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Higher-order topological insulators protected by inversion and rotoinversion symmetries
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We provide the bulk topological invariant for chiral higher-order topological insulators in (i) fourfold
rotoinversion invariant bulk crystals, and (ii) inversion-symmetric systems with or without an additional threefold
rotation symmetry. These states of matter are characterized by a nontrivial Z2 index, which we define in terms of
symmetric hybrid Wannier functions of the filled bands, and can be readily calculated from the knowledge of the
crystalline symmetry labels of the bulk band structure. The topological invariant determines the generic presence
or absence of protected chiral gapless one-dimensional modes localized at the hinges between conventional
gapped surfaces.
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Introduction. Free electrons in a crystal can be universally
described in terms of Bloch waves. In ordinary band insulators,
however, electronic states can be equivalently represented
using exponentially localized Wannier functions (WFs), i.e.,
the Fourier transform of the Bloch waves up to a unitary basis
transformation. When (non)spatial symmetries are involved,
this gauge degree of freedom can be exploited to construct
WFs respecting the set of symmetries characterizing the in-
sulating crystal [1–3]. Symmetry-protected topological (SPT)
insulators do not allow for such a Wannier representation.
This is because the most generic SPT cannot be adiabatically
deformed to a trivial atomic insulator [4,5], whose orbitals
naturally form a set of symmetric WFs. Henceforth, the
presence of “anomalous” gapless boundary states [6,7]—the
prime physical consequence of a bulk nontrivial topology—can
be related to an obstruction in representing the ground state of
the system in terms of symmetric WFs [5,8].

Nevertheless, a description of a SPT state in terms of sym-
metric hybrid Wannier functions (HWFs), the partial Fourier
transform of Bloch waves, is entirely allowed [9]. An inversion-
symmetric Chern insulator, for instance, can be described
using HWFs obeying the property w

hybrid
k (x) ≡ w

hybrid
−k (−x).

At the two momenta k = 0, π the HWFs thus correspond
to inversion-symmetric one-dimensional (1D) WFs whose
charge centers constitute a genuine topological invariant [10],
and dictate the existence of quantized end charges in open
geometries [11–13]. These effective 1D crystalline topologies
are not only interesting per se. In fact, and as shown below,
their mismatch allows, in a very simple manner, to diagnose
the parity of the integer Chern number characterizing the
two-dimensional topological insulating state.

Starting out from this observation, in this Rapid Commu-
nication we define the bulk topology of second-order topo-
logical insulators [14–24]—crystalline systems with gapped
(d − 1) surface states but gapless (d − 2) chiral hinge
modes—protected only by spatial inversion and rotoinversion
symmetries. To this end, we will first define the crystalline
topology of rotationally symmetric two-dimensional (2D)

insulators with zero Chern number using symmetric WFs.
The corresponding topological invariants, which can be also
expressed in terms of the symmetry labels in the band-structure
representation [25,26], directly pinpoint the presence of quan-
tized corner charges in open geometries [27–33]. Thereafter,
we will show that a mismatch between these 2D crystalline
topological invariants in the symmetric HWF representation of
a bulk three-dimensional crystal, encoded in a Z2 topological
invariant, dictates the existence of protected chiral hinge
modes. In the remainder, we present explicit calculations
for fourfold rotoinversion-symmetric crystals and refer to the
Supplemental Material [34] for other point-group symmetries.

Crystalline topology of 2D insulators via symmetric WFs.
We first recall the concept of Wyckoff positions. General
positions in the unit cell can be classified into a few types
of Wyckoff positions depending upon their site symmetry
group. In particular, for a two-dimensional crystal with C4

rotational symmetry, there are two Wyckoff positions that are
invariant under fourfold rotation [cf. Fig. 1(a)], which can be
fixed at the origin r = {0, 0} (A) and at the corner of the unit
cell r = {1/2, 1/2} (C). The two sites r = {1/2, 0} (B) and
r = {0, 1/2} (D) are instead separately invariant under twofold
rotations, but are transformed into each other by a fourfold
rotation. This also implies that symmetric WFs centered at
the Wyckoff positions A,C are classified [34] by the rotation
eigenvalues ±1,±i, whereas symmetric WFs locating at B,D

are specified by the twofold rotation eigenvalues ±1. Hence-
forth, the ground state of an atomic insulator in a C4-symmetric
crystal can be characterized by a set of ten integers [35] NW ;r ,
each of which denotes the number of occupied symmetric WFs
located at siteW with rotation eigenvalue r . However, this set of
integers does not yield a Z10 topological classification, since,
taken separately, the integers NW ;r do not represent genuine
topological invariants.

We illustrate this by considering a paradigmatic tight-
binding model [see Fig. 1(a)] with four atomic sites in the unit
cell at full filling. Considering first the longer-range hopping
amplitudes t2,3 to be much smaller than the nearest-neighbor
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FIG. 1. (a) A tight-binding model for a C4-symmetric crystal
with four atoms in the unit cell. We explicitly indicate the hopping
amplitudes and the Wyckoff positions in the unit cell. (b) Three
topologically equivalent orbital configurations with different sets of
NW ;r integers.

hopping t1, the system can be described in terms of four WFs
centered at the Wyckoff position A, which yields NA;±1,±i ≡ 1
while NB;±1 ≡ NC;±1,±i ≡ 0. However, by continuously in-
creasing the diagonal hopping t3, the system can be more
conveniently described in terms of four symmetric WFs cen-
tered at the Wyckoff position C, thus implying NC;±1,±i ≡ 1
and NB;±1 ≡ NA;±1,±i ≡ 0. Likewise, in the t2 � t1,3 regime
the system can be described in terms of symmetric WFs
centered at the twofold symmetric Wyckoff positions B and
D, in which case NA;±1,±i ≡ NC;±1,±i ≡ 0 while NB;±1 ≡
ND;±1 ≡ 1. Since these continuous deformations in the hop-
ping patterns do not change the topology of the insulating
state, we find that the three configurations in Fig. 1(b) are all
equivalent.

To proceed further, we therefore define a subset of integers
demanding their topological “immunity” against such con-
tinuous deformations. Since the latter simply correspond to
NW ;r → NW ;r ± 1 ∀ r , we are led to define a new set of seven
integers explicitly reading

νW ;r = −3NW ;r +
∑

r �=r

NW ;r , r = ±1, i, W = A,C,

νB = −NB;1 + NB;−1. (1)

The reduced Z7 topological classification predicted by this
integer set is in perfect agreement with the band-structure
combinatoric approach of Ref. [26], where the topological
invariants are related to the multiplicities �r , Mr , and Xr

of the fourfold and twofold rotation eigenvalues r at the
high-symmetry (HS) points in the Brillouin zone [36]. This
motivates us to find a one-to-one correspondence between
the real-space invariants listed in Eq. (1) and the rotation-
symmetry labels of the band structure. It has a dual purpose:
First, it proves that a change in the integers reported in Eq. (1) is
necessarily accompanied by a bulk gap closing and reopening;
second, it allows one to bypass the problem of constructing
symmetric WFs. In particular, we obtain the following relations
(see Ref. [34] for the other invariants):

νA;1 = −3�1 − �−1 + 2M−1 + X−1

+ 3

2
[M−i + Mi − �i − �−i],

FIG. 2. Sketch of (a) a finite inversion-symmetric 1D chain and
(b) a finite C4-symmetric 2D crystal. (c) Local charge distribution
at quarter filling for the model shown in Fig. 1(a) with t1 = 1,
t2 = t3 = 0, and EF = −1.8. (d) Bulk band structure for t1 = 1, t2 =
0.2, and t3 = 0.3. Here, � = (0, 0), M = (π, π ), and X = (π, 0).
(e) Corresponding local charge distribution with EF = −0.8. The
charge inside the red dashed (green solid) squares corresponds
to QA (QC).

νC;1 = 2[�−1 − M−1] − X−1 + 3

2
[�i + �−i] − Mi + M−i

2
,

νB = 1

2
[�i + �−i − Mi − M−i]. (2)

Corner charges. Having established the Z7 topological
classification of C4-symmetric crystals solely by virtue of
symmetric WFs, we next show how this crystalline topology
can be probed in systems with open geometries. We first recall
that in a inversion-symmetric insulating finite atomic chain,
the excess left (right) edge charge, defined as the fractional
part of the total charge measured from −∞ (+∞) up to some
reference point located sufficiently far away from the edges, is
quantized to 0 or 1/2 if the reference point coincides with one
of the two inversion centers of the chain [cf. Fig. 2(a)]. This
is because the excess left QL

A and right QR
A edge charges must

be identical due to inversion symmetry. In addition, the total
bulk charge contained between the two inversion reference
centers must be an integer, which therefore implies 2QL

A =
2QR

A = 0 mod 1. Moreover (see Ref. [34]), the half-integer
value of the excess end charge can be immediately related to
the Z2 part of the integer crystalline topological invariant for
an inversion-symmetric insulating atomic chain.

Now we show that a very similar result holds for the corner
charge of a C4-symmetric insulator. Let us consider the square
geometry shown in Fig. 2(b) with four symmetry-related
corners, and define the corner charge QA as the fractional part
of the charge contained in the region (−∞, j ] × (−∞, j ], with
j a sufficiently large integer. This automatically constrains the
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reference point to coincide with a Wyckoff position A. QA

can be dubbed a “topological” bulk quantity if and only if
its quantized value is insensitive to the microscopic details
both at the corners and at the edges. The former condition is
immediately verified if we concomitantly assume both the bulk
and the edges to be completely insulating. To investigate the
insensitivity to microscopic details at the edge, we consider the
situation in which an edge potential is applied to, e.g., the lower
edge in Fig. 2(b). The induced charge flow from the corner to
the edges, or vice versa, will result in a loss of quantization of
the corner charge QA. However, if the applied edge potentials
respect the fourfold rotational symmetry of the bulk crystal,
the charge flow induced by the lower edge will be precisely
compensated by the charge flow due to the left edge. Hence,
the fourfold rotational symmetry of the crystal guarantees the
bulk nature of the corner charge. The discretization of its
value can be read off by considering that 4QA + 4Qedge =
0 mod 1, where Qedge represents the edge charge contained in
the dashed region of Fig. 2(b). Since the latter is quantized
to half-integer values [13], we find that the corner charge
assumes values discretized in multiples of 1/4 modulo an
integer. More importantly, we can immediately relate the
corner charge to the formerly defined Z integer invariants
using that QA = ∑

r NA;r/4 ≡ νA;r̄ /4 modulo an integer ∀ r̄ .
These relations can be rationalized by considering that for
a fourfold rotational-symmetric insulator in the atomic limit,
i.e., where all hopping amplitudes connecting atomic sites are
set to zero, the fractional part of the corner charge comes
only about WFs centered at the reference point {j, j}, each
of which contributes with a quarter of the electronic charge.
By invoking the principle of adiabatic continuity, this result
holds also when switching on the hopping amplitudes provided
the band gap does not close and reopen. A similar analysis
can be performed for the corner charge with a reference point
{j + 1/2, j + 1/2} corresponding to a Wyckoff position C.
Moreover, for corners where the reference point is chosen at
the twofold rotational-symmetric Wyckoff positions B and D,
it is possible to show that the sum of the charge contained in
two corner partners is quantized in multiples of half of the
electronic charge [34]. All in all, we therefore find that corner
charges are able to probe a Z4 ⊗ Z4 ⊗ Z2 part of the general
Z7 crystalline topology.

To corroborate our findings, we next present explicit cal-
culations for the tight-binding model shown in Fig. 1(a).
Figure 2(c) shows the charge distribution at one-quarter filling
setting the hopping amplitudes t2 ≡ t3 ≡ 0. In this case the
system consists of uncoupled molecules centered at Wyckoff
position A. Consequently, the bulk band structure is made out
of flatbands with energies ±2 and 0. For the regular lower
left corner in Fig. 2(c) visual inspection immediately reveals
that the corner charge QA = 1/4 while QC = 0, which is
in perfect agreement with the fact that νA;r̄ = 1 mod 4 and
νC;r̄ = 0 mod 4. Notice that these values of the corner charges
are insensitive to the specific termination as long as the edges
are related by the fourfold symmetry [cf. the upper right corner
in Fig. 2(c)]. More importantly, the quantization of the corner
charge is preserved even for t2 �= t3 �= 0, in which case the
bulk band acquires a full dispersion [cf. Fig. 2(d)] and the
electronic charge density in the corner region is manifestly
inhomogeneous [cf. Fig. 2(e)].

FIG. 3. End-charge flow patterns for inversion-symmetric (a)
odd- and (b) even-integer Chern insulators. In both cases, the edge
charge is an odd function in the momentum k up to integer jumps.

Chiral hinge states in rotoinversion-symmetric crystals.
Next, we show how the topological invariants underpinning
the presence of quantized corner charges can be used to
define the bulk Z2 topological invariant of a second-order
topological insulator. Let us first consider the aforementioned
example of a two-dimensional Chern insulating state in an
inversion-symmetric crystal put in a ribbon geometry. As-
suming the translational symmetry to be preserved in the x̂

direction, one can view the full system as a collection of
one-dimensional finite chains with the momentum kx playing
the role of an external parameter. Inversion symmetry of the
two-dimensional crystal implies that the right edge charge at
kx is identical to the left edge charge at −kx . This, in turns,
implies the constraint for the single edge charge QA(kx ) =
−QA(−kx ) mod 1, i.e., QA(kx ) is an odd function up to integer
jumps, which correspond to edge states crossing the Fermi
level EF . Moreover, this guarantees the quantization of the
edge charge along the inversion-symmetric lines kx = 0, π .
With these relations, we can identify two “topologically”
distinct states of the original two-dimensional crystal. In fact,
for QA(0) − QA(π ) = 1/2 mod 1 an odd number of in-gap
states must cross the Fermi level at each edge [cf. Fig. 3(a)]
during an adiabatic cycle of kx ∈ [0, 2π ]. On the contrary, an
even number of in-gap states will cross the Fermi level for
QA(0) − QA(π ) = 0 mod 1 [cf. Fig. 3(b)]. As a result, we find
that the crystalline topology of the two inversion-symmetric
chains at kx = 0, π is able to diagnose the Chern number parity
of the 2D crystal.

Let us now exploit a similar connection for the quantized
corner charges and consider a three-dimensional crystal with
a fourfold rotoinversion symmetry (see Ref. [34] for other
point-group symmetries) S4 = C4 × Mz, where Mz indicates
the mirror symmetry in the ẑ direction. As before, we consider
the bulk three-dimensional Hamiltonian as a collection of
two-dimensional HamiltoniansH(kz) parametrized by the mo-
menum kz. The fourfold rotoinversion symmetry immediately
implies that the two-dimensional Hamiltonians H(0),H(π )
both inherit the fourfold rotoinversion symmetryS4. Therefore,
the three-dimensional crystal can be classified topologically by
Z14 [37]. These 14 invariants, however, are not all independent
when requiring a full bulk band gap. This is due to the fact that
the collection of two-dimensional Hamiltonians all possess a
twofold rotational symmetry C2 = (S4)2. In order to prevent
band-gap closing along the HS lines (0, 0, kz), (π, 0, kz),
(0, π, kz), and (π, π, kz), the multiplicities of the twofold rota-
tional symmetry eigenvalues must therefore remain constant.
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FIG. 4. (a) Closeup of the 3D crystal. (b) Chiral hinge state pattern
in a nontrivial S4-symmetric insulator. (c) Bulk band structure along
HS lines, with the corresponding symmetry labels. HS points with
(without) the bar lie in the kz = π (kz = 0) plane. Here, we have used
t1 = t5 = 0.7, t2 = 1, t3 = 0.2, and t4 = 0.5. (d) Band structure with
periodic boundary conditions in the ẑ directions and open in the x̂ and
ŷ directions.

These four constraints imply that the two-dimensional
topological crystalline integer invariants νA(C);r̄ (kz = 0) =
νA(C );r̄ (kz = π ) mod 2 and νB (kz = 0) ≡ νB (kz = π ).

With these constraints in our hands, we can now analyze the
flow of the corner charge QA as the momentum kz completes
an adiabatic cycle. The fourfold rotoinversion symmetry S4

ensures QA(kz) = −QA(−kz) mod 1/2, which is in agree-
ment with the quantization of the corner charge in multiples
of one quarter of the electronic charge in the planes kz = 0
and kz = π [34]. As a result, we can only distinguish be-
tween two “topologically” distinct states. In fact, for QA(0) =
QA(π ) mod 1, the flow of the corner charge as kz makes an
adiabatic cycle that will be qualitatively similar to Fig. 3(b),
and the hinges of the three-dimensional crystal will host an
even number of chiral states. On the contrary, for QA(0) =
QA(π ) ± 1/2 mod 1, and similarly to Fig. 3(a), an odd number
of chiral hinge states will cross the Fermi level, thereby leading
to a pattern of chiral hinge modes schematically shown in
Fig. 4(b). Therefore, the difference in the integer invariants
νA;r̄ at kz = 0, π provides the bulk Z2 topological invariants
for a fourfold rotoinversion symmetry-protected second-order
topological insulator.

Two remarks are in order here. First, the difference between
the integer invariants νC;r̄ at kz = 0, π equals the difference in
the A invariants, thereby implying the existence of a single
Z2 bulk topological invariant [38]. Second, contrary to the

example of an inversion-symmetric Chern insulator where the
crystalline symmetry only provides us with a criterion for
the Chern number parity [39,40], here the fourfold rotoinver-
sion S4 represents the fundamental symmetry protecting the
presence of chiral hinge states. It therefore plays the same
stabilizing role time-reversal symmetry plays in two- and
three-dimensional topological insulators in class AII.

We finally corroborate our findings by considering a tight-
binding model corresponding to a three-dimensional stack
of the two-dimensional crystal shown Fig. 1(a). The layers
are connected by purely imaginary hoppings ±it4, as well as
real diagonal next-nearest-neighbor hoppings t5 [cf. Fig. 4(a)].
Note that these interlayer hoppings break separately the C4 and
Mz symmetries, but respect their combination. Finally, we
have included a π flux threading each plaquette surrounding
the Wyckoff positions A, B, C, and D. At half filling, a
direct computation of the two-dimensional crystalline invari-
ants using Eq. (2) on the kz = 0, π planes [cf. Fig. 4(c)]
yields νA;r̄ (kz = 0) = 2 mod 4 and νA;r̄ (kz = π ) = 0 mod 4
[see Fig. 4(c)]. Our Z2 topological criterion then predicts
the presence of chiral hinge states when considering the
system in an open geometry. This is precisely what we find
by diagonalizing the corresponding Hamiltonian with open
boundary conditions in the x̂ and ŷ direction: Two chiral
hinge states going upwards and two chiral hinge states going
downwards transverse the bulk band gap of the system [see
Fig. 4(d)], in perfect agreement with the hinge mode pattern
shown in Fig. 4(b).

Conclusions. To sum up, we have characterized the bulk
topology of second-order topological insulators with anoma-
lous chiral hinge modes protected by inversion and rotoin-
version symmetries. The corresponding bulk Z2 topological
invariant, defined in terms of the occupied symmetric hy-
brid Wannier functions, can be equally expressed using the
crystalline symmetry labels in the bulk band-structure repre-
sentation. Therefore, our invariant can be straightforwardly
computed by not only using tight-binding models but also
in density functional theory calculations where higher-order
topological candidate materials can be identified. A promis-
ing future direction is to extend the methodology proposed
in this Rapid Communication to time-reversal symmetric
systems.
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