

D
oQ,I (a)
αβ =

∫
dε

[
−df 0(ε)

dε

]
(ε − μ)

e
D

oe,I (a)
αβ (T = 0, ε) + h̄

4π

∫
dε

df 0(ε)

dε
Tr

〈
Ôeq

α v̂
eq
β ĜA(ε) + v̂

eq
β Ôeq

α ĜR (ε)
〉
,

D
oQ,I (b)
αβ =

∫
dε

[
−df 0(ε)

dε

]
(ε − μ)

e
D

oe,I (b)
αβ (T = 0, ε) − h̄

4π

∫
dε

df 0(ε)

dε
Tr

〈
1

2

{
Ôeq

α , v̂
eq
β

}
[ĜR (ε) + ĜA(ε)]

〉
,

and

D
oQ,II
αβ = −

∫
dε

[
f 0(ε) + (ε − μ)

df 0(ε)

dε

]
1

e
D

oe,II
αβ (T = 0, ε) + h̄

4π

∫
dε

df 0(ε)

dε
Tr

〈
1

2

[
Ôeq

α , v̂
eq
β

]
[ĜR (ε) − ĜA(ε)]

〉
,

then D
oQ
αβ (T ,μ) = D

oQ,I
αβ (T ,μ) + D

oQ,II
αβ (T ,μ) yields the first main result of this Rapid Communication,

D
oQ
αβ (T ,μ) =

∫
dε

[
−df 0(ε)

dε

]
(ε − μ)

e
Doe

αβ (T = 0, ε) − 1

e

∫
dεf 0(ε)Doe,II

αβ (T = 0, ε). (3)

On the other hand, utilizing (ĜR/A)
2 = −dĜR/A/dε and [30] ih̄ĜRv̂

eq
β = ĜR[r̂β , Ĥ eq] = ĜR[(ĜR )

−1
, r̂β], we get

D
oe,II
αβ = e

2

∫
dε

df 0(ε)

dε
Tr

〈{
Ôeq

α , r̂β

}
δ(ε − Ĥ eq)

〉 + e

π
Im

∫
dεf 0(ε)Tr

〈
Ôeq

α ĜR (ε)r̂βĜR (ε)
〉
.

We find that, if the current Ôα is defined in terms of the time
derivative of some displacement operators [12], i.e.,

Ôα = 1

ih̄
[F̂α, Ĥ t ] where [F̂α, r̂β] = 0, (4)

then Tr〈Ôeq
α ĜRr̂βĜR〉 = 1

ih̄
Tr〈[r̂β , F̂α]ĜR〉 = 0 and

D
oe,II
αβ = e

2

∫
dε

df 0(ε)

dε
Tr

〈{
Ôeq

α , r̂β

}
δ(ε − Ĥ eq)

〉
. (5)

For the current Ôα in the form of Eq. (4), one has
δEÔ = 0 and δψÔ = 1

2 {r̂β ,Ôeq} ∂βψ

c2 , thus δOα = Doe
αβEβ +

(DoQ
αβ + M

oQ
αβ )( −∂βψ

c2 ), where M
oQ
αβ ( −∂βψ

c2 ) ≡ Tr〈ρ̂eqδψÔα〉 is
given by [22]

M
oQ
αβ = −1

2

∫
dεf 0(ε)Tr

〈
δ(ε − Ĥ eq)

{
r̂β , Ôeq

α

}〉
= 1

e

∫
dεf 0(ε)Doe,II

αβ (T = 0, ε). (6)

Combining Eqs. (5), (6), and (3) yields the generalized Mott
relation

L
oQ
αβ (T ,μ) =

∫
dε

[
−df 0(ε)

dε

]
(ε − μ)

e
Loe

αβ (T = 0, ε) (7)

for the current Ôα having the form of Eq. (4). This relation is
exactly the same as the well-known generalized Mott relation
[22] between L

eQ
αβ and Lee

αβ . Equations (3)–(7) are the main
result of this Rapid Communication. When the distances
between the chemical potential and the band edges are much

larger than the thermal energy kBT , the Sommerfeld expansion
is legitimate [31], yielding the standard Mott relation

L
oQ
αβ (T ,μ)/T = π2k2

BT

3e

∂Loe
αβ (T = 0, ε)

∂ε

∣∣∣∣
ε=μ

, (8)

which relates L
oQ
αβ to the energy derivative of Loe

αβ around the
chemical potential.

Both the electric current operator ĵ e = e 1
ih̄

[r̂, Ĥ t ] and the
SZXN spin current operator ĵ s = 1

ih̄
[r̂ŝz, Ĥ

t ] have the form of
Eq. (4). Thus the SNE of the SZXN current can be obtained
once its SHE is known.

Applications. The intrinsic spin Hall conductivity σ s,in
yx of

the SZXN current can be obtained by the standard Kubo
formula [12,14,17]. Aside from the intrinsic contribution, there
exists a disorder-induced contribution to the SHE [1,2,20,21].
Among the several mechanisms of the extrinsic contribution,
the one arising from the band-off-diagonal elements of the
out-of-equilibrium single-carrier density matrix [32,33] has
attracted much recent attention [27,34–36]. Resorting to the
density-matrix transport theory in the weak disorder-potential
regime [32,34,37] with a well-defined multiband structure
[38], this mechanism contributes a spin current in the form
[39]

js,ex =
∑

l

g
(−2)
l js,ex

l . (9)

Here, g
(−2)
l is just the conventional out-of-equilibrium distri-

bution function in the Boltzmann transport theory, in the order
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FIG. 1. Schematic of the band structures of the (a) 2D Rashba
model and (b) 2D Dirac-Rashba model.

of 〈V 2〉−1 with V the disorder potential. l = (η, k) where η is
the band index and k is the momentum. In the case of a scalar
disorder potential [r̂ŝz, V̂ (r̂)] = 0, we get [37]

js,ex
l =

∑
l′

ω
(2)
l′l

(
As

l′ − As
l

)
, (10)

when sl
z ≡ 〈ul|ŝz|ul〉 = 0. The expression of js,ex

l in the case of
sl
z �= 0 is given in the Supplemental Material [37]. Here, As

l ≡
i〈ul |ŝz|∂kul〉, |l〉 ≡ |k〉|ul〉 is the eigenstate of the disorder-
free equilibrium Hamiltonian Ĥ

eq
0 with energy εl , and ω

(2)
l′l =

2π
h̄

〈|Vll′ |2〉δ(εl − εl′ ) is the lowest-Born-order scattering rate.
Since sl

z = 0, As
l is real and remains unchanged under a

local U (1) gauge transformation |ul〉 → eiφl |ul〉. The extrinsic
contribution Eq. (9) can be independent of both the disorder
potential and impurity density, and thus may cancel partly or
totally the intrinsic SHE.

In the weak disorder-potential regime, other disorder-
induced contributions to the SHE [27,35,36,40] vanish in the
presence of weak scalar scattering when the Berry curvatures
on the Fermi surfaces are zero. This can be appreciated most
easily in the limit of a smooth disorder potential varying
slowly on the scale of the lattice constant [41]. Thus the
disorder-induced SHE is just given by Eq. (9). This is the case
in 2D systems with Rashba spin-orbit interactions, which are
the focus of the following model analysis.

We first apply the above results to the 2D Rashba model
[both Rashba subbands partially occupied, Fig. 1(a)] with
smooth scalar-impurity potentials, arriving at vanishing SHE
(see Supplemental Material [37]), consistent with previous
works [20,21]. According to the generalized Mott relation, the
SNE of the SZXN current vanishes.

Now we discuss a model showing nonzero SHE and SNE
of the SZXN current. As a minimal model for low-energy elec-
tronic states around the Dirac point K in a graphene monolayer
subject to a z → −z asymmetric spin-orbit interaction, the 2D
Dirac-Rashba Hamiltonian in the A-B sublattice space reads
[42]

Ĥ
eq
0 =v

[
0 (kx − iky )σ0

(kx + iky )σ0 0

]

+ λR

[
0 σy + iσx

σy − iσx 0

]
. (11)

Here, v = h̄vF , σi (i = x, y, z) is the Pauli matrix and σ0 the
unit matrix in the spin space, and λR is the Rashba coupling.
The four bands of Ĥ

eq
0 read ε

ηζ

k = η[
√

λ2
R + (vk)2 + ζλR].

Here, η = ±1 denote conduction or valence bands, and ζ =

TABLE I. The intrinsic (σ s,in
yx ) and extrinsic (σ s,ex

yx ) spin Hall
conductivities in the case of both conduction bands partially occupied
(εF > 2λR) and of an empty inner conduction band (εF < 2λR) in the
2D Dirac-Rashba model.

εF > 2λR εF < 2λR

σ s,in
yx − 3e

8π

ε2
F

−2λ2
R

ε2
F

−λ2
R

− e

16π

2ε2
F

+λRεF +2λ2
R

λR (εF +λR )

σ s,ex
yx − e

8π

ε2
F

−2λ2
R

ε2
F

−λ2
R

− e

16π

εF +2λR

εF +λR

σ s
yx = σ s,in

yx + σ s,ex
yx − e

2π

ε2
F

−2λ2
R

ε2
F

−λ2
R

− e

8π

ε2
F

+λRεF +2λ2
R

λR (εF +λR )

±1 denote spin subbands. We only consider the n-doped case
[Fig. 1(b)].

For the intrinsic SHE, a lengthy but straightforward calcu-
lation leads to the results presented in Table I. In the presence
of a smooth scalar disorder potential the intervalley scattering
is suppressed, thus we obtain(

js,ex
l

)
y

= − h̄

4

h̄vF

εl

sin ξ
1

τ tr
l

cos φ (12)

in Eq. (9), where we use (As
ηζk )

y
= η h̄

4
h̄vF

εl
sin ξ cos φ (sl

z =
0 in this model) with sin ξ = vk/

√
λ2

R + (vk)2 and tan φ =
ky/kx . τ tr

l = 1/
∑

l′ ω
(2)
l′l [1 − cos (φ′ − φ)] is the transport

time in the case of smooth scalar disorder. The out-of-
equilibrium distribution function reads

g
(−2)
l = e

h̄
E · (−∂f 0/∂k)τ tr

l , (13)

thus Eq. (9) yields the extrinsic SHE listed in Table I. The total
spin Hall conductivity σ s

yx is positive definite and depends on
the Fermi energy, as shown in Table I.

The spin Nernst conductivity αs
yx = LsQ

yx (T ,μ)/T is ob-
tained by the Mott relations (7) and (8). In particular, in the case
of strong Rashba spin-orbit interactions, the chemical potential
may be located in the region 2λR � μ � kBT (ε++

k=0 = 2λR) at
low temperatures, then the standard Mott relation (8) applies,
yielding

αs
yx

T
= − πk2

B

24λR

[
1 − 3λ2

R

(μ + λR )2

]
. (14)

This spin Nernst conductivity displays a sign change at
μ/λR = √

3 − 1.
Discussion. The SZXN spin current has been proved to obey

the basic near-equilibrium transport relations, i.e., the Mott
relation established above and the Onsager relation shown
previously [12,14]. On the other hand, for a conventional
spin current defined as the anticommutator of the velocity
and spin operators, whether or not the Mott relation is valid
(when the transported spin is nonconserved) is still a problem
not completely settled in the literature. Here, we discuss this
issue, because a conventional spin current is frequently used
in theoretical formulations of spin transport [1], although it is
not directly related to the transport of spin in the case of spin
nonconservation [43]. Accordingly, in this case it is expected
that the Mott relation as a transport relation does not apply for
a conventional spin current. We point out that existing theories
indeed do not prove the Mott relation for conventional spin
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currents. Moreover, a recent work showed the breakdown of
the Mott relation for a conventional spin current in a specific
model [7].

The direct application of the Kubo-Luttinger-Streda for-
malism presented in this study to the thermoelectric response
of a conventional spin current does not yield the generalized
Mott relation when the transported spin component is not
conserved. For the SNE of the conventional spin current,
the conventional-spin-current–heat-current correlation func-
tion reads [37] (Ds0e

yx ≡ σ s0
yx )

Ds0Q
yx (T ,μ) =

∫
dε

[
−df 0(ε)

dε

]
(ε − μ)

e
σ s0

yx (T = 0, ε)

− 1

e

∫
dεf 0(ε)σ s0,I I

yx (T = 0, ε). (15)

However, Ms0Q
yx (T ,μ) + Ds0Q

yx (T ,μ) cannot yield the Mott
relation generally because Ms0Q

yx (T ,μ) cannot be expressed
as a Fermi sea integral of the so-called “Fermi sea term”
[1,44] σ s0,I I

yx (T = 0, ε) of conventional spin Hall conductivity.
If one calculated only the spin-current–heat-current correlation
function Ds0Q

yx and neglected concurrently the Fermi sea term
σ s0,I I

yx of the spin Hall conductivity, it would be concluded
that the Mott relation is valid for a conventional spin current.
But this is not correct because generally both of these two
contributions are important [22,45].

In the 2D Rashba model with scalar disorder, σ s0
yx = 0 [46]

and thus

Ds0Q
yx = −1

e

∫
dεf 0(ε)σ s0,I I

yx (T = 0, ε). (16)

The disorder-free part (that dominates σ s0,I I
yx in the weak

disorder-potential regime [1]) of σ s0,I I
yx is calculated to be

σ s0,I I
yx (T = 0, ε) = e

8π
( kR

k0(ε) − k0(ε)
kR

)θ (−ε), with θ the step

function and k0(ε) = α−1
R

√
ε2
R + 2εRε. Therefore, in the low-

temperature limit Ds0Q
yx (T → 0) = − εR

12πT
is divergent when

both Rashba subbands are partially occupied. Recently, Dyrdal
et al. [7] directly evaluated the bubble [3] and vertex corrections
of Ds0Q

yx (T ,μ) in the Rashba model, and obtained the same
low-temperature-limit value. They introduced a spin-resolved
orbital magnetization by hand and argued that this quantity
also contributes a spin current that should be added to the re-
sult of the conventional-spin-current–heat-current correlation
function [7]. This treatment removes the divergent value of
Ds0Q

yx in the zero-temperature limit in the Rashba model [7],
but yields a SNE which does not follow the generalized Mott
relation for conventional spin currents.

In summary, we proved the Mott relation for the spin
thermoelectric transport with the SZXN definition of the spin
current. First-principles calculations of the intrinsic SHE in
terms of the SZXN current have been available in specific
materials such as some nonmagnetic hcp metals where the
spin-nonconserving part of the spin-orbit interaction could
be important [17]. Thus a first-principles prediction of the
intrinsic SNE according to the Mott relation in these materials
can be made.
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