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Intrinsic magnetoresistance in three-dimensional Dirac materials with low carrier density
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Negative longitudinal and positive in-plane transverse magnetoresistance have been observed in most
topological Dirac/Weyl semimetals and some other topological materials. Here, we present a quantum theory
of intrinsic magnetoresistance for three-dimensional Dirac fermions at a finite and uniform magnetic field B. In a
semiclassical regime, it is shown that the longitudinal magnetoresistance is negative and quadratic of a weak field
B while the in-plane transverse magnetoresistance is positive and quadratic of B. The relative magnetoresistance
is inversely quartic of the Fermi wave vector and only determined by carrier density, irrelevant to the external
scatterings in the weak scattering limit. This intrinsic anisotropic magnetoresistance is measurable in systems
with low carrier density and high mobility. In the quantum oscillation regime a formula for the phase shift in
Shubnikov–de Haas oscillation is present as a function of the mobility and the magnetic field, which is helpful
for experimental data analysis.
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Introduction. Magnetoresistance is the value change of
electric resistance of a material in an applied magnetic field,
and depends on the mutual orientation of the electric current
and the magnetic field. In a sufficient weak field, the origin
of the magnetoresistance is highly related to the Lorentz
force experienced by charge carriers in the magnetic field and
the spin-dependent scattering of electrons [1,2]. Recently, a
positive in-plane transverse and negative longitudinal magne-
toresistance have been observed in topological Dirac and Weyl
semimetals [3–13], and some other metallic materials [14–17].
Especially, the negative longitudinal magnetoresistance in
Dirac and Weyl semimetals attracts great interest as its physical
origin is possibly related to the chiral anomaly [18–20],
a purely quantum mechanical effect, of three-dimensional
Weyl fermions in electric and magnetic fields [21–25]. Several
mechanisms without chiral anomaly are also proposed for con-
ventional and topological metals [26–28]. On the other hand,
while the touching points of conduction and valence bands
in the Weyl semimetals are protected topologically, the Dirac
semimetals are located between conventional and topological
insulators [29–31]. A small lattice distortion or external field
can open a small energy gap in the band structure. Furthermore,
narrow-gap semiconductors are also well described by the
Kane model [32] in which the conduction and valence bands
are strongly coupled together. A class of gapless topological
semimetals, and narrow-gap semiconductors or topological
materials can be well described by an effective multiband Dirac
model [33–35]. In this class of materials, when the Fermi
energy is located above the bottom of the conduction band,
the transport properties are also affected by the existence of
valence bands as well as the conduction band. The strong band
coupling in these materials produces prosperous physics of the
Berry phase in electron dynamics [36,37].
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In this Rapid Communication, we propose an intrinsic ori-
gin of magnetoresistance of three-dimensional Dirac fermions
in a finite magnetic field in the framework of the Kubo formula
with the help of full Landau levels. In the semiclassical regime,
the quadratic corrections of a magnetic field are found to both
longitudinal and in-plane transverse resistivity and the electri-
cal mobility. As a consequence, the relative magnetoresistivity
is quartic of the ratio of the Fermi wavelength (the reciprocal
of the Fermi wave vector) to the magnetic length. In the weak
scattering limit the magnetoresistivity is only determined by
the carrier density, and irrelevant to the external scatterings.
Thus we call it the intrinsic magnetoresistivity. The effect be-
comes measurable when the Fermi wavelength is comparable
with the magnetic length, i.e., the carrier density is low such
that the Fermi level crosses near the Weyl nodes for the Dirac
semimetals and is close to the bottom of the conduction bands
for the narrow-gap semiconductors or topological insulators. In
the quantum oscillatory regime, a formula for the phase shift is
presented as a function of the mobility and the magnetic field,
which will be useful for data analysis.

Model and the Kubo-Streda formula for conductivity. To
illustrate the effect of the intrinsic magnetoresistivity, we
start with the Dirac Hamiltonian in a finite magnetic field,
which describes either the Dirac semimetals or the narrow-gap
semiconductors and topological materials,

H =
[

� vh̄σ · (k − eA)

vh̄σ · (k − eA) −�

]
. (1)

Here, v is the effective velocity and 2� is the energy gap
between the conduction band and valence band. σα (α =
x, y, z) are the Pauli matrices. Without loss of generality, we
assume the magnetic field is applied along the z direction. The
vector potential is then chosen as A = (−By, 0, 0). We focus
on the situation in which the Fermi level μ is above the energy
gap 2�. In the absence of a magnetic field, the Fermi level μ

is related to the Fermi wave vector kf , μ2 = �2 + (h̄vkf )2,
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FIG. 1. (a) The band structure of Dirac fermions for the gapless
case � = 0 (the left panel) and the massive case � �= 0 (the right
panel). (b) The conductivity as a function of a magnetic field for mass-
less Dirac fermions. The shown dimensionless magnetic field scales
(vertical dashed lines) indicate the borders of the different regimes: (I)
the semiclassical regime (χ0B < 1); (II) quantum oscillation regime
(χ0B > 1); (III) the quantum limit regime (kf lB <

√
2).

or the Fermi wavelength 1/kf . In a finite field, the energy

spectrum has the form ε
ζ
n = ζ

√
v2h̄2k2

z + 2n(h̄v/ lB )2 + �2,

where lB = √
h̄/eB is the magnetic length and ζ = ±1 is

the band index and each band is doubly degenerate in energy
for n = 1, 2, . . . , and nondegenerate for n = 0, as shown in
Fig. 1(a).

We consider the short-range pointlike impurities U =
u0

∑
l δ(r − Rl ) with the impurity concentration ni . In this

work, we utilize the Kubo-Streda formula [38] to calculate the
matrix element of the conductivity tensor,

σαβ = h̄e2

2πV

∑
k

∫ +∞

−∞
dξnF (ξ )Tr

[
v̂α dGR

dξ
v̂β (GA − GR )

− v̂α (GA − GR )v̂β dGA

dξ

]
, (2)

where V is the volume of the system, v̂α ≡ 1
h̄

∂H
∂kα

is the velocity
operator along the α direction with α = x, y, z, nF (ξ ) =
[1 + exp ( ξ−μ

kBT
)]

−1
is the Fermi-Dirac distribution with kB

being the Boltzmann constant and T being the absolute temper-
ature, and GR/A(ξ ) = 1

ξ−H±iγ
are the retarded and advanced

Green’s functions. In the Born approximation, the scattering
time τ = h̄

2γ
= h̄

2πNf niu
2
0

with the density states Nf = μkf

πh̄3v3 at
the Fermi level. With the help of the eigenfunctions of the
Landau levels, all the elements of the conductivity tensor can

be expressed as a series summation over the Landau index n at
zero temperature [see Eqs. (S13), (S14), and (S19) in Ref. [39]].

The calculated longitudinal conductivity σzz, in-plane trans-
verse conductivity σxx = σyy , and the Hall conductivity σxy

are plotted in Fig. 1(b), which can be divided into three
different regimes: (I) the semiclassical regime, (II) the quantum
oscillation regime, and (III) the quantum limit regime. In
the semiclassical regime, the energy band broadening width
γ is larger than the energy spacing of two adjacent Landau
levels near the Fermi level, i.e., χ0B < 1, with the mobility
χ0 = eh̄v2/(2γμ). Thus the Shubnikov–de Haas oscillations
will be smeared out by the disorder effect in this regime. In the
quantum oscillation regime χ0B > 1, the Landau levels near
the Fermi level μ will be well separated from each other and
the quantum oscillations become distinct. Further increasing
the magnetic field kf lB <

√
2, all the charge carriers will be

confined into the lowest Landau level, which is also called the
quantum limit.

Intrinsic magnetoresistivity. In the semiclassical regime,
the longitudinal magnetoconductivity is usually thought to be
absent in the approximation of a spherical Fermi surface. In

the weak field limit we find that σzz = σ0 = e2v2k3
f

3π2μ
τ and σxx =

σ0

1+(χ0B )2 . In this case, although the transverse conductivity
decays with the magnetic field, both the longitudinal and
transverse magnetoresistivity is absent, ρxx = ρzz = 1/σ0 [2].
However, a detailed calculation of the series summation of
the conductivity tensor at a finite field shows a quantum
correction to either the conductivity or the mobility. We
perform the summation over the Landau levels with the
help of the Hurwitz zeta function ζ (s, z) = ∑

n (n + z)−s and
the digamma function ψ (z), and then utilize the asymptotic
expansion of the digamma function and Hurwitz zeta function
for a large z, ψ (z) = log z − 1

2z
− 1

12z2 + · · · and ζ (2, z) =
1
z

+ 1
2z2 + 1

6z3 + · · · , keeping up to the (kf lB )−4 terms, to
evaluate the conductivity (see Sec. S5 in Ref. [39] for the
calculation).

After some cumbersome but straightforward calculations,
we find that the longitudinal conductivity is expressed as
σzz = σ0[1 − cz

(kf lB )4 ] and the transverse conductivity as σxx =
σ0

1+χ2B2 [1 − cx

(kf lB )4 ] with the mobility χ = χ0[1 + cχ

(kf lB )4 ]. The
mobility is derived from the ratio of the Hall conductivity to the
transverse conductivity, χ = σxy/σxxB. The quadratic correc-
tion is consistent with the Casimir-Onsager reciprocity relation
σαα (B ) = σαα (−B ) as a consequence of the time-reversal
symmetry [40]. The dimensionless parameter 1/(kf lB ) can be
understood as the ratio of the Fermi wavelength λf = 1/kf to
the magnetic length lB . The Fermi wave vector kf is determined

by the carrier density �, i.e., kf = (3π2�)1/3. Comparisons
of these semiclassical formulas and the numerical results are
shown in Figs. 2(a) and 2(c) for massless and massive Dirac
fermions, respectively. We find that the semiclassical formulas
for conductivity are in a good agreement with the numerical
results in the whole semiclassical regime.

The magnetoresistivity ραα (B ) is derived from the inverse
of the conductivity tensor. Here, we stress the importance of
the complete set of the conductivity tensor to produce accurate
and correct behaviors of the magnetoresistivity. Denote the
relative magnetoresistivity by δραα = ραα (B )/ρ(0) − 1. In a
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FIG. 2. (a) The magnetoconductivity and (b) magnetoresistivity
for massless Dirac fermions (� = 0). The dashed lines are the explicit
numerical results and the solid lines are the corresponding analytic
results in the semiclassical regime. (c) The magnetoconductivity and
(d) magnetoresistivity for massless Dirac fermions (�/h̄vkf = 0.3).
The broadening width is γ

h̄vkf
= 0.07. kf = 0.13 nm−1 throughout the

work. The calculated coefficients are cx = 1 and cz = − 1
4 for both the

massless and massive case.

weak field, the relative magnetoresistivity can be expressed as

δραα (B ) = cα

(lBkf )4
= cα

(
B

2BF

)2

, (3)

with BF = h̄
2e

k2
f . The formula is also in good agreement with

the numerical results as shown in Figs. 2(b) and 2(d). The
relative magnetoresistivity is the main result in this work.
Here, we want to emphasize the highly similar behaviors of
the magnetoresistivity for massless and massive fermions as
shown in Fig. 2.

The dimensionless coefficients cα (α = x, y, z, χ ) are func-
tions of the broadening width γ , the chemical potential μ, and
the energy gap �. The general expressions for cα are given by
Eqs. (S35)–(S37) in Ref. [39]. In the weak scattering limit, i.e.,
γμ � h̄2v2k2

f , keeping up to the ( γ

vh̄kf
)2 and ( μγ

v2 h̄2k2
f

)2 terms,

one obtains

cx = cy ≈ 1 + 3

4

(
1 − 8μ2

v2h̄2k2
f

)
γ 2

v2h̄2k2
f

, (4)

cz ≈ −1

4
+ 1

2

γ 2

v2h̄2k2
f

, (5)

cχ ≈ −3

4
+ 3

4

(
1 + 2μ2

v2h̄2k2
f

)
γ 2

v2h̄2k2
f

. (6)

When γ → 0, cx = 1, cz = −1/4, and cχ = −3/4. In this
case, the magnetoresistivity is only determined by the Fermi
wave vector kf , irrelevant to the band gap. Thus the mag-
netoresistivity is determined by the electronic band structure.
A similar intrinsic longitudinal magnetoconductivity was pro-

FIG. 3. The dimensionless coefficients (cα) of the magnetore-
sistivities and electric mobility as a function of (a) the broadening
width with different energy gaps and (b) energy gaps with different
broadening widths. All of the lines are plotted with the constraint of
h̄2v2k2

f > 2�γ , i.e., in the semiclassical regime.

duced by the Abelian Berry curvature in the semiclassical
theory for gapless Dirac fermions [26], where the intrinsic
component is obtained by collecting the contribution from the
linear order of relaxation time. The coefficient cz = −2/15,
different from that in Eq. (5). The quantitative difference may
be traced to the miscounting of the quadratic corrections of
equal order in the semiclassical theory. For the massive case,
when projecting the full four-dimensional Dirac space onto
the two degenerate Bloch bands (positive energy branch),
all the relevant information will be encoded into a matrix
form of an SU(2) non-Abelian gauge field which will appear
in the equation of motion for the wave packet [36,37]. The
non-Abelian gauge field can provide a mechanism for the
intrinsic magnetoresistivity here.

The intrinsic effect can be suppressed by the strong impurity
scattering. For a fixed Fermi wave vector, the calculated
coefficients as functions of the broadening width γ and the gap
� are shown in Fig. 3. For a weak scattering γ < 0.1h̄vkf , the
coefficients are rather robust against γ , but decay quickly for a
large γ . However, for a strong disorder scattering the validity
of the Born approximation is a question. The effect becomes
strong when the carrier density is low and the electric mobility
is high. The characteristic field for this intrinsic magnetore-
sistivity is one magnetic quantum flux φ0 = h/2e per Fermi
wavelength area πλ2

f . For a density � = �0 × 1016/cm3, the

field is about 2BF ≈ 2.92�
2/3
0 T. Recent discovered Weyl and

Dirac semimetals [3] may provide samples with a low carrier
density and high mobility as the Fermi level is expected to cross
near the Weyl nodes, which are good candidates for measuring
the intrinsic effect.

Phase shift in the quantum oscillation regime. The quan-
tum oscillation in regime II is known as the Shubnikov–de
Haas oscillation, which is described by the Lifshitz-Kosevich
formula [41]. By introducing the Dingle factor λD = π/(χ0B )
for the Lorentz distribution function in the series summation
in the conductivity, which is a function of the mobility χ0 and
the magnetic field B, the relative oscillatory part of conductiv-
ity is approximately described by

δρos
αα = dα

kf lB cos 2πφ(B )
Li 1

2

(
e
− π

χ0B
)

cos

[
2π

(
BF

B
+ φ(B )

)]
,

(7)
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FIG. 4. The phase shift φ(B ) as a function of 1/(χ0B ).

with the prefactors dx = 7
√

2/4 and dz = √
2. Lis (z) is the

polylogarithm function of order s and argument z. φB is not a
constant, but a slowly varying phase shift as a function of the
Dingle factor,

2πφ(B ) = arctan

⎧⎨
⎩

Re
[√

2 exp
(
i 3π

4

)
Li 1

2

(
ie

− π
χ0B

)]
Li 1

2

(
e
− π

χ0B
)

⎫⎬
⎭. (8)

In the quantum oscillation regime, the field B is confined
by χ0BF > BF

B
> 1, and the value of the Dingle factor is

between π/(χ0BF ) and π . As a consequence, the phase shift
continuously varies from almost 0 to −0.238π as shown in
Fig. 4. For a specific range of a measurable magnetic field
B, the value of φ(B ) is mainly determined by the mobility.
In the massless case � = 0, usually the mobility can be very
large and the factor π/χ0BF = 4πγ/(vh̄kf ) is quite small,
and the phase shift almost equal to zero for B has the same
or less order of BF . However, for a large gap �/vh̄kf 	 1,
π/χ0BF = 4πγ�/(vh̄kf )2 and the phase shift is close to
−π/4. In practice, φ(B ) and BF can be obtained from the
Landau level fan diagram (see Fig. 1 in Ref. [39]). It is noted
that the phase shift is only a function of the Dingle factor
regardless of whether or not the Dirac fermions are gapless.

Magnetoconductivity in the quantum limit. When the mag-
netic field grows sufficient large (kf �B � 1), only the Landau
level of n = 0 is partially filled, i.e., the system is in the
quantum limit regime [42]. So we only need to consider the
n = 0 term in Eqs. (S13) and (S14) in Ref. [39]. In this
case, the chemical potential varies with the magnetic field as

μ =
√

(2π2l2
B h̄v�)

2 + �2 and the scattering time is evaluated

as τ = 2π3�4
B h̄3v2�

niu
2
0

√
(2π2�2

B h̄v�)
2+�2

in the Born approximation. The

longitudinal and transverse conductivities satisfy a relation
approximately [39],

σxxσzz 
 e4

2π2l2
Bh2

. (9)

The longitudinal conductivity is σzz = e2v2�τ

μ
. For the massless

case of � = 0, τ = π�2
B h̄2v

niu
2
0

and μ = 2π2�2
B h̄v�. The resulting

conductivity σzz = e2 h̄
2π

v2

niu
2
0

and σxx ∝ B, which are consistent
with the results for massless Dirac fermions in Refs. [43–45].
For the large massive case of � 	 2π2�2

B h̄v�, τ = π�2
B h̄2v

niu
2
0�

and

μ 
 �. The conductivity σzz ≈ 2π3e2 h̄3v4l4
B�2

niu
2
0�

2 ∝ 1
B2 . This result

is consistent with the results in semiconductors with a low
carrier density [24]. Following from Eq. (9), the corresponding
transverse magnetoconductivity is found to be σxx ∝ B3.

Discussions. The negative longitudinal and positive in-
plane transverse magnetoresistivity reflect the anisotropic
magnetotransport in the Dirac materials. The difference of the
two resistivities ρzz − ρxx = cz−cx

σ0

B2

(2BF )2 leads to a general re-
lation between the electric field E and charge current density j,

E = ρ⊥j + cz − cx

σ0

(j · B)B

(2BF )2 + ρ⊥χB × j, (10)

with ρ⊥ = 1
σ0

(1 + cx
B2

(2BF )2 ). In the x-z plane constructed by B

and j, it follows that the resistivity ρij = ρ⊥δij + cz−cx

σ0

BiBj

(2BF )2 .
The diagonal resistivity is anisotropic as a function of the
angle ϕ between the magnetic field and electric current
density, i.e., anisotropic magnetoresistivity (AMR), ρzz =
1
σ0

(1 + cz+cx

2
B2

(2BF )2 + cz−cx

2
B2

(2BF )2 cos 2ϕ), and the off-diagonal

or planar Hall resistivity is ρxz = ρzx = cz−cx

2σ0

B2

(2BF )2 sin 2ϕ.
This effect was recently discussed and explored in the Dirac
semimetals [46–50].

Before ending this Rapid Communication, several remarks
are in order. (1) The present work uses the Kubo’ s linear
response theory in the full Landau level representation. The
Green’s functions and the physical operators in the formula
of the conductivity in Eq. (2) are calculated in the Landau
level representation. Hence, it is a full quantum mechanical
calculation and goes beyond the existing semiclassical theory
based on the wave packet dynamics [37]. Usually the semiclas-
sical theory is limited to a sufficiently weak magnetic field,
and cannot capture the physics in a strong field. However,
the formula in Eq. (2) is valid in the whole magnetic field
regime. Besides the intrinsic magnetoresistivity, it also gives
the quantum oscillatory behaviors of the magnetoresistivity,
which connects the semiclassical regime and the quantum
limit regime smoothly. (2) The intrinsic magnetoresistivity
exists for either massless or massive Dirac fermions. The
existence of negative magnetoresistivity in the massive Dirac
fermions excludes the mechanism of the chiral anomaly, which
is only available for the massless Dirac fermions [3,4]. In other
words, negative magnetoresistivity cannot simply be regarded
as a signature of the chiral anomaly. (3) The massless and
massive Dirac fermions have Abelian and non-Abelian Berry
curvatures, respectively. For the case of non-Abelian Berry
curvature, how to calculate the magnetotransport properties by
using the semiclassical theory is still an open and challenging
issue. The present work provides a general approach to study
the magnetotransport property for both Abelian and non-
Abelian cases. (4) The intrinsic magnetoresistivity exists for
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either longitudinal or transverse fields. The positive transverse
and negative longitudinal magnetoresistivity have been widely
observed simultaneously in topological materials with a low
carrier density and high mobility [9,51,52].
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