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We investigate correlated insulating states in magic-angle twisted bilayer graphene (TBG) by the exact
diagonalization method applied to the extended Hubbard model with interaction parameters recently evaluated
in the realistic effective model. Our model can handle the competing interactions among Wannier orbitals owing
to their significant overlap, which is a crucial but overlooked aspect of the magic-angle TBG. We propose
two candidates for the correlated insulating states: spin- and valley-ferromagnetic band insulator and the Dirac
semimetallic state for two flavors with peculiar renormalization, where a flavor denotes a combined degree of
freedom with spin and valley. One of the important consequences for the latter candidate is that it allows van
Hove singularity near half-filling of the whole band structure (i.e., near the Dirac points) to play some role in
superconductivity. The consistency between the two flavor degrees of freedom for the Dirac semimetallic state
and the twofold degeneracy of the Landau level observed in the experiment is also noteworthy.
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A recent study revealed the emergence of unconventional
superconductivity in magic-angle twisted bilayer graphene
(TBG) [1]. Because of its unique electronic structure where the
band structure with a very narrow width hosts the supercon-
ductivity near the correlated insulating states at some electron
fillings [2], a lot of studies have been carried out to investigate
its nontrivial electronic structure. However, the nature of the
superconducting phase [3–16] and the correlated insulating
state [4,5,10,14–22] are under active debate. Many possibilities
of the exotic electronic structures reflect the fact that TBG
can be a playground for various kinds of rich physics, but it
partially comes from a difficulty in identifying the effective
low-energy model used for dealing with strong correlation
effects in TBG. This is because the moiré pattern in TBG with
small twist angles requires a very large system size, which
makes a usual first-principles electronic structure calculation
very difficult. Very recently, Koshino et al. constructed a
realistic effective model by taking into account hybridization
of the Bloch states in the original graphene and the corrugation
effect of the stacked layers [23]. They evaluated not only the
hopping amplitudes for the tight-binding model but also the
interaction parameters. Their study revealed intriguing features
of the electronic structure in magic-angle TBG. For example,
the intersite interaction including the exchange interaction has
a comparable magnitude to that of the on-site interaction due to
a significant overlap among the Wannier orbitals. This is due to
a three-peaked form of the Wannier orbitals [21,23,24] where
these peaks are overlapped with those of other Wannier orbitals
as we shall see in Figs. 1(a)–1(d). As a result, many-body
states at the band filling for the correlated insulating states
(i.e., quarter-filling for the whole band structure) suffer from
unusual degeneracy as mentioned later. This aspect is of crucial
relevance to the mysterious nature of the correlated insulating
state and the superconducting phases close to it in magic-angle
TBG, while this aspect has not been considered appropriately
in the previous theoretical studies.

In this Rapid Communication, we investigate the nature of
the correlated insulating states in magic-angle TBG by the
exact diagonalization method applied to the extended Hubbard
model with interaction parameters evaluated in the realistic
effective model [23]. Here, the characteristic interaction owing
to the three-peaked structure of the Wannier orbitals is a
robust feature of small-angle TBGs [21,23,24] while the band
structure somewhat varies depending on the models [12,23].
Based on our analysis that appropriately takes into account
competing interactions as a fundamental aspect of TBG, we
propose two candidates for the correlated insulating states:
spin- and valley-ferromagnetic band insulator and the Dirac
semimetallic state for two flavors with peculiar renormaliza-
tion, where a flavor denotes a combined degree of freedom
with spin and valley. A significant consequence for the latter
possibility is that it allows van Hove singularity (vHs) to play
some role in superconductivity even when vHs exists near the
Dirac points (i.e., half-filling of the whole band structure) as
in the model derived in Ref. [23]. The consistency between the
two flavor degrees of freedom for the Dirac semimetallic state
and the twofold degeneracy of the Landau level observed in
the experiment [1] is also noteworthy as described later.

First, we show a step-by-step simplification of the effective
model derived in Ref. [23]. The Wannier orbitals of TBG have
the three-peaked structure [21,23,24] as presented in Fig. 1(a),
where the Wannier orbital is denoted by an open circle while a
red small solid circle with −e/3 charge presents a single peak.
As shown in Ref. [23], Wannier orbitals constitute a hexagonal
lattice. For example, in Figs. 1(b) and 1(c), each vertex on a
hexagon corresponds to the Wannier orbital, where single and
double circles in the figure represent one or two electrons on
each site, respectively. Since a single Wannier orbital can be
regarded as a set of three −e/3 charges forming a triangle, the
centers of the hexagons both in Figs. 1(b) and 1(c) have −e/3 ×
6 = −2e charge. One of the important findings in Ref. [23] is
that the intra- and intersite direct Coulomb repulsion is very
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FIG. 1. (a) Wannier function with a three-peaked structure. (b),(c)
Two (nearly) degenerate electron configurations where single and
double circles denote one or two electrons on each vertex, respectively.
(d) Direct Coulomb interaction between the Wannier orbitals. (e)
Single hexagon with the definition of Vi (i = 1, 2, 3) and the electron
number ni (i = 1, . . . , 6) at each vertex. (f) Single hexagon embedded
in the uniform background.

well approximated by the simple point-charge model for the
−e/3 charge [25]. Because one cannot distinguish two electron
configurations presented in Figs. 1(b) and 1(c) in terms of the
distribution of −e/3 charges, these two states should have the
(almost) same energy with respect to the intra- and intersite
direct Coulomb repulsion.

This degeneracy is one of the most important aspects of
the electronic structure in magic-angle TBG. For example, it
is not true that the Mott-like uniform distribution of electrons
at each site presented in Fig. 1(b) always has a much lower
energy than other states, which is expected by only considering
the on-site repulsion at each site. To keep this degeneracy
under the restriction on the reachable system size for exact
diagonalization, we limited the direct Coulomb repulsion
among −e/3 fractional charges to the “on-site” one, i.e., the
fractional charges feel the on-site interaction at the center of the
hexagon. This assumption corresponds to V0(=U ) : V1 : V2 :
V3 = 3 : 2 : 1 : 1 without more distant interaction as explained
in Ref. [23] [cf. Fig. 1(d) where the definition of Vi (i = 1, 2, 3)
is shown in Fig. 1(e)]. Under this approximation, the energy
per hexagon shown in Fig. 1(e) is determined by a sum of
the electron numbers at the six vertices:

∑6
i=1 ni [26], which

guarantees the degeneracy of two states shown in Figs. 1(b)
and 1(c). This approximation is a minimum one to deal with
the complex degeneracy inherent to this system, and we note
that a naive truncation of the interaction terms at some distance
does not keep this degeneracy.

The model solved in this Rapid Communication is presented
in Fig. 1(f), where a single hexagon is surrounded by six
hexagons with a fixed occupation: one electron per site, which
corresponds to the uniform distribution for quarter-filling.
Here, we took the nearest-neighbor hopping t inside the central
hexagon but neglected the other hopping terms inside the
hexagon since they are sufficiently smaller than t [27]. We
also took the inter-nearest-neighbor-site exchange interaction

FIG. 2. Three lowest energies obtained using t = J1 = 0 with
representative configurations. Red small filled circles denote −e/3
fractional charge while single and double circles denote one (−e) or
two (−2e) electrons on each vertex, respectively (cf. Fig. 1).

J1, which was evaluated to be ∼ − U/5 [23]. This model has
two spin and two valley degrees of freedom, and we shall
call these degrees of freedom flavor (i.e., this model has four
flavors). Here, a different valley corresponds to a time-reversal
counterpart of the Wannier functions. We note that the hopping
and exchange terms act only between the same flavor. On-site
Hund’s coupling between different valleys is negligible [23].
Our effective Hamiltonian reads

H = t

6∑

i=1

4∑

α=1

[ĉ†i+1,αĉi,α + H.c.] + V0

2

∑

I

∑
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∑
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with V0 = U , V1 = 2U/3, V2 = V3 = U/3, and J1 = −U/5
[28]. The index i runs over six lattice sites of the central
hexagon, and I runs over all the sites including the outer
hexagons. α and β are flavor indices, NN and NNN mean next-
nearest and next-next-nearest sites, respectively, and ĉ

†
7 = ĉ

†
1.

As we shall see later, the six “background” hexagons with the
contribution of the direct Coulomb repulsion are necessary to
understand a fundamental excitation of magic-angle TBG in an
intuitive manner. In order to consider the competition between
t and J1 as discussed later, we took the J1 terms only inside
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FIG. 3. Three lowest energies obtained using t = 0 with represen-
tative configurations. Arrows with the same direction denote electrons
with the same flavor. The meaning of other symbols is the same as
Fig. 2.

the central hexagon in the same manner as t . We considered
the quarter-filled case: six electrons on six sites in the central
hexagon. Since a dimension of the block (described later) of our
Hamiltonian is up to 8100, we performed full diagonalization.

Now we move on to the results obtained by our analysis.
Figure 2 presents representative states of the three lowest
energies, obtained by taking t = J1 = 0 as a first step. Ẽ

denotes the total energy subtracted with a constant to have
Ẽ = 0 for the lowest energy here. Red small filled circles in
Fig. 2 denote −e/3 fractional charge while single and double
circles denote one (−e) or two (−2e) electrons on each vertex,
respectively (cf. Fig. 1). While all the lowest energy states with
Ẽ = 0 have six fractional charge at the center of each hexagon,
the electron configurations of the excited states can be regarded
as that with additional or reduced fractional charge at some
hexagons as denoted with −e/3 or +e/3 in Fig. 2, respectively.
As a result, electron configurations for Ẽ = U/3 represent a
kind of elementary excitation with a fractional charge [23,29].
In fact, electron configurations for Ẽ = 2U/3 can be regarded
as the states with two elementary excitations. A pair of two
charges with different signs reminds us of the exciton or the
doublon-holon pair.

By including J1 = −U/5, we obtained electron configura-
tions shown in Fig. 3. The most stable states consist of the
electrons with a single flavor, where six J1 bonds are active.
The second-lowest states have some flipped flavors, but four J1

bonds remain to be active. The lowest and the second-lowest
states have the most favorable electron configurations for the
Vi terms: one electron per site as we have seen in Fig. 2.
The third-lowest states show that the elementary excitation
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FIG. 4. (a) Lowest energies obtained for each block of Hamilto-
nian as a function of t/U . A set of four integers (nα1 nα2 nα3 nα4 )
denotes a single block consisting of the states with the electron
numbers nαi

for each flavor αi . (b) Schematic picture for three
candidates of correlated insulating states in magic-angle TBG. For
the Dirac semimetallic state, a schematic picture for the renormalized
DOS is also shown. (c),(d) Histogram of the weight of electron
configurations for the lowest eigenstates in the (3300) and (2211)
blocks for each panel using t = U/5.

mentioned above remains a good unit to understand the energy
spectrum of this system [30].

Finally, we took all the terms in our Hamiltonian. Figure 4(a)
presents the lowest energies obtained for each block of Hamil-
tonian as a function of t/U . Here we define an index of a
block of our Hamiltonian, (nα1 nα2 nα3 nα4 ), using the electron
number nαi

for each flavor αi [31]. In the left panel of Fig. 4(a),
there is no energy gain by the hopping terms for the (6000) state
because electrons are fully occupied in a single flavor and so
cannot move by the Pauli principle (see the lowest eigenstate
shown in Fig. 3). Therefore, while the (6000) state is the most
stable for t/U = 0 among all the blocks of Hamiltonian, other
states become more stable by increasing t/U . For a sufficiently
large t/U , an equal distribution for four flavors is expected to
be the most stable to gain the largest kinetic energy profit, while
our small model cannot represent such an equal distribution,
(1.5 1.5 1.5 1.5). In this sense, competition among some blocks
near this equal distribution, such as (3111), (3210), and (2211),
for t/U > 0.3 can be regarded as a finite-size effect [32]. For
such a quarter-filled state for four flavors, (1.5 1.5 1.5 1.5), the
system has a chance to become insulating if the charge-density
order appears and the Brillouin zone is folded with opening a
gap [16], but a detailed analysis on it is beyond the range of our
study. For intermediate t/U , it is rather nontrivial which state
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is the most stable under the strong competition. To explore the
possible insulating states observed in experiment, it is worth
noting that the (3300) state, one of the competitors, has a
possibility to become an insulatorlike state for the following
reason. The (3300) occupation in our model corresponds to the
electronic structure where two flavors are half-filled. Because
t/U ∼ 0.2 where the nontrivial competition was observed in
our model is expected to yield a relatively strong correlation,
the corresponding occupation still has a chance to be the
ground state in the real system; nevertheless, a detailed band
structure is not reproduced in our small model. In the real
TBG, the Fermi level resides at the Dirac points for half-filling
where the density of states (DOS) vanishes. While it is still
semimetallic, it is known that the presence of the long-range
Coulomb interaction owing to the weak screening effect by
Dirac points can anomalously increase the Fermi velocity of the
Dirac cones, and DOS near the Dirac points can be suppressed
[33–37]. In addition to this peculiar renormalization of Dirac
cones, a very sharp vHs close to the Dirac points in magic-angle
TBG [23] can make the system look like an insulator. For
the Dirac semimetallic state for two flavors, there is another
interesting consistency with the experiments. Namely, the
quantum oscillation experiment reported that the Landau level
degeneracy near the quarter-filling is twofold [1] rather than
fourfold as naturally expected from the four flavor degrees of
freedom in this system [38]. This is clearly consistent with the
Dirac semimetallic state for two flavors shown in Fig. 4(b).

These three possibilities for correlated insulating states in
the small, intermediate, and large t/U regimes are summarized
in Fig. 4(b). Also, we do not exclude the possibility of the phase
separation of the flavor-ferromagnetic regions with different
flavors since the stability of the (3300) state can lead to such
a phase separation. We will leave further analysis on the
competing nature of the ground state in larger systems for the
future since it requires high computational cost. If one wants
to treat a larger size while keeping the C3 and AB sublattice
symmetries, a system with at least 12 sites is required.

While detailed analysis is difficult owing to the finite-size
effect, we mention a few more observations of our model.
Figures 4(c) and 4(d) present a histogram of the weight of
electron configurations for the lowest eigenstates in the (3300)
and (2211) blocks, respectively, using t = U/5. 〈Ṽ 〉 and 〈J 〉
denote the expectation values of the Vi (i = 0, 1, 2, 3) and J1

terms, respectively, where the constant is subtracted for 〈Ṽ 〉
in the same manner as Ẽ. The main difference between these
two states is that the (3300) state actually obtains an energy
gain by J1 while it is much weaker in the (2211) state. The
gain from J1 also leads to the stabilization of the uniformly

distributed states as shown in the top left in Fig. 2 than the
localized states as shown in the top right in Fig. 2 since the
former has a chance to be stabilized by J1. As a matter of
fact, the (3300) eigenstate with t = U/5 has 〈n̄An̄B〉 = 0.82,
where n̄A = (n1 + n3 + n5)/3 and n̄B = (n2 + n4 + n6)/3,
which is closer to the uniform distribution (〈n̄An̄B〉 = 1) than
the localized one (〈n̄An̄B〉 = 0). The competition between the
exchange interaction and the stabilization by hybridization
through hopping terms might be a key to understand the nature
of the correlated states. We stress once again the reason why
these two factors compete: the exchange interaction favors
the flavor-ferromagnetic band insulator while electrons cannot
move there.

As for the superconductivity, an important consequence
of our study is that vHs can play some role in stabilizing
superconductivity even when it resides near the Dirac points.
While some studies proposed that vHs near quarter-filling
plays a key role in superconductivity (e.g., [4,7,15]), some
realistic calculation results in vHs very close to the Dirac
points [23]. Our proposal for the correlated state with the
half-filled band dispersions for two flavors enables the Fermi
energy to reside near vHs as shown in Fig. 4(b). Therefore,
some scenarios for superconductivity making use of vHs is
justified even when vHs exists near the Dirac points. Here,
vHs can be involved with superconductivity not only from
the viewpoint of the electron correlation, but also through
enhancement of the electron-phonon coupling [11,12,15] by its
large DOS. Because the lattice relaxation plays a crucial role
for TBG such as making separated band dispersion through
gap opening [39,40], the phonon can have a sizable effect also
on the correlated states.

To summarize, we performed exact diagonalization of the
extended Hubbard model for magic-angle TBG and pro-
posed two new candidates for the correlated insulating states:
spin- and valley-ferromagnetic band insulator and the Dirac
semimetallic state for two flavors with peculiar renormaliza-
tion. For the latter possibility, vHs near the Dirac points can
be involved with superconductivity. The consistency between
the two flavor degrees of freedom for the Dirac semimetal-
lic state and the twofold degeneracy of the Landau level
observed in the experiment is also remarkable. Our study will
be an important basis for studying unusual correlation effects
including the superconductivity in magic-angle TBG.
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