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Complex spin texture of Dirac cones induced via spin-orbit proximity effect in graphene on metals
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We use large-scale DFT calculations to investigate with unprecedented detail the so-called spin-orbit (SO)
proximity effect in graphene adsorbed on the Pt(111) and Ni(111)/Au semi-infinite surfaces, previously studied via
spin and angle resolved photoemission (SP-ARPES) experiments. The key finding is that, due to the hybridization
with the metal’s bands, the Dirac cones manifest an unexpectedly rich spin texture including out-of-plane and even
radial in-plane spin components at (anti)crossings where local gap openings and deviations from linearity take
place. Both the continuum character of the metallic bands and the back folding associated to the moiré patterns
enhance the spin texture and induce sizable splittings which, nevertheless, only become giant (∼100 meV) at
anticrossing regions; that is, where electronic transport is suppressed. At the quasilinear regions the splitted bands
typically disperse with different broadenings and tend to cross with their magnetization continuously changing
in order to match that at the edges of the upper and lower gaps. As a result, both the splittings and spin direction
become strongly k dependent. The SO manifests in an analogous way for the spin-polarized G/Au/Ni(111) system,
although here the magnetic exchange interactions dominate inducing small splittings (∼10 meV) in the π bands
while the SO mainly introduces a small Rashba splitting in the Dirac cones as their magnetization acquires a
helical component. While revealing such complex spin texture seems challenging from the experimental side, our
results provide an important reference for future SP-ARPES measurements of similar graphene based systems
extensively investigated for applications in spintronics.
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I. INTRODUCTION

Spin-orbit coupling (SOC) in graphene [1] has been pro-
posed as a basis for various phenomena of fundamental and
practical importance for spintronics, such as the spin Hall
effect [2,3], topological quantum spin Hall effect (QSHE)
[4], quantum anomalous Hall effect (QAHE) [5,6], weak
localization [7], or electron confinement associated to multiple
topologically nontrivial gaps [8]. Given the tiny intrinsic SOC
of graphene (G), estimated to be less than few tens of μeV
[9,10], which makes the experimental realization of such
phenomena unfeasible, extensive efforts have been devoted
to find an efficient way to enhance and tune the strength of
SOC extrinsically. One of the most promising approaches is
the so-called proximity effect [11–14] whereby the large SOC
of heavy elements either adsorbed or present in the substrate
may be transferred to the G, as can be explained in terms
of diverse hopping processes onto and off the metal atoms
so that the electron acquires a large SOC before it returns
to the graphene [13]. For any practical purposes, however,
a straightforward and robust approach for SOC engineering
is of vital importance. Epitaxial graphene grown on metallic
surfaces seems to be an excellent candidate to achieve this
goal, mainly due to an easy fabrication process and absence
of a structural disorder which could deteriorate the spin and
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charge transport performance. Notably, metallic substrates
also offer a chance to adsorb or intercalate atoms/layers
providing a plethora of options for further tuning other relevant
properties apart from solely changing the strength of SOC
[8,15].

Despite continuous experimental attempts performed dur-
ing the last years in order to achieve strong spin-orbit prox-
imity effect in graphene [3,8,11,16–22], the corresponding
theoretical studies are rather scarce and involve oversimplified
models mainly due to the large computational resources that
the inclusion of SOC requires. Typically, these works are
restricted to either diluted metallic layers or slabs with small
unit cells which cannot appropriately take into account the
commensurability between graphene layer and the underlying
substrate. In fact, a realistic ab initio modeling of SOC-related
phenomena in graphene/metal interfaces has been missing
so far. In this paper we fill this gap by addressing, from a
theoretical perspective, the fundamental question of how a
semi-infinite metallic substrate alters the graphene’s Dirac
cones (DCs) and determines their spin texture. We consider
graphene/metal interfaces involving large supercells thus re-
ducing artificial strains typically imposed when oversimplified
commensurabilities are assumed. Therefore, our approach
introduces a further source of graphene/metal hybridization
due to the Brillouin zone (BZ) backfolding whose impact,
as shown below, is by no means negligible. We analyze two
different examples of metallic substrates: a Pt(111) surface
and a Au monolayer adsorbed on a Ni(111) surface, the
choice being motivated by several spin- and angle-resolved
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photoemission spectroscopy (SP-ARPES) measurements
where large Rashba splittings (RS) of up to ∼100 meV have
been reported for both systems [16–19] as well as by the
fact they present fundamental differences in their electronic
properties. The former involves π -d interactions between the
graphene and the Pt and, being nonmagnetic, preserves the
Kramer’s degeneracy. It thus represents an ideal system to
estimate the SOC derived splittings by inspecting the spin
structure of the Dirac cone states. In contrast, the G-Au in-
teractions are mainly of the π -sp type and, more interestingly,
the gold layer shows a net magnetization due to the presence
of the ferromagnetic substrate below which constitutes an
excellent playground to explore the interplay between SOC
and spin-exchange derived splittings [23]. Furthermore, the
same group has reported the co-existence of two phases for
this system showing small and large splittings [17], although
the origin of such a puzzling difference could not be confirmed.
Throughout, we focus on the induced spin texture of the Dirac
cones rather than on any topological properties that could
emerge at opened gaps (due to intrinsic SOC [4,13]) since we
are primarily interested on the spin properties of the linear
π bands. It turns out that the key mechanism behind the
transfer of SOC to the G’s π bands is hybridization with the
surface localized metal d states which hold the largest SOC
derived spin splittings. It is precisely at such (anti)crossings
where minigaps are opened and the DCs show the largest
distortions attaining band splittings above 100 meV. On the
other hand, in the absence of strong hybridizations (regions
of highly dispersive sp metal bands) the influence of the SOC
on the G is minor and the splittings are at most a few tens
of meV.

The paper is organized as follows: In Sec. II we discuss
the details of the DFT and Green’s functions calculations.
Section III is devoted to the origin and peculiarities of the
spin texture induced in graphene’s Dirac cones by a Pt(111)
substrate. In Sec. IV the interplay between SOC and magnetic
order in G/Au/Ni(111) is examined, while in Sec. V we
summarize the main conclusions and perspectives.

II. METHODS

Our density functional theory (DFT) based calculations
were performed with the GREEN code [24,25] employing an
interface to the ab initio SIESTA package [26]. The exchange-
correlation (XC) interaction was treated under the generalized
gradient approximation (GGA) following the parametrization
of Perdew, Burke, and Ernzerhof [27], including spin polar-
ization in all cases where Ni atoms were involved. Dispersion
forces were taken into account via the semiempirical scheme of
Ortmann and Bechstedt [28]. The fully-relativistic pseudopo-
tential (FR-PP) formalism [29] was employed to account for
the SOC. Core electrons were replaced by norm-conserving
pseudopotentials of the Troulliers-Martin type, with core cor-
rections included for the metal atoms in order to better describe
the XC and SOC terms [29]. The atomic orbital (AO) basis set
consisted of double-zeta polarized (DZP) numerical orbitals
strictly localized—we set the confinement energy to 100 meV.
Real space three-center integrals were computed over 3D grids
with a resolution of ∼0.07 Å3—equivalent to 500 Rydbergs

mesh cutoff. Brillouin zone integration was performed over k

supercells of around (18×18) relative to the G-(1×1) lattice.
All considered graphene/metal structures were first re-

laxed employing two-dimensional periodic slabs involving
several metal layers and the graphene on top. In the case of
G/Pt(111) we considered six Pt layers thick slabs and two
different moiré patterns, the so-called (2×2) and (3×3) phases
[30–32], described in detail in Sec. III. On the other hand, and
based on previous studies on the Au/Ni(111) surface [33], we
modeled the G/Au/Ni system assuming a (9×9)/(8×8)/(9×9)
commensurability between the G, Au, and Ni lattices, re-
spectively, with the Au layer intercalated between the G
and a four Ni layers thick slab. Two different phases were
considered: one, where the Ni surface is unreconstructed and a
second one, where the top Ni layer presents a large triangular
reconstruction [33]—its precise geometrical description is
given in Appendix C. In all cases the graphene atoms and the
first two metallic layers were allowed to relax until forces were
below 0.03 eV/Å while the bottom layers (four in the case of
Pt and two for Au/Ni) were held fixed to bulk positions.

G adsorption energies were computed as the balance be-
tween the total energy of the system and that of the sum of
the clean relaxed metal surface and freestanding G. How-
ever, although the semiempirical vdW approach followed
here is necessary to obtain the correct adsorption geome-
tries, it largely overestimates adsorption energies [34]. Hence,
we have estimated these energies after removing all vdW
contributions [35].

The electronic structure for the semi-infinite surfaces was
computed following several steps. Once the structures de-
scribed above were optimized, we added four (one) bulklike
layers of Pt (Ni) at the bottom of the slabs and recom-
puted their Hamiltonians self-consistently first neglecting and
next including SOC (see Ref. [29] for full details of the
implementation). In the last step, we used the appropriate
Hamiltonian matrix elements to stack the graphene and first
metallic layers on top of bulk Pt(111) and Ni(111) semi-infinite
blocks via Green’s functions matching techniques following
the prescription detailed elsewhere [25,36].

Since for a semi-infinite system the absence of transla-
tional symmetry along the surface normal does not allow
us to evaluate the band structure via the diagonalization of
the Hamiltonian matrix, we compute instead equivalent k-
resolved density of states projected on different surface atoms,
PDOS(�k,E). For a particular layer I , its DOS projection is
calculated from the system Green’s function blocks, GIJ ,
connecting I with itself and its neighbor layers J , according
to:

PDOSI (�k,E) = −i

π

∑

σ,J

T r
{
Gσσ

IJ (�k,E) OJI (�k)
}
, (1)

where σ =↑,↓ denotes the spin component and OIJ (�k) stands
for the k-space overlap between layers I and J . The summation
over J only includes layers I − 1, I , and I + 1 because
all layers are defined thick enough so that overlap matrices
beyond first nearest neighbor layers vanish (obviously, for the
surfacemost layer only the I and I − 1 terms will enter the
above equation).
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Similarly, k-resolved magnetization densities, �m(�k,E),
may be obtained as:

mx (�k,E) = −2i

π

∑

J

T r{G↑↓
IJ (�k,E) OJI (�k)} (2)

my (�k,E) = 2

π

∑

J

T r{G↑↓
IJ (�k,E) OJI (�k)} (3)

mz(�k,E) = −i

π

∑

J

T r{(G↑↑
IJ (�k,E) − G

↓↓
IJ (�k,E))OJI (�k)}.

(4)

In this paper, we will present most of our results in
the form of (�k,E) maps projected either on the G or the
metal layers. Furthermore, most of the G and first Pt layer
projections have been computed within the moiré supercell
(folded electronic/magnetic structures) as well as assuming
that translational (1×1) symmetry is preserved within the
layer (unfolded structures) following the approach described in
Appendix A. For all (�k,E) maps we have typically employed
a resolution of ∼6×10−3 Å−1 in k space and 1–2 meV in
energy while the imaginary part of the energy entering the
Green’s function calculation (self-energy or broadening) was
accordingly set to 2–4 meV. These small values ensure that the
widths of the peaks in the calculated G PDOS arise from the
metal’s self-energy (i.e., the interaction with the continuum of
metal bands). We note that such a high resolution required a
huge computational effort, as the maps presented in this work
typically comprised of the order of 106 and 105 (�k,E) grid
points for the G/Pt and G/Au/Ni systems, respectively.

III. GRAPHENE ON PT(111)

Out of the over 20 different moiré patterns re-
ported for this system [30,32], we considered the two
most common phases namely, (2×2)/(

√
3×√

3)R30◦ and
(3×3)/(

√
7×√

7)R19.1◦—hereafter denoted as (2×2) and
(3×3), respectively. As described above, both were modeled
placing a graphene sheet on top of a Pt(111) slab and fixing the
Pt bulk lattice constant to its experimental value, aP t = 3.92 Å,
leading to G’s lattice constants of aG = 2.40 and 2.44 Å for the
(2×2) and (3×3) supercells, respectively. Whereas the former
represents a noticeable 2.5% compression with respect to
pristine G, the latter is only 0.8% smaller than the experimental
value of 2.46 Å. In Fig. 1(a) we show the optimized geometries,
for which we obtained an uncorrugated G layer adsorbed at
3.33 and 3.36 Å from the Pt surface, in good agreement with
the 3.3 Å distance obtained experimentally [37]. Energetically,
the (3×3) phase was found marginally more stable than the
(2×2), with adsorption energies (see section Methods) of 26
and 23 meV/C, respectively, both clearly in the physisorption
regime [38].

Figure 1(b) sketches the 2D reciprocal space for both phases
with the G and Pt BZs indicated in green and blue, respectively,
and that of the commensurate supercell in red in an extended
zone scheme. Whereas in the (2×2) case the KG and K ′

G high-
symmetry points are backfolded into the supercell’s BZ K ′
and K points, for the (3×3) they all transform into the � point.
Nevertheless, the quasifreestanding character of the graphene

FIG. 1. (a) Top and side views of the G-(2×2)/(
√

3×√
3)R30◦

(left-hand panel) and G-(3×3)/Pt(111)-(
√

7×√
7)R19.1◦ (right-

hand panel) configurations. C and Pt atoms are represented by small
red and large blue balls, respectively. The commensurate supercells
are indicated by the parallelograms. In the side views the optimized
Pt-G interlayer distance and the G’s intralayer corrugation are given
in Å. (b) Corresponding combined BZ schemes for each phase. Small
red hexagons correspond to the G’s folded BZ—(2×2) at the left and
(3×3) at the right, while larger blue and green hexagons correspond
to the Pt(111) and G’s primitive BZs, respectively. Closed/open blue
circles mark the G’s KG/K ′

G points including those backfolded into
the Pt’s primitive BZ. Black arrows indicate the k lines A, B, and C.

layer allows us to accurately unfold the PDOS(�k,E) and
�m(�k,E) quantities onto its primitive BZ and, hence, examine
the π -band dispersion and spin texture around KG and K ′

G sep-
arately (see Appendix A). Similarly, the scarce reconstruction
of the Pt topmost layers permits an analogous unfolding but
onto the Pt(111)-(1×1) BZ. We have computed the electronic
structure for k lines running along the � − KG/K ′

G direction
[paths A and B in Fig. 1(b)] and a third line passing through
K ′

G but perpendicular to the previous ones (path C).
Since the (2×2) phase is the most simple and symmetric

one, we will first present a very detailed study for this phase
in order to establish the main mechanisms dictating the G’s
induced spin texture; as shown in the next subsections, most
of them still hold for the (3×3) case.

A. (2×2) phase

Figure 2(a) presents the unfolded electronic dispersion
PDOS(�k,E) for the (2×2) phase projected on the first two Pt
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FIG. 2. (a) First column: PDOS(�k, E) map of bulk Pt along the A-B k-path defined in the inset below and Fig. 1(b). Second column: Same
as first column, but calculated for clean Pt(111)-(1×1) semi-infinite surface and projected on the surface layer. Third column: PDOS(�k, E)
map calculated for the G-(2×2)/(

√
3×√

3)R30◦ semi-infinite surface and projected on the Pt surface layer along the same A-B k-path after
unfolding onto the Pt (1×1) BZ. Last column: Same as third column but projected on the graphene layer after unfolding onto the G’s (1×1)
BZ. (b) The associated G’s magnetization map, �m(�k, E), for the same systems and projections as in (a) after superimposing the ⊥, ‖ and z

components, each color coded as indicated by the legends at the bottom left (although only m⊥ is nonzero along these k-paths). The inset on
the left shows the primitive BZs of graphene (green) and Pt(111) (blue) and the considered high-symmetry k-paths.

layers and on graphene along the A and B paths (two rightmost
columns in the figure). Both paths are displayed side by side
because they are related through (2D) inversion symmetry thus
yielding symmetric PDOS about the degenerate KG/K ′

G point.
For the sake of clarity and completeness, we also show in the
two leftmost panels the electronic structure of bulk Pt and the
clean Pt(111)-(1×1) surface along the same k lines. The bulk
projection shows the expected continuum of d bands mainly
covering the occupied states region as well as a prominent
bump at the Pt’s BZ boundary (point MPt ) raising up to 1 eV.
Narrow gap areas appear across � − MPt as well as around
KG. The rest of the energy region above the Fermi level, EF , is
filled by a continuum of highly dispersive (less intense) sp-type
bands with large gaps emerging from � and KG. At the edges
the DOS becomes sharp and intense due to the projection of the
bands’ curvature along the surface normal. The PDOS(�k,E)
for the clean surface presents several important differences
with respect to its bulk counterpart: a smearing and broadening
of the band edges, the appearance of intense surface resonances
corresponding to states with a strong 2D character, and the
filling of all bulk gaps below EF . Moreover, a sharp Rashba
splitted surface state emerges from � with its onset just below
0.4 eV.

The equivalent surface Pt projections computed for the
combined G/Pt(111) surface system are essentially the same
as for the clean case, except for quasilinear traces belonging
to the π bands of graphene which can be seen around KG/K ′

G

especially in the d-band region (together with a backfolded
replica at the left of MPt ). The PDOS(�k,E) projected on
graphene reveals that the Dirac cones are essentially preserved,
with a strong 0.40 eV p-type doping as a consequence of
the compressed C-C distances [39], while no gap is opened
between the upper and lower cones signaling a weak intrinsic
SOC. Within the 2 meV energy resolution (broadening) em-
ployed, no hints for any RS can be seen in the maps but just
an overall blurring of the lower cone due to hybridization with
the Pt-d bands, as well as a large gap opening at ∼ − 0.7 eV.
The upper cone, on the other hand, appears sharper and closely
resembles that of pristine graphene.

Inspection of the spin structure enhances all these features
and allows us to examine the SOC induced effects in greater
detail. In Fig. 2(b) we present the magnetization dispersion
�m(�k,E) for the same projections as in (a). The magnetization
vector has been decomposed into two in-plane components,
one along the k line (m‖) and the other one orthogonal to it
(m⊥) plus the the out-of-plane contribution (mz). The �m(�k,E)
map for the bulk phase is omitted since Kramer’s degeneracy
[E(�k, σ ) = E(−�k, σ ′)] when combined with the inversion
symmetry holding for f cc Pt (E(�k, σ ) = E(−�k, σ )) forbids
any net magnetization in k space—indeed, the computed
�m(�k,E) map is completely dark. On the other hand, and as ex-
pected for a heavy metal surface [40], the clean Pt(111)-(1×1)
spin texture is very rich presenting large splittings associated to
magnetizations which are always locked along the m⊥direction
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FIG. 3. Top row: zoom in of the magnetization maps shown
in Fig. 2(b) in the vicinity of EF . First column corresponds to
the clean Pt(111) surface, and second and third columns to the G
and Pt projections, respectively. Middle and bottom rows present a
decomposition of the �m(�k, E) maps into its ↑ (pink) and ↓ (red)
components—see arrows in the inset of each figure. Since the G-Pt
coupling in this region is antiferromagnetic, we have placed in each
row the G’s spin component opposite to that of the Pt. Yellow dashed
lines indicate the lower and upper edges of the gaps opened at each
spin branch.

(only red-pink tones appear in the maps). The spin locking
results from the fact that the A and B paths run along a mirror
symmetry plane so that the symmetry transformation applying
to the �m pseudovector, τ (m‖,m⊥,mz) = (−m‖,m⊥,−mz),
leads to vanishing m‖ and mz components precisely at the
mirror plane. On the other hand, due to Kramer’s degeneracy,
the Rashba splitted bands are antisymmetric about the time
reversal invariant momentum (TRIM) MPt point, with abrupt
inversions of m⊥ occurring at this point. Likewise, the same
antisymmetric behavior is found between the A and B paths
around the KG/K ′

G points.
The Pt magnetization dispersion hardly changes when the

graphene is adsorbed on top, although the traces of Dirac states
become more patent and can be identified as minigap openings
at the avoided crossings with the Pt’s Rashba splitted bands
(see below). Notably, the G projection shows an unexpectedly
complex spin texture, with the lower cone covered with streaks
and undergoing numerous spin flips due to hybridization with
the Pt bands while the upper cone appears free of any crossings.
Nevertheless, both the Pt and G magnetizations remain locked

FIG. 4. Similar zooms as in Fig. 3 but taken over a wider energy
range below EF . This time, since the Pt-G coupling is mainly
ferromagnetic we have placed the ↑ or ↓ projections for both G and
Pt in the same rows.

to the momentum (only m⊥ component) since the mirror
symmetry plane is preserved in the combined G/Pt (2×2)
phase.

In order to gain insight into the SOC mediated graphene/Pt
hybridization mechanism we first examine the energy region
where the metallic bands cross the π bands closest to the
Dirac point (0.3 eV interval around EF ). A zoom in of this
region is presented in Fig. 3, including the Pt and G �m(�k,E)
projections (second and third columns, respectively) as well
as that for the clean Pt surface (first column). We have further
decomposed the magnetization into its ↑ and ↓ components
with their respective maps appearing in lower rows [to this end,
we diagonalized the (2×2) PDOSσσ ′

matrix at each energy and
k point]. The clean Pt electronic structure in this region consists
of a broad ↑ and an intense and sharper ↓ continuum of bands,
the former slightly shifted to the right. In the combined G/Pt
system each spin component of graphene interacts with the
opposite spin component metal band tearing it after opening a
gap across it (marked by the dashed yellow lines). Therefore,
the spin coupling in this region is antiferromagnetic. Each
π branch itself also opens a ∼100 meV gap as revealed by
clear deviations from linearity at the upper and lower gap
edges, especially at the G’s ↑ branch, which interacts more
strongly. Indeed, the gap edges can be clearly resolved in the
corresponding Pt projections while a blurred DOS crosses the
gap for both graphene’s spin components, although at this point
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FIG. 5. Same as Fig. 2 but calculated along the direction perpendicular to � − K ′
G (k line C in the inset). To view each spin component

independently see Fig. S1 of the Supplemental Material [41].

we cannot discern if it corresponds to a topologically protected
state or to slowly decaying evanescent waves or to some type
of partial hybridization. Due to the Rashba shift between the
↑ and ↓ Pt bands, the location of the gap differs in energy
between both spin components by ∼100 meV. The resulting
G’s magnetization acquires a complex texture; above the gap
both spin components run in parallel albeit the ↑ branch is
broader and slightly k shifted to the left. Below the avoided
crossing, both emerge with similar broadenings but now the ↑
k shifted to the right of the ↓ branch.

Figure 4 displays another zoom in of Fig. 2(b) covering the
−1.0 to −0.4 eV energy interval where the π bands undergo the
largest distortions. Here the G’s ↑ branch interacts with the Pt’s
leftmost ↑ band (ferromagnetic coupling) opening a large gap
of almost 200 meV which is again crossed by a blurred DOS.
The G’s ↓ branch is however much more textured, as it opens
three gaps with vanishing DOS across them. The lower gap
edge (around −0.7 eV) arises from the ferromagnetic coupling
with the sharp leftmost Pt ↓ branch. Slightly below −0.6 eV a
saddle-point feature develops (interband state) which links the
↓ Pt branch at its left with another ↑ band at its right, leaving
an abrupt inversion of the magnetization which can be clearly
seen in the Pt-projected map at the top row. Another intense G
↓ feature appears at −0.45 eV as a result of the hybridization
with the Pt band dispersing at the upper right corner. Since
this band is hardly spin polarized (it contains similar ↑ and
↓ contributions) it also hybridizes with the G’s ↑ component
creating a minigap which can be more clearly seen in the ↑
Pt-projected map.

Once we have shown for the simplest case—spin locked
in one direction—that the transfer of SOC from the metal to

the G π bands occurs at anticrossing regions and is strongly
spin dependent, we next generalize this conclusion to more
complex cases by gradually lifting the symmetry constraints.
Figure 5 displays 2D maps analogous to those in Fig. 2 but
computed along k path C. Since this line is perpendicular to
the mirror plane, the magnetization is not constrained along
the ⊥ direction any more and its three components are in
general nonzero. They have been simultaneously merged in
each frame employing green, red, and blue color scales for
m⊥, m‖, and mz, respectively [see color scheme in the legend
of Fig. 5(b)]. The last two are antisymmetric about K ′

G with
abrupt inversions occurring at this point, while the DOS(�k,E)
and m⊥ component remain symmetric. In the Pt projections an
intense parabolic band already present in the bulk (onset from
K ′

G at ∼ − 0.3 eV) disperses across the empty states region,
while surface resonances appear at the d-band edge crossing
EF and sharp surface d states develop around −1.0 eV where
the bulk presents gap areas. They all become more patent in
the magnetization maps, which show that the spin is mostly
confined in-plane (mz tends to be smaller) except at the d-band
minima located at −1 eV, which acquire a strong out-of-plane
character.

Similar to the A-B path, the upper Dirac cone remains
almost intact (absence of hybridization with any metallic
bands), sharp and hardly splitted within the high 2 meV energy
resolution (broadening) employed in our calculations. Its spin
remains in-plane (mz = 0) but, at contrast to the previous A-B
path, it is not strictly tangential to the cone since the m‖
projections do not vanish. The lower cone, on the other hand,
is strongly distorted due to multiple anticrossings with the Pt
bands. In the PDOS map we can notice two large gaps which
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(a)

(b) (d)

(c)

FIG. 6. (a) Left-hand panel: PDOS(�k, E) map projected on the Pt surface layer calculated for the G-(3×3)/(
√

7×√
7)R19.1◦ semi-infinite

surface and unfolded onto the Pt (1×1) BZ along the k lines A and B indicated in Fig. 1(b). Right-hand panel: Same as (a) but projected and
unfolded on the G’s primitive BZ. (b) Corresponding magnetization density maps following the same color scheme as in Fig. 5; this time all
three components of �m(�k, E) are nontrivial. (c) Same as (a) but calculated along path C defined in Fig. 1(b). (d) Spin texture corresponding to
the PDOS shown in (c). To view each spin component independently see Figs. S2 and S3 of the Supplemental Material [41].

open at approximately −0.7 and −1.1 eV. Furthermore, despite
the complexity of the color scheme employed to visualize �m,
spin reorientations can be readily identified throughout.

One must recall, however, that not all the induced streaks
and gaps in the DCs can be ascribed to anticrossings with the
unfolded metal bands shown in Fig. 5. In the Appendix B we
present side by side folded and unfolded G+Pt projections
obtained along the same k line (Fig. 11). Due to the BZ
backfolding associated to the (2×2) supercell additional Pt
bands in other regions of the Pt(111) (1×1) BZ appear in
the folded map that, indeed, cross the π bands—also recall
the replica of the DC traces visible away from KG in the
Pt-projected maps of Fig. 2.

B. (3×3) phase

Figure 6 summarizes analogous maps calculated for the
(3×3) configuration along the paths marked in Fig. 1(b). Since
this phase does not present any mirror planes (it belongs
to the p3 symmetry group), there are no restrictions to the
magnetization components. Kramer’s degeneracy leads to
symmetric PDOS and antisymmetric �m maps between the
KG − � and K ′

G − � directions [paths A and B in Fig. 6(b)],
while along path C the structure results highly asymmetric.
Otherwise, the overall SOC mediated interaction picture is
very similar to the previous phase illustrated in Fig. 5. Intense
surface states/resonances with well defined magnetizations and
oriented along multiple directions (as can be inferred from the
highly polychromatic maps) decorate the BZ up to ∼0.5 eV

above EF . Their (anti)crossings with the Dirac cones lead to a
blurring of the PDOS and the opening of multiple gaps (notice
a particularly large one at −1.5 eV in paths A and B) which
transfer a highly complex spin texture to the G states. The
upper DC is sharper since only a few Rashba splitted metal
sp bands disperse across the empty states region but, still,
its spin texture is nontrivial. A sensible difference with the
(2×2) case is the larger number of backfolded metal bands that
interact with the DCs as a consequence of the larger size of the
moiré pattern; indeed, two bands cross this time the previously
unperturbed upper cone close to the Dirac point (DP). This fact
is highlighted in the folded versus unfolded comparison shown
in Appendix B (Fig. 11).

C. SOC induced splittings in the G bands

We complete the G/Pt analysis by presenting in Fig. 7
zooms in of the G projected magnetization maps for both
phases and along k paths A and C [left panels (a)–(d)]. Single
spectra extracted from these maps at some representative k

points are shown in panel (e) (colored lines), including as
well the corresponding PDOS(E) curve (gray lines). Let us
first consider the anticrossing regions; plots A, D, or G. Here,
giant splittings larger than 100 meV can be readily identified
in most of the PDOS. The curves comprise up to four peaks,
two belonging to the lower edge of the gap and the other two
to the upper one. However, since the broadening of each peak
can be quite different due to a stronger hybridization of one
of the spin components with the metal bands, they are often
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(a) (b)

(d)

(e)

(c)

FIG. 7. (a) Zoom in of the G’s projected magnetization map in the (2×2) phase presented in the last column of Fig. 2 covering part of the
k path A. (b) Same as (a) but for the �m(�k,E) map of Fig. 5 (k-path C). (c),(d) Same as (a) and (b) but for the G-magnetization maps of Fig. 6
corresponding to the (3×3) phase. (e) PDOS(E) and �m(E) single spectra extracted from these maps at specific k points marked with capital
letters (A to M) in panels (a)–(d). Gray, red, green, and blue lines represent the PDOS, and ⊥, ‖ and z components of �m, respectively. Note
that the energy ranges considered in the plots can be rather different among them, ranging from 1 eV down to 100 meV while the y axis (not
shown) has been rescaled in each plot for the sake of clarity (indeed, the intensity of the sharp peaks at the upper DC tends to be a factor 3–5
larger than in the lower cone).

hard to resolve in the spectra—especially in G. In general, and
if not forbidden by symmetry, the three components of the
magnetization are nonzero with the spin orientation of each
graphene branch depending on that of the metal band causing
the anticrossing. It is particularly surprising the emergence
of large m‖ components (that is, in-plane radial contribution)
indicating that no spin-momentum locking at the DCs holds.

To understand the spin rotation process and how the size of
the splittings changes between the gap regions let us focus on
the sequence of spectra H-I; at H there is a sharp state with
�m = (+m⊥,+m‖,−mz) and a broader one with the opposite
orientation. Since at this particular k point both are aligned,
there is no net splitting. As we move upwards in energy
along the lower cone the former broadens and shifts to the left
leading to a sizable splitting of ∼100 meV—as may be deduced
from the distance between the mz minimum and maximum. It
is also clear that the magnetization changes direction as the
band disperses. Other curves acquired at similar quasilinear
regions in the lower cone follow a similar pattern (B or E).
The fact that their corresponding PDOS show a single (or
at most an asymmetric) peak rather than two splitted ones
is reminiscent of the resolution achieved in ARPES versus
SP-ARPES experiments, since in the former case, typically,
no splittings can be resolved in the π bands.

Spectra J and K, taken at the same k point close to the
Dirac point, show the drastic transition between the lower and
upper cones whereby a single broad and complex peak in the
PDOS appears as two sharp maxima splitted by a few tens of
meV above EF . Indeed, in the empty states regions there are
hardly any anticrossings and the bands remain sharp and fairly
linear (curves C, F, L, and M) while the magnetization does
not undergo such abrupt changes (albeit the m‖ component is
still comparable to the other two). Nevertheless, their splittings
become of the order of just 10 meV.

We complete our discussion by comparing the calculated
G/Pt properties with the previous ARPES and SP-ARPES
results reported by Shikin et al. and Klimovskikh et al.
in Refs. [18,19] for the (2×2) phase as confirmed by the
corresponding LEED patterns. Overall, the experiments seem
to agree quite well with our maps, especially concerning the
hardly perturbed Dirac cones after comparing their spectra
against our calculated G’s PDOS in Fig. 2(a). Furthermore,
the large calculated gap at −0.7 eV matches, within a DFT
error of a few hundreds of meV, a pronounced anticrossing
between the π bands and the Pt 5d states appearing at around
−0.5 eV (Figs. 1(a) and 4(a) in Refs. [18,19]). We also note a
discrepancy between the measured and calculated p-doping
level; in the above mentioned works the DP is shifted by
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FIG. 8. Top (a) and side (b) views of the G/Au/Ni(111) interface with C, Au, and Ni atoms drawn in red, gold, and gray, respectively.
The parallelogram denotes the (9×9)/(8×8)/(9×9) supercell employed. Interlayer average spacings and intralayer corrugations (blue font)
are indicated in Å. (c) BZ scheme of the system; black and red small hexagons indicate the supercell’s BZ, while the large green hexagon
corresponds to the G’s (1×1) BZ. Labels with the subindex G refer to the G’s primitive BZ. (d) Folded PDOS(�k, E) map calculated along the
� − K − M k path indicated by a small solid line in (c) and simultaneously projected on the topmost surface layers of the semi-infinite system:
graphene (red), Au (light blue), and the Ni surface (dark blue). The inset below shows the PDOS decomposition into majority and minority
spin components (↑↑ and ↓↓ stencils) in the low energy region. (e) PDOS(�k, E) projected and unfolded on graphene along a fragment of the
� − K path of the primitive G’s BZ. (f) The corresponding magnetization density following the same color scheme as in Fig. 5; only m⊥ and
mz components are present in this case. (g) Single spectra for the PDOS(E) (gray line) and m⊥/mz components (red/blue) extracted at selected
k points marked in (f). Magnetization curves obtained in the absence of SOC are additionally included in the spectra (blue dashed lines).

100 meV from EF while in our calculations it is close to 0.4 eV
which is, however, only slightly larger than the 0.3–0.4 eV
obtained in previous ARPES and STS experiments [37,42] as
well as in other DFT studies under different XC functionals
[43,44]. Finally, in the light of the magnetization spectra shown
in Fig. 7(e), we ascribe the giant splittings (80–200 meV)
reported in these experimental works to or close to gap regions
where such large values commonly appear. We emphasize,
however, that they cannot be interpreted as a standard Rashba
shift between the ↑ and ↓ branches of the DCs whereby both
spin components would disperse in parallel around EF . At
contrast, the picture that emerges from our simulations is that

both the magnetization direction and the splittings undergo
continuous changes in k space, while in the linear regions
(upper DC), the splittings are not larger than a few tens of meV.

IV. GRAPHENE ON AU/NI(111)

In this section we will focus on the G/Au/Ni(111) system
for which we have considered two different interface models
based on the related STM study of Jacobsen et al. [33]. The
first one consists of graphene pseudomorphically grown on
an unreconstructed Ni(111) surface with an intercalated Au
monolayer between them, which results in a large moiré pattern
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involving (9×9) and (8×8) supercells at the G/Ni and Au,
respectively [see Fig. 8(a)]—in this configuration the Au-Au
intralayer distances are compressed by just 2% with respect
to those in the Au-f cc bulk phase. The same commensurate
lattice applies to the second model, where the Ni top layer
presents a (9×9) reconstruction after removal of five Ni atoms
followed by a shift of a ten-atom triangle from fcc to hcp
registry. However, all results for this latter model are presented
in Appendix C since, to our surprise, the electronic structure of
graphene is hardly modified by such a severe reconstruction.
Indeed, the computed adsorption (physisorption) energy is the
same for both models (38 meV/C).

After relaxation we found a weak graphene/Au interaction
with an uncorrugated G layer located at 3.39 Å above the
gold layer [see Fig. 8(b)], slightly larger than the values
obtained in previous studies of G/Au interface (3.2–3.3 Å in
Refs. [38,39,43,45]), although an eventual error smaller than
0.2 Å should not alter the SOC splittings by more than a
few tens of meV [8]. Unexpectedly, the Au layer presents a
rather small corrugation of 0.08 Å, similar to that at the Ni
topmost layer (0.15 Å). As regards the magnetic properties
of the system, the Ni substrate’s spin polarization was always
set along the surface normal (+z axis) while the intercalated
gold was found to couple antiferromagnetically to it with small
induced magnetic moments of ∼ − 0.02 μB/atom versus the
∼ + 0.6 μB/atom at the Ni surface layers and the negligible
+0.002 μB/atom in graphene.

PDOS(�k,E) maps projected on the first atomic layers of
the surface are shown in Fig. 8(d). The contributions of G,
Au, and Ni are superimposed within the same map each
plotted in a different color (red, light blue, and dark blue,
respectively). Recall that due to the BZ backfolding which
transforms both KG and K ′

G into �, the two cones appear
superimposed in the figure. This time the linear π bands
(red) are almost fully preserved within a ±1 eV interval
around EF , confirming its quasifreestanding character. The
intense dark blue horizontal bands centered at around −0.7
and +0.2 eV correspond to the upper part of the majority and
minority Ni d bands, respectively. Gold sp bands, including a
surface state with onset at −0.33 eV, analogous to the Au(111)
Shockley-type L band [29,46], cross the BZ at both positive
and negative energies while faint traces of the Au d bands
(light blue) appear below −1 eV inducing large distortions in
the graphene’s π bands. The decomposition of the maps around
this region into the diagonal ↑↑ and ↓↓ stencils (majority
and minority spin carriers in the absence of SOC) reveals
marked differences among them [lower inset in (d)], indicating
that the graphene/gold hybridization is spin dependent due to
the already exchange-splitted Au states. In particular, the ↓↓
stencil is strongly perturbed around −1.3 eV and the ↑↑ at
−1.7 eV.

Figure 8(e) displays the unfolded PDOS(�k,E) projected
on G along the � − KG/K ′

G − � lines of its primitive BZ.
The unfolding permits us to disentangle the KG and K ′

G

DCs and visualize each π band independently thus allowing
a direct comparison versus the experimental ARPES results
of Ref. [17]. The corresponding magnetization maps together
with some single PDOS and �m spectra computed at selected k

points are shown in panels (f) and (g), respectively. Due to the
p3m symmetry holding for the entire surface the PDOS(�k,E)

map is perfectly symmetric between the � − KG and K ′
G − �

paths as they are related by a mirror plane. Most notably, the
�m(�k,E) map displays the same symmetry with a vanishing m‖
contribution throughout the entire energy range implying that
the in-plane component of the spin remains helical. The fact
that mz does not change sign between the two paths implies
that it does not behave as a pseudovector any more but, instead,
it is fixed by the magnetic order that completely dominates the
out-of-plane spin component over the SOC.

In the lower energy region, the hybridizations with the
spin-exchange splitted gold d bands induce streaky features
opening several gaps with giant spin splittings larger than
100 meV (curves A and B). The structure of the corresponding
spectra shows multiple peaks of different intensity, spin depen-
dent broadenings, and magnetic orientations [always confined
within the (⊥, z) plane]. This scenario is therefore reminiscent
of the strong SOC-mediated interaction found between the G
and the Pt-d bands in the previous section. In the ±1 eV range
around EF (curves C, D, E, and F), the lack of hybridizations
leads to quasilinear sharp bands which even allow us to resolve
the double peak structure in the PDOS(E) in certain cases (D
or F). However, the splittings never exceed ∼10 meV. Curve
E shows the magnetization at the gapless Dirac point where
only mz is nonzero—i.e., consistent with a weak intrinsic SOC
picture. Interestingly, there is a large asymmetry between the
two components, the +mz being much sharper than the −mz.

In order to try to quantify the interplay between SOC and
magnetic exchange we have included in the spectra of panel
(g) the magnetization in the absence of the former (blue dashed
lines). The similarities with the mz curves (solid blue lines) in
all the graphs, even in the distorted regions (curves A or B),
reveals that the SOC manifests in this system only as a rather
small perturbation to the electronic structure, its main effect
being the emergence of an in-plane helical component, m⊥, in
the spin texture (solid red lines).

Figure 9 presents constant energy �m(�k) surfaces computed
around KG at several energies above and below the Dirac point,
as sketched at the central panel. The circular features become
more trigonally distorted as the energy is further away from
the Dirac point. The in-plane projections mx/y make patent
the helical character of the π states as well as a small RS
since the DCs appear k shifted with respect to each other (as
expected, the shifts are along the same directions in the upper
and lower cones). On the other hand, the mz maps do not follow
a standard exchange magnetic picture whereby the entire band
structure of each spin branch would be shifted in energy
(vertically) with respect to the other one. Here, the upper cone
couples ferromagnetically (dark/minority circles lie inside the
white/majority ones) and the lower cone antiferromagnetically
to the Au/Ni substrate. The only exception is the −100 meV
map where the broad minority band appears at both sides of
the sharper majority circle.

Last, we discuss the agreement between our results and
the experimental data obtained via ARPES and SP-ARPES
reported in Refs. [16,17]. Our calculations reproduce well the
quasifreestanding character of the G on this surface, as the DCs
appear rather intact (within the energy interval considered in
our work), as well as the negligible doping and the absence
of a gap at the Dirac point. Furthermore, the kink observed
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FIG. 9. Unfolded G-projected �m(�k) maps calculated at selected values of energy and within k regions of the Dirac cones (see sketch in
the middle panel with the energies given in meV). Left-hand (right-hand) panel displays the energy cuts at the upper (lower) Dirac cones. The
x/y/z components of �m are plotted separately in the first/second/third column of each panel employing a grayscale color scheme with positive
(negative) values of magnetization drawn in white (black).

at −0.95 eV in Ref. [16] and ascribed to an electron-mass
renormalization in the DC’s dispersion matches well with the
onset of strong perturbations in the π bands which in our
simulations appear below −1 eV. In fact, if a straight line
taken along the upper DC in Fig. 8(e) is extrapolated towards
negative energies (not shown), deviations from the lower cone
appear around this onset and in the same direction as the
experiments (towards a smaller electron mass). Finally, our
calculated splitting values (of around 10 meV) perfectly agree
with those derived in the first SP-ARPES study (13 ± 3 meV),
although we attribute their origin to the magnetic order rather
than to a Rashba-type SOC which, anyhow, is observable in
our simulations. On the other hand, our results cannot explain
the giant (∼100 meV) splittings measured in Ref. [17] for
one of the two phases that coexisted within the same surface
and attributed to a possible corrugation of the G layer which
could lead, locally, to unusually small G/Au distances. Our
simulations employing a realistically large supercell seem to
exclude this possibility since the G is found to be only weakly
physisorbed and remains hardly corrugated even after the large
surface reconstruction described in Appendix C. A possible
alternative explanation could be the formation of a Ni/Au alloy
at the surface layer which could bring the G closer to the surface
due to the stronger G-Ni coupling, as has been recently proved
for the G/Fe/Ir(111) system [47]. Still, and based on the results
presented here, we believe that giant splittings will not show
up in the quasilinear regions but only at anticrossings (gaps)
that could emerge close to EF due to the presence of Ni atoms
at the top layer [48].

V. SUMMARY AND CONCLUSIONS

In summary, we have unveiled with unprecedented detail the
SOC-induced spin texture in the graphene’s π bands arising
from the presence of a heavy metal semi-infinite substrate.
We have considered two paradigmatic systems: a nonmagnetic
Pt(111) and a spin-polarized Au/Ni(111) surface. For the
former we find that the SOC splitted continuum of metal

bands hybridize with the Dirac cones at multiple energies and
manifest as local spin-dependent deformations in the linear
bands at the avoided crossing gaps, often exceeding 100 meV,
accompanied by spin reorientations at the edges, while in be-
tween gaps (quasilinear regions) a reduced splitting of at most
10–20 meV remains. Both the precise value of the splitting as
well as the G’s induced magnetization change continuously as
the splitted branches disperse, typically crossing between them
and bearing different widths. Therefore, we conclude that the
giant SO splittings reported for this system are most probably
located close to anticrossing gaps. The number and energy
location of the avoided crossings will in general depend on the
particular moiré pattern since, as the metal BZ shrinks or rotates
with respect to that of graphene, different metal bands will
mix [see the comparison between the (2×2)- and (3×3)-G/Pt
phases in Fig. 11]. Obviously, as the supercell (moiré pattern)
increases in size further crossings will be expected leading to
even more complex spin texture.

In the case of G/Au/Ni(111), the absence of gold d states
around the Fermi level leaves continuous linear π branches
with small splittings in the 10 meV range. However, their origin
is mainly the substrate’s magnetic order that is transferred to
graphene, while the induced SOC introduces a helical in-plane
component to the magnetization but hardly alters the G’s total
PDOS. No evidence for large RSs of the Dirac cones in this
energy region was found for either of the two different phases
considered, at contrast with a previous experimental study [17];
we assign this discrepancy to a possible Au/Ni alloying process
at the surface layer. The presence of Au-d states below −1 eV,
on the other hand, leads again to a complex spin structure
similar to that found for both G/Pt phases.

We note that unveiling such a complex spin texture rep-
resents a key finding which not only opens a new challenge
to current (SP-)ARPES based studies of the SO proximity
effect, but should also stimulate further research aiming at
engineering the relativistic electron’s spin. Indeed, there are
several non-negligible problems to be solved. On one hand,
splitting the two spin branches by sizable energies (>100 meV)
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seems only possible at anticrossing regions with the metal’s d

states where the π bands lose their linear character as gaps are
opened and therefore electronic transport across the G layer is
suppressed. Furthermore, no spin-momentum locking holds in
these regions as the G’s induced magnetization acquires very
different orientations in space depending on the specific metal
band with which it hybridizes. On the other hand, at quasilinear
regions, either in between these gaps or where no d bands are
present (typically the upper DC), only very small splittings
(<kT ) can be observed, with the further disadvantage that the
two branches do not necessarily disperse strictly parallel and
may even cross yielding an interchange of magnetizations. The
broadening induced by the substrate’s self-energy is also found
to be highly relevant in the G’s final spin texture, as it strongly
varies between the two spin components often leading to single
sharp peaks emerging from a broader background signal.

Our results show a tradeoff between large SOC-derived
splittings and the loss of linearity of the π bands, which needs
to be overcome in order to harness the SOC-induced magneti-
zation. We believe, however, that our detailed analysis of the
spin-orbit proximity effect in graphene adsorbed on metallic
substrates, far beyond the resolution of current photoemission
techniques, will not only motivate further experimental studies
aiming to capture the G’s spin properties, but will also facilitate
their correct interpretation. Moreover, it remains to address any
topological properties that could emerge at the multiple gaps
opened. Intrinsic SOC transferred to the G via the proximity
effect is known to induce a QSHE state after small gap openings
(of at most a few tens of meV) at the Dirac point [13] while here
much larger gaps (100–200 meV) have been systematically
found away from KG often crossed by a nonvanishing density
of states.
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APPENDIX A: BRILLOUIN ZONE UNFOLDING

In the case of moiré patterns (or supercells in general),
where lattices at layers I and J are different and a common
supercell S exists for both, any k point within the BZ of layer
I, �kI , may be expressed as �kI = �kS + �GI , where �kS is confined
within the BZ of S and �GI are the so-called �G vectors [24] that
relate the reciprocal lattices of S and I ; the number of these
vectors is given by the ratio between the unit cell areas of
S and I, NSI (see Fig. 10). Since for the combined system
only �kS is conserved, any quantity in k space projected at
layer I will mix all �GI vectors (BZ folding). However, when
the I -J interaction is weak, one may expect that, to a good
approximation, translation symmetry is preserved at layer I

and hence, �kI is approximately conserved within this layer. We
explain below in detail our procedure to obtain such unfolded
band structure from a supercell slab calculation.

S

Pt
G

FIG. 10. BZ schemes for the G-(3×3) lattice (blue hexagon in
left-hand figure), the Pt-(

√
7×√

7)R19.1◦ (red in right-hand figure),
and their commensurate cell S (black hexagons in both figures). The
�G vectors pointing to the S BZs enclosed by the G and Pt BZs (9 and
7, respectively) are indicated by the arrows (apart from the � point
�G = 0).

Considering the general case where the substrate’s unit cell
is the same as that of the supercell S (i.e., a reconstructed
surface) and denoting by the index I the graphene layer
adsorbed on top whose electronic structure we wish to unfold,
we first construct the intralayer Hamiltonian in k space as:

HII (�kI ) = 1

NSI

∑

�RI , �LI

ei�kI ( �RI −�LI )HII ( �RI − �LI ), (A1)

where �RI runs over the lattice vectors at I, �LI are the vectors
linking the origin of the layer with that of each of the NSI

unit cells contained in the S supercell, and HII ( �RI − �LI )
contains the matrix elements between the G’s unit cell centered
at �LI and those shifted by �RI —all of them available from
the self-consistent slab’s Hamiltonian previously computed
and saved. Equation (A1) thus averages the matrix elements
between the carbon A and B atoms over the entire supercell so
that translational symmetry is imposed within the layer. Next,
we express the k-space interactions between I and S as:

HIS (�kS, �GI ) = 1√
NSI

∑

�RS, �LI

ei(�kS+ �GI )( �RS−�LI )HIS ( �RS − �LI ),

(A2)

where, again, all interlayer HIS ( �RS − �LI ) matrix elements can
be extracted from the self-consistent supercell slab calcula-
tion. The Green’s function projected at layer I may then be
expressed according to:

GII (�kS, �GI ,E) = (
FII (�kI , E) + �S

II (�kS, �GI ,E)
)−1

, (A3)

where F = E · O − H is the secular matrix and �S
II (�kS, �GI )

stands for the self-energy at layer I arising from the presence of
the substrate, which may be calculated via Green’s functions
techniques following the same k scheme as for HIS (�kS, �GI )
[25]. Unfolding the BZ at I may now be easily carried out
by extracting the contribution of each �kI = �kS + �GI term
individually. In practice, we run �kI along a given direction
and only retain the �GI = 0 contribution of GII (�kS, �GI ,E).

Similar to the case of G, BZ unfolding may also be
performed for any substrate layer as long as it is not strongly
reconstructed. The above procedure remains valid, although for
the surface layer we need to consider two interlayer interactions
(self-energies) instead of just one: that involving the G and
that with the rest of the substrate below. In general, to reduce
the number of approximations associated to this approach we
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FIG. 11. DOS(�k, E) maps projected on the G (red) and first Pt
layer (light blue) calculated for the G/Pt (2×2) (left column) and
(3×3) (right column) phases along the B k paths shown in Fig. 1.
(a) Unfolded band structure after assuming that the (1×1) translational
symmetry is preserved at the G and surface Pt layers (see Appendix A)
and, (b) folded band structure employing the (2×2)/(

√
3×√

3)R30◦

and (3×3)(
√

7×√
7)R19.1◦ supercells to describe all G/Pt layers.

perform the unfolding for the G and the surface metal layer in
separate calculations.

Let us finally note that our unfolding scheme is exact as long
as translational symmetry is strictly preserved at layer I . For
the quasifreestanding G case, either on Pt(111) or Au/Ni(111),
the G-metal interactions are indeed weak and it is clearly a
good approximation.

APPENDIX B: G/PT(111) FOLDED BAND STRUCTURES

In Fig. 11 we present a comparison of the folded (top panels)
versus unfolded (bottom panels) PDOS(�k,E) maps for both
the G/Pt (2×2) and (3×3) phases computed along the K ′

G − �

direction [k paths B in Fig. 1(b)]. We have simultaneously
merged in each map the G (colored in red) and first Pt layer
(light blue) projections. For the (2×2) phase (left column)
around five new backfolded Pt bands appear below EF and
cross the G’s π band (each marked by a small blue circle),
while the upper cone remains identical to that of the unfolded
case due to the absence of extra bands. The profusion of
backfolded Pt bands is much larger in the (3×3) phase, as
should be expected due to its smaller BZ size. In this geometry
both DCs (KG and K ′

G) are backfolded into the � point and
hence, the two branches appear superimposed in the upper
map. We have again marked with small circles those which do
not appear in the unfolded map (up to eight clearly visible)
with the peculiarity that this time, two of them cross the upper
DC inducing the small distortions around 0.6 eV that can be
appreciated in the unfolded map below.

APPENDIX C: G/AU/NI(111) RECONSTRUCTED MODEL

We describe here the results for an alternative G/Au/Ni(111)
model, whose geometry differs from the one considered in
the main text by the Ni substrate’s reconstruction, based on

(a)

(b)

(d) (e) (f)

(c)

FIG. 12. (a)–(c) Top and side views of the relaxed geometry for the reconstructed G/Au/Ni(111) configuration. C, Au, and Ni atoms are
drawn as red, gold, and gray balls, respectively. In (b) the Au and G layers have been removed in order to show the Ni triangular motif
characteristic of this reconstruction. In (c) first interlayer average spacings (black font) and intralayer corrugations (blue font) are indicated
in Å. (d) Electronic structure and (e) corresponding magnetization density unfolded and projected on graphene along the � − KG line of its
primitive BZ (shown in the inset). Color scheme same as in the maps shown in the main paper. (f) Single spectra extracted from panels (d) and
(e) at the k points marked in the latter; PDOS(E) in solid gray and m⊥/z(E) components in red/blue (the m‖ is zero along this k line).
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previous STM studies [33] where the deposition of Au on
Ni(111) at RT yielded a complex ∼(9.7×9.7) reconstruction
with triangular motifs assigned to a strongly reconstructed top
Ni layer whereby five vacancies are created and ten surface
Ni atoms forming a triangle are shifted from an f cc to an
hcp registry [see Fig. 12(b)] [33,49]. Although there is no
experimental evidence for the existence of such a configuration
when graphene is deposited on top, we have considered it
as a possible explanation for the appearance of two phases
with different splittings as reported in the SP-ARPES experi-
ments [17].

In Figs. 12(a)–12(c) we summarize the relaxed geometry of
such a configuration; for simplicity, we have assumed the same
G/Au/Ni (9×9)/(8×8)/(9×9) commensurate supercell as for
the unreconstructed model since it can nicely accommodate
the large triangular motifs. Although the triangular Ni motifs
induce a large buckling in the Au layer of 0.7 Å, the corrugation
of graphene remains negligible (0.03 Å) with an average
G-Au distance of dG−M = 3.48 Å only slightly larger than
in the unreconstructed model considered in the main text.

The Au layer again exhibits a small magnetic moment of
0.03 μB/atom antiferromagnetically coupled to that of the Ni
surface. Figures 12(d)–12(f) present the unfolded PDOS(�k,E)
and magnetization maps together with single spectra extracted
from the latter, following the same scheme as in Fig. 8. The
maps corresponding to the unreconstructed and reconstructed
phases are qualitatively very similar, with an almost intact
(only weakly spin-splitted) upper Dirac cone and the lower
cone strongly textured due to multiple hybridizations with the
metal bands particularly below −1 eV. At the Dirac point
(spectra E), two overlapping peaks can be seen signaling a
larger intrinsic SOC for this model, although their broadenings,
different for each spin, are both sufficiently large to close any
gap. Nevertheless, and as can be seen from the single spectra
in panel (f), the magnitude of the spin splittings along the DC
do not exceed a few tens of meV in the quasilinear regions.
Therefore, and similar to the unreconstructed model described
in the main text, the triangular surface reconstruction cannot
explain either the giant RS splitting phase recently reported for
this system [17].
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