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We study the optical properties of bianisotropic optical waveguides with nontrivial topological structure in
wave-vector space, placed in an ordinary dielectric matrix. We derive an exact analytical description of the
eigenmodes of the systems with arbitrary parameters that allows us to investigate topologically protected surface
states (TPSS) in details. In particular, we find that the TPSS in the waveguides would disappear (1) if their radius
is smaller than a critical value due to the dimensional quantization of azimuthal wave number, and also (2) if
the permittivity of the host medium exceeds a critical value. Interestingly, we discover that the TPSS in the
waveguides have negative refraction for some structures. We construct a TPSS phase diagram that will guide the
development of topological waveguides for optical interconnects and devices.

DOI: 10.1103/PhysRevB.98.075433

I. INTRODUCTION

Electronic properties of topological phases of matter, in-
cluding topological insulators, have been under intensive inves-
tigation in the past decades [1–4]. This culminated in the Nobel
Prize in Physics in 2016 being awarded to D. J. Thouless, F. D.
M. Haldane, and J. M. Kosterlitz “for theoretical discoveries of
topological phase transitions and topological phases of matter”
[5]. In the meantime, this intensive interest in topological
phases of matter has also stimulated widespread studies on
complex topology of dispersion relations of photonic crystals
and metamaterials, leading to the appearance of topological
photonics [6–19], a new and vibrant area in nanophotonics
and nano-optics. Examples of such photonic materials include
bianisotropic materials [7,8], magnetized cold plasma [9,10],
or planar photonic crystals [11–15]. The nontrivial topology in
wave-vector space can be observed also in ferrite films [20,21].
Several experimental works of this kind are known both in
microwaves [16,17] and in optics [18,19].

Among other things, the most interesting effect here is
topologically protected surface states (TPSS), whose one-way
propagation should be insensitive to the spatial variations
of the waveguide surface. These states are often considered
as the analogs of conducting surface states in electronic
topological insulators [4]. However, there are some funda-
mental differences between the surface states in electronic
and photonic topological insulators. First, electrons have a
mass and a charge and cannot disappear. Second, electrons are
subject to Fermi-Dirac statistics, whereas photons are subject
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to Bose-Einstein statistics. The third and most important
difference is that the extension of electronic wave function
is generally much smaller than the system size, and therefore
the systems can be considered as infinite half spaces. On the
other hand, the wavelengths of photons in the visible regime,
for example, are on the order of 1 μm, and thus can be
larger than the transverse size of the optical system, especially
optical nanowaveguides. These differences can render the
concept of TPSS in photonics invalid in certain circumstances.
Furthermore, two-dimensional (2D) propagation of TPSS in a
flat interfacial plane or on a flat surface is usually considered
in topological photonics. However, one major goal of the
topological photonics is the design of long three-dimensional
nanowaveguides with small losses which can be used as optical
interconnects [22,23].

To meet this goal, in this paper we present the results of
our detailed study of the fundamental properties of TPSS
in waveguides of realistic geometries made of photonic
metamaterials. Main attention is paid to the investigation of
how the waveguide geometry influences its properties and
even the existence of TPSS. In doing so we will consider
waveguides of different radius and different cross sections
(see Fig. 1). We will also consider how the properties of
environment affect the TPSS. In particular, we derive an
analytical solution for the considered system. Based on this
analytical solution, we thoroughly investigate the optical
properties, especially those which have been overlooked so
far, of the TPSS, such as the limited validity of the TPSS
concept.

By ways of example, we focus on the nanowaveguides made
of a bianisotropic material with constitutive relations [24]:

D = ε̂E − iχH, B = μH + iχE. (1)
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FIG. 1. Geometries under consideration. (a) Single-wire waveg-
uide, (b) two-wire waveguide, and (c) single square waveguide. All
waveguides are made of a bianisotropic material with nontrivial
topology in wave-vector space, while host medium is an ordinary
dielectric.

The permittivity tensor ε̂ in (1) has the following form:

ε̂ =
⎛
⎝ερ 0 0

0 ερ 0
0 0 εz

⎞
⎠, (2)

where ερ = εx = εy are the components of the permittivity
tensor along Cartesian axes x and y, and εz is the permittivity
component along Cartesian axis z. Let the medium under
consideration have isotropic magnetic permeability μ and
isotropic chirality parameter χ . We also assume that the
waveguide is placed in ordinary isotropic dielectric host of
permittivity εd . When ερ > 0 and εz < 0 (hyperbolic case
[25]) such medium has nontrivial topology in reciprocal space.
It is important to note that Eqs. (1) and (2) do not violate
time-reversal symmetry as was previously shown in Ref. [7].
Another remarkable feature of Eqs. (1) and (2) is that there is
no leaking of electromagnetic waves to vacuum in the case of
arbitrary interface between vacuum and chiral hyperbolic half
spaces [7].

This paper is organized as follows. The derived analytical
expression for the dispersion relations for the cylindrical
waveguide is presented in Sec. II. Section III is devoted to
the study of the topology of the surfaces defined by dispersion
relations of bulk bianisotropic media and associated singularity
of wave vectors. Here we have calculated Chern numbers of
all bands also. The influence of the waveguide radius R on
the TPSS is analyzed in Sec. IV. In particular, it is shown in

this section that there is a critical radius Rc below which the
TPSS would disappear due to the dimensional quantization
of eigenmodes. The optical properties of TPSS of a two-wire
system are analyzed in Sec. V. The influence of cross-section
shape on TPSS is analyzed in Sec. VI. The effect of permittivity
εd of surrounding medium on TPSS is studied in Sec. VII.
Changes in the dispersion relations of the interface due to
the εd variation are reported. In particular, it is demonstrated
that for a large enough εd , TPSS would also disappear. In
Sec. VIII the calculated group velocity of TPSS is reported
to show that for certain sets of R and εd values, the group
velocity is opposite to the phase velocity, resulting in a negative
refractive index. In Sec. IX a generalized phase diagram of
TPSS in cylindrical bianisotropic waveguides is presented and
the conclusions drawn from this work are also given.

II. ELECTROMAGNETIC WAVES IN A CYLINDRICAL
BIANISOTROPIC WAVEGUIDE: AN ANALYTIC SOLUTION

To find general expressions of fields inside the bianisotropic
metamaterial waveguide with translational symmetry along the
z axis, one can integrate over longitudinal wave vector h. In
this way, general expressions have the following form:

Ein =
∫ ∞

−∞
dhE, Hin =

∫ ∞

−∞
dhH. (3)

In the case of a circular cylindrical waveguide made of a
bianisotropic metamaterial (1) one can solve wave equations in
the cylindrical system of coordinates 0<ρ<∞, 0�ϕ<2π and
−∞ < z < ∞. In this case, we can show that z components
of the fields can be written as

Ez =
∞∑

n=−∞

(
BP

n Jn(qP ρ) + BM
n Jn(qMρ )

)
eihz+inϕ

Hz =
∞∑

n=−∞

(
f BP

n Jn(qP ρ ) + gBM
n Jn(qMρ )

)
eihz+inϕ, (4)

where Jn(x) is the Bessel function [26], BP
n and BM

n are
coefficients which we can find from the boundary conditions,
and qP , qM are radial wave vectors:

q(
P

M

) =
√(

k2
0 − h2

ερμ − χ2

)(
(ερ + εz)μ

2
− χ2

)
+ 2k2

0χ (χ ∓ bμ)

a = ερ − εz

4k2
0χ

(
k2

0 − h2

ερμ − χ2

)
, b =

√
εz

μ
+ a

(
a + 2χ

μ

)
. (5)

Equations (4) and (5) allow us to find an analytical solution of the problem. The other field components in the matrix form are
given as follows:

(
Eρ

Hρ

)
= ih

A
M1

∂

∂ρ

(
Ez

Hz

)
− ik0

A
M2

1

ρ

∂

∂ϕ

(−Hz

Ez

)
(

Eϕ

Hϕ

)
= ih

A
M1

1

ρ

∂

∂ϕ

(
Ez

Hz

)
+ ik0

A
M2

∂

∂ρ

(−Hz

Ez

)
, (6)
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where

M1 =
(

k2
0 (ερμ + χ2) − h2 2ik2

0μχ

−2ik2
0ερχ k2

0 (ερμ + χ2) − h2

)

M2 =
(

μ
(
k2

0 (ερμ − χ2) − h2
)

iχ
(
k2

0 (ερμ − χ2) + h2
)

−iχ
(
k2

0 (ερμ − χ2) + h2
)

ερ

(
k2

0 (ερμ − χ2) − h2
)
)

(7)

A = (
k2

0 (
√

ερμ − χ )2 − h2)(k2
0 (

√
ερμ + χ )2 − h2).

General expressions for the fields outside the waveguide in an ordinary dielectric medium of permittivity εd and permeability
being equal to unit can be written in a similar way

Eout =
∫ ∞

−∞
dhE′, Hout =

∫ ∞

−∞
dhH′, (8)

E′
z =

∞∑
n=−∞

CnH
(1)
n (qρ )eihz+inϕ, H ′

z =
∞∑

n=−∞
DnH

(1)
n (qρ )eihz+inϕ,

(
E′

ρ

H ′
ρ

)
= ih

q2

∂

∂ρ

(
E′

z

H ′
z

)
− ik0

q2

1

ρ

∂

∂ϕ

(−H ′
z

εdE
′
z

)
,

(
E′

ϕ

H ′
ϕ

)
= ih

q2

1

ρ

∂

∂ϕ

(
E′

z

H ′
z

)
+ ik0

q2

∂

∂ρ

(−H ′
z

εdE
′
z

)
, (9)

where H (1)
n (x) is the Hankel function of the first kind [26], q =

√
k2

0εd − h2, and coefficients Cn and Dn can be found from the
boundary conditions.

The nontrivial solution of the system of equations at the boundary is possible only when determinant D of the system is equal
to zero. This then leads to the dispersion equation:

D =
{

nh

R

[
σ (1,−1) + 2ik2

0μχf − A

q2

]
+ ik0qp

[
[μf σ (−1,−1) − iχσ (−1, 1)]ξn(qP R) − f ψn

qP

]}

×
{
−nh

R

[
gσ (1,−1) − 2ik2

0ερχ − gA

q2

]
+ ik0qM

[
[ερσ (−1,−1) + iχgσ (−1, 1)]ξn(qMR) − εdψn

qM

]}

−
{

nh

R

[
σ (1,−1) + 2ik2

0μχg − A

q2

]
+ ik0qM

[
[μgσ (−1,−1) − iχσ (−1, 1)]ξn(qMR) − gψn

qM

]}

×
{
−nh

R

[
f σ (1,−1) − 2ik2

0ερχ − f A

q2

]
+ ik0qP

[
[ερσ (−1,−1) + iχf σ (−1, 1)]ξn(qP R) − εdψn

qP

]}
= 0, (10)

where

ξn(x) = J ′
n(x)

Jn(x)
, ψn = A

q

H (1)′
n (qR)

H
(1)
n (qR)

σ (s1, s2) = k2
0 (ερμ + s1χ

2) + s2h
2. (11)

In the special case of χ → 0 and ερ = εz = ε, Eq. (10)
correctly reduces to the dispersion equation of a waveguide
made of an ordinary material [27]. Equations (4)–(11) are the
main result of this work and they allow us to investigate all
surface and bulk states in details.

III. PROPERTIES AND SINGULAR POINTS OF BULK
BIANISOTROPIC MATERIAL

A band structure ω = ω(kx, h) of a spatially homogeneous
bianisotropic material can be found with help of the theory
of uniaxial bianisotropic media [28]. For a material with

constitutive relations (1) and (2), this equation is(
h2

(ερμ − χ2)
+ k2

x

(εzμ − χ2)
− ω2

c2

)

×
(

h2ερ

(ερμ − χ2)
+ k2

xεz

(εzμ − χ2)
− ερ

ω2

c2

)

= χ2

μ

(
h2

(ερμ − χ2)
+ k2

x

(εzμ − χ2)
+ ω2

c2

)2

, (12)

where kx and h are, respectively, the x- and z components of the
wave vector, and c the speed of light. Without loss of generality,
we set ky = 0 for simplicity. This band structure is shown in
Fig. 2, and is also plotted in Fig. 3 for a fixed frequency ω = k0c

(the red curve in Fig. 2).
Figure 2 shows clearly that the band structure consists

of three sheets (bands), namely, one closed surface centered
at � and the two other open surfaces situated above and
below (in the h direction) this closed surface. These three
bands are separated by two gaps. Interestingly, all three
bands are topologically nontrivial because they all have a
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FIG. 2. Band structure ω = ω(kx, h) of a bulk bianisotropic
material [Eq. (12)]. Here ερ = 4, εz = −3, μ = 0.5, and χ = 0.5.
Calculated Chern numbers of the surfaces are labeled on the top. The
red curve on the top is the equifrequency curve plotted again in Fig. 3
below. LHEP and RHEP stand for left- and right-handed elliptical
polarizations of eigenmodes, correspondingly.

nonzero Chern number, as indicated in Fig. 2. Calculation
of Chern invariants for continuous media is not a trivial task
[29,30]. Here the Berry curvature and the Chern numbers
are calculated by using the efficient numerical algorithm
reported in Ref. [31] (see also Ref. [15] for more details)
and our calculated Chern numbers agree with those reported
in Ref. [7]. It should be pointed out that the Chern number
usually vanishes in most time-reversal-invariant (TRI) systems
especially in electronic topological insulators. However, in 2D
TRI topological insulators, the Chern numbers for spin-up and
spin-down band structures are separately nonzero, but they
have equal sizes and opposite signs, thus resulting in zero total
Chern number. Nonetheless, even in this case, if one could
introduce a TRI symmetry breaking (e.g., spatial asymmetry)
that would be sufficiently strong so that a band gap separating
spin-up and spin-down bands were opened, one could have
a TRI topological insulator with a nonzero Chern number.
Unfortunately, no such symmetry breaking has been found
so far in the electronic TRI topological insulators. Excitingly,
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FIG. 3. (a) Equifrequency curves in a bulk bianisotropic material
(ερ = 4, εz = −3, μ = 0.5) with χ = 0 (dashed lines) and χ = 0.5
(solid lines). (b) Equifrequency lines for an ordinary bulk dielectric
with εd = 0.5 and εd = 3 (red lines). Black lines are the same as
in (a).

FIG. 4. Schematic presentation of the zones of longitudinal wave
vector h (numbers to the left) for which radial wave vectors qP and
qM are either real, imaginary, or complex. Black lines denote the
equifrequency curves of the bulk bianisotropic material. The band
Chern numbers (1 and −2) are shown as well. The hatched area
corresponds to possible TPSS.

this has recently been shown to be possible in photonic TRI
topological insulators with pseudospins by Gao et al. [7].
Here pseudospin-up and pseudospin-down are mimicked by
two circularly polarized states (or equivalently, TE and TM
modes). When the isotropic chirality (i.e., χ becomes nonzero)
is introduced, the two pseudospin bands split with equal and
opposite Chern numbers [see Fig. 1(c) in Ref. [7] and also
Fig. 3(a)]. As hyperbolicity is further introduced, the outer
chiral band becomes separated into two bands, resulting in two
nontrivial band gaps [see Fig. 1(f) in Ref. [7] and also Fig. 2].
The lower band gap has a gap Chern number of +1 while
the upper band gap has a gap Chern number of −1 (Fig. 1(f)
in Ref. [7]). Therefore, chiral hyperbolic metamaterials are
a rare family of topological insulators with TRI yet having
a nonzero Chern number. Another type of TRI system in
photonics which is based on bianisotropic photonic crystals
is presented in Ref. [8]. Note that the gaps would open only
when all components of chirality tensor become nonzero. For
example, the simple uniaxial chirality χx = χy = 0, χz �= 0
would not open a gap in wave-vector space [32].

It is important to note that the equifrequency curve of an
ordinary bulk material such as the host dielectric for our waveg-
uide can lie either inside or outside the equifrequency curves
of the bianisotropic material or even cross them depending on
εd . This is demonstrated in Fig. 3(b). As a result, the properties
of TPSS can be significantly affected by the host-dielectric and
this will be discussed in Sec. VII below.

Before analyzing modes of the bianisotropic waveguide
[solution of Eq. (10)], one should consider radial wave vectors
qP and qM [see Eq. (5)], because they will define the type of
the modes of the cylinder. They could be either imaginary, real,
or complex, depending on longitudinal wave vector h. The h

values for which wave vectors qP and qM change their behavior
are shown as blue and green lines in Fig. 4.

There are five zones which are separated by the dashed green
and blue lines. For h/k0 in zones 1 and 5, wave vector qP is
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FIG. 5. Eigenvalues of the bianisotropic waveguide with different k0R values (dashed curves and crosses) together with equifrequency
curves of the bulk bianisotropic material [Eq. (12)] (solid lines). (a) Planar interface k0R → ∞, (b) k0R = 5, (c) k0R = 2.5, and (d) k0R = 0.5.
Note that when k0R = 0.5 (d) or smaller, there are no TPSS at all.

imaginary while qM is real. For h/k0 in zones 2 and 4, qP and
qM are real. For h/k0 in zone 3, qP and qM are complex. As a
result, bulk modes in the waveguide can in principle appear in
zones 1, 2, 4, and 5. Therefore, the only zone where TPSS can
exist is zone 3. Note that for a negative χ value, wave vectors
qM and qP swap places.

IV. INFLUENCE OF THE WAVEGUIDE RADIUS
ON TPSS PROPERTIES

It is well known from the theory of usual optical waveguides
[33] that for a given frequency, most of the eigenmodes would
eventually disappear with decreasing waveguide radius. In this
section, let us perform an analogous study on topologically
protected surface waves in a circular waveguide made of the
bianisotropic metamaterial which reveals that TPSS would
indeed disappear when its radius becomes sufficiently small.

In order to link the modes in the entire space (Fig. 3) to
that of the waveguide, here we introduce the azimuthal wave
vector kϕ :

kϕ = n/R, (13)

where R is the radius of the waveguide. For a planar interface,
kϕ → kx . In Fig. 5, solutions of Eq. (10) as a function of h/k0

and kϕ/k0 = n/(k0R) for different k0R values are shown as
black crosses. Here we consider the waveguide with the same
parameters ερ = 4, εz = −3, μ = 0.5, and χ = 0.5 as those
considered in Ref. [7] for the convenience of comparison. The
bands of the bulk bianisotropic material are shown again as
solid lines.

It is clear that for the bianisotropic material filling the
half space, there are topologically protected modes connecting
bands of different Chern numbers. This corresponds to the
waveguide with an infinite radius k0R → ∞ [see Fig. 5(a)].
Thus, our results are in good agreement with the result
reported in Ref. [7]. Similar solutions exist for the waveguide
with a finite radius. However, since the cross section of the
bianisotropic waveguide is finite in this case, the quantization
of the modes occurs. The eigenvalues of these modes thus
become discrete, as marked by black crosses in Figs. 5(b) and
5(c). Obviously, the bigger the radius of the waveguide is, the
more eigenmodes exist, because more wavelengths can be fit to
the circumference. On the other hand, when the radius becomes
smaller than a critical radius Rc, no TPSS mode would occur
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FIG. 6. Distributions of ReEz, ReHz on the waveguide cross
section for χ = 0.5, k0R = 5, and n = 1, 2, 4. These parameters are
marked by the blue crosses in Fig. 8.

[see Fig. 5(d) for k0R = 0.5]. This is because no eigenmode
has a wavelength that can cover the circumference.

Strictly speaking, no TPSS are present in the waveguide
with a finite radius. This is because with an infinitesimal change
of the waveguide radius R → R + �R, initial longitudinal
wave number h is no longer a solution of the dispersion
equation and consequently the initial mode disappears through
radiation into the environment. This is due to the variations of
�h = h(kϕ1) − h(kϕ2) for the neighboring modes. However,
in the case of large k0R (for k0R → ∞), �h → 0 and therefore
the effect of topologically protection can be observed experi-
mentally because of the finite bandwidth of real signals.

Selected field distributions of TPSS are shown in Fig. 6.
One can see that the azimuthal number n corresponds to the
number of maxima of the electric and magnetic fields along the
circumference of the waveguide. The field distribution along
the waveguide (i.e., the z axis) will be discussed in Sec. VIII.

Increasing k0R would lead to increasing the number of
maxima inside the waveguide. However, since the radial wave
vectors qM and qP are complex, the fields still decay inside
the waveguide. Therefore, to see how the additional maxima
appear, let us plot arg Ez in Fig. 7 for k0R = 2, 4, 8, which will
show clearly the points for which Ez = 0 and how a type of
the modes appears. Figure 7 shows that increasing k0R leads
to increasing number of zeros of field inside the waveguide.
Note that changing signs of both χ and n preserve values of h.

Now let us study TPSS dependence on k0R in more
details. Figure 8 shows the dependence of the modes of the

FIG. 7. Distributions of arg Ez on the waveguide cross section for
χ = 0.5, n = 1, and k0R = 2, 4, 8 in (a), (b), and (c), respectively.
The parameters used are marked by black crosses in Fig. 8.

FIG. 8. Dependence of the wave vector h/k0 of the eigenmodes
of the bianisotropic waveguide on k0R for εd = 1. Each point denotes
a solution of Eq. (10). n is shown by color. Crosses correspond to the
parameters for which fields are shown in Figs. 6 and 7.

bianisotropic waveguide [i.e., solutions of Eq. (10)] on k0R

for χ = 0.5 and the environment with εd = 1. First of all, one
can see from Fig. 8 that all TPSS lie above the h/k0 = √

εd

line because below this line radiation losses appear. Second,
above the blue dashed line, all eigenmodes are bulk ones inside
the bianisotropic cylinder (see also Fig. 4). Thus, the surface
modes lie below the blue line. One can see that the modes with
the different signs of azimuthal number n have significantly
different dependence of k0R. For a chosen sign of chirality χ =
0.5, the wave vector h/k0 of the modes with n < 0 decrease
with decreasing k0R (if we do not take into consideration
small bends). Moreover, for each n there is a cutoff value for
the waveguide radius. In contrast, there is no such cutoff for
the modes with n � 0. However, the longitudinal wave vector
h/k0 for these modes increases with decreasing k0R and for
each mode, there is a critical value of k0R below which modes
cross the blue line and became bulk high-k hyperbolic modes
[25] with large losses, i.e., they disappear as TPSS. Thus, in
this section we have shown that for small enough waveguide
radius, TPSS do not exist. This means that if the waveguide
radius varies along the propagation direction and reaches the
critical value at some distance, the TPSS at this point transform
into other modes including radiation ones. In other words, at
this point full breakdown of the bulk-edge correspondence [30]
will occur.

Until this moment all results were obtained from the ana-
lytical expressions derived in Sec. II. In the next two sections
we use the results of numerical simulations using COMSOL

MULTIPHYSICS. To model the chirality we adopt the method
described in Ref. [34].

V. TOPOLOGICAL PROTECTED SURFACE STATES
ON A TWO-WIRE WAVEGUIDE

As shown in the previous section, TPSS can disappear if
the radius of the single-wire waveguide becomes too small.
However, it is known from the theory of usual waveguides
that varying spatial topology of waveguides can change their
cutoff effect substantially. In particular, coaxial and two-wire
waveguides have no cutoff at all. Thus, to see how adding
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FIG. 9. Wave vector h/k0 as a function of k0R for the two-wire
system (green curves). The black dashed lines correspond to the
single-wire case (see Fig. 8). The distance between the centers of
two cylinders is 2.2R. Green dashed line corresponds to mode, which
is not TPSS.

another wire to the waveguide would affect the TPSS proper-
ties, here we study TPSS properties of a two-wire waveguide
[see Fig. 1(b)].

In Fig. 9 we plot the h/k0 as a function of k0R for the two-
wire waveguide made of bianisotropic materials embedded
in the air (εd = 1). As usual, modes of two-wire waveguide
are symmetric and antisymmetric superpositions of modes of
single waveguide. Consequently, the two-wire system has more
TPSS modes for k0R < 2 (e.g., five modes in Fig. 9; the 6th
mode is leaky) than the single-wire system (only three modes
for k0R < 2 in Fig. 8). From Fig. 9 one can observe that
the curves generally behave like the curves in Fig. 8 (which
are shown by dashed black lines). In particular, the cutoff
radius k0Rc still exists in the two-wire system, although it
decreases slightly to k0Rc ≈ 0.4. The existence of the cutoff
radius indicates that the limitation of the single-wire system
remains unchanged even when another wire is added to the
single-wire system. Thus, the results of this section show
that two-wire waveguides made of bianisotropic metamaterials
with nontrivial topology of reciprocal space have almost the
same cutoff effects for TPSS as the single-wire waveguide.

VI. TPSS IN THE WAVEGUIDE WITH A
SUPERELLIPTICAL CROSS SECTION

In this section, we will investigate the influence of the shape
of the cylinder cross section on the dimensional quantization.
In fact, most of the works on topological photonics investigate
this effect. Let us consider cylinders with the cross section in
a superellipse shape [35] which is defined by equation

|x|N + |y|N = RN
∗ . (14)

Eigenmodes of such waveguides with different n values and
a fixed perimeter P are displayed in Fig. 10 for k0R = 5. The
fixed perimeter condition is used to keep kϕP = 2πn where n

0 0.1 0.2 0.3 0.4 0.51/N
1

1.2

1.4

1.6

1.8

2

h/
k 0

n = 0
n = ±1
n = ±2
n = 3
n = 4
n = 5

FIG. 10. Longitudinal wave vectors of TPSS modes of a waveg-
uide with a superelliptical cross section with a fixed perimeter
[Eq. (14)] for k0R = 5 as a function of its shape. Bottom row shows
the evolution of the cross-section shape from a square to a circle.

is an integer. The value of R∗ for each N in Eq. (14) is chosen
so that perimeter P remains the same as for a circle of R = R∗.
Thus, in all cases P = 2πR. The perimeter of a superellipse
can be found from the following formula [35]:

P = 4
∞∑

r=0

r∑
s=0

(
1/2

r − s

)(
2(N − 1)(r − s)

N

)
s

× 1

s!

2R∗
2(N − 1)(r − s) + Ns + 1

× 2−{[2(N−1)(r−s )+Ns+1]/N}. (15)

One can see from Fig. 10 that for large value k0R 
 1 the
shape has no significant effect on TPSS and the main parameter
is the perimeter of the cylinder. This result agrees with results
of most of the works on topological photonics.

VII. EFFECT OF THE ENVIRONMENT PERMITTIVITY
ON TPSS

Now let us consider how the permittivity εd of the host
matrix influences TPSS. Mode structures for different εd values
are shown in Fig. 11 for k0R = 20 and χ = 0.5. Analysis of
Fig. 11 reveals a significant difference between TPSS and
edge states in topological insulators. While the edge states
are determined exclusively by the topology in the wave-
vector space of the bulk topological insulator, TPSS depend
significantly on the permittivity of the host medium with trivial
topology of isofrequency surfaces. In the case of

εd < (
√

ερμ − |χ |)2, (16)

TPSS arc connects the regions of equifrequency surfaces of
the bulk bianisotropic material with different Chern numbers
[Fig. 11(a), εd = 0.5]. This situation is similar to topological
insulators. In the case of

εd > (
√

ερμ − |χ |)2, (17)

TPSS arc starts from the equifrequency surface of the trivial
host medium and ends at the equifrequency surface of the
bianisotropic material with Chern index C = 1 [Fig. 11(b),
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FIG. 11. Eigenvalues [solutions of Eq. (10)] of the bianisotropic waveguide with k0R = 20 and with different values of εd (crosses).
(a) εd = 0.5, (b) εd = 1.5, and (c) εd = 4. Red semicircles represent the equifrequency surface of the environment.

εd = 1.5]. Strictly speaking, in both (a) and (b) cases, TPSS
arcs are limited from the top by blue line b = 0 (see also Fig. 4).
Above this line, eigenmodes of the waveguide become the
bulk high-k hyperbolic ones. Finally, when the equifrequency
surface of the host medium crosses the top branch of the
bianisotropic material, i.e., for εd > (

√
ερμ + |χ |)2, there is

no TPSS at all [Fig. 11(c), εd = 4]. It is important to note that
all these conditions are independent of the geometry of the
waveguide.

VIII. NEGATIVE REFRACTION OF TPSS

An important property of TPSS of the waveguide is one-way
propagation along the ϕ direction. Usually such propagation
is related to the phase velocity. However, from the physical
point of view, the group velocity is more important because it
is related to the energy flow. Thus, in this section we present
the results of our study on how the directions of phase and
group velocities of TPSS depend on the parameters of the
bianisotropic waveguide.

The direction of phase velocity coincides with the direction
of wave vector k which is orthogonal to the phase front of the
electromagnetic field. For dependence

Ez ∼ exp (i(hz + nϕ − ωt )) = exp(i(hz + kϕl − ωt )),
(18)

where l = ϕR is the distance along the circumference, one can
see that k = {0, n/R, h}. To characterize the direction of group
velocity, one should use Poynting vector S = c[E × H]/(4π )
with coordinates S = {Sr, Sϕ, Sz} in the cylindrical coordinate
system. It can be shown that for TPSS, Sr = 0, Sz, and Sϕ do not
depend on ϕ coordinate. Streamlines of Poynting vector and

phase velocity are shown in Fig. 12 for k0R = 5, k0R = 1.5,
and n = −1, 0, 1.

Figure 12 shows that streamlines of phase velocity have
simple behavior, i.e., they change their direction (spirality)
together with azimuthal number n. On the contrary, directions

FIG. 12. Streamlines of Poynting vector (orange lines) and phase
velocity (red lines) of TPSS with n = −1(a), (d), n = 0 (b), (e), n = 1
(c), (f) for k0R = 5(a)–(c), k0R = 1.5 (d)–(f), and χ = 0.5. The field
distribution and Poynting vector are calculated at

√
x2 + y2 = 1.01R.

In all cases the z component of the velocities is in the positive direction
of the z axis.
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FIG. 13. (a) Direction of group velocity θ , shown by color, for the eigenmodes of the bi-anisotropic waveguide. (b) Three regions of different
behavior of phase and group velocities of the eigenmodes. 1-blue region: νph,ϕ < 0 and νg,ϕ < 0; 2-red region: νph,ϕ > 0 and νg,ϕ < 0 and
3-green region: νph,ϕ > 0 and νg,ϕ > 0. Only TPSS modes are shown.

of group velocity exhibit a more complicated behavior. One
can see from Fig. 12 that for k0R = 1.5, the streamline of
group velocity varies only slightly upon the variation of
azimuthal number n from −1 to +1, while for k0R = 5 it
varies significantly and even changes its sign. For k0R = 5
and n = 1, group and phase velocities have different signs of
ϕ component, while for k0R = 1.5 and n = ±1, they have
the same sign. To study this effect in more details, we plot in
Fig. 13 group velocity (Poynting vector) directions of all TPSS
shown in Fig. 8. To do this, we introduce the angle of group
velocity spiral θ = arctan(Sϕ/Sz). Positive and negative values
of θ correspond to clockwise and counterclockwise twist of the
spiral of Poynting vector [Figs. 12(d) and 12(f), respectively].
The values of θ are also shown in Fig. 13(a) for TPSS by
pseudocolors. It can be seen that for the modes with n � 0,
angle θ changes its sign when k0R decreases. This change of
sign could happen in the TPSS region (zone 3 in Fig. 4). For

-2 -1 0 1 2
k /k

0

0

0.5

1

1.5

2

2.5

3

h/
k 0

positive
refraction

negative
refraction 
ν

ph,φ
 > 0

ν
g,φ

 < 0

FIG. 14. Eigenvalues (crosses) of the bianisotropic anisotropic
waveguide for k0R = 5. Colors of the crosses indicate the regions
in Fig. 13(b) to which the modes belong. Solid lines show bulk
equifrequency surfaces.

the chosen optical parameters of the waveguide, it corresponds
to the modes with n = 0, 1, 2, 3, 4. Therefore, there are values
of k0R for which one part of the modes would have θ < 0 and
the other part θ > 0. An example of such behavior is shown
in Fig. 14 for k0R = 5. Color of each cross shows a particular
region the mode belongs to. Modes with n = 0 are shown by
black color since they lie on the border of two regions.

As mentioned above, the sign of the ϕ component of phase
velocity vph is determined by the sign of n [see Eq. (18)]. On
the other hand, the ϕ component of group velocity vg coincides
with Sϕ and therefore its sign is determined by the sign of θ .
If one considers the relative direction of the ϕ component of
phase and group velocities (which define the twist of the spiral)
three different regions can be defined [see Fig. 13(b)]. First, for
n < 0 we have vph,ϕ < 0 and vg,ϕ < 0 [region 1—blue color
in Fig. 13(b)]. Second, for n > 0 and θ < 0 we have vph,ϕ > 0

FIG. 15. Light reflection and transmission (Poynting vectors) in
TPSS along the interface between two waveguides with different
χ values (bottom and top cylinders have χ = 0.5 and χ = −0.5,
respectively). The incoming wave is shown by orange color, entering
from top in (a) but from bottom (b), while the reflected and transmitted
waves are shown by green and blue color, respectively.
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FIG. 16. Phase diagram of TPSS in cylindrical bianisotropic
waveguides in coordinates εd and 1/k0R. Crosses represent the
numerical solutions, while the dashed line denotes the asymptotic
analytic solution of Eq. (10).

and vg,ϕ < 0 [region 2—red color in Fig. 13(b)]. Third, for
n > 0 and θ > 0 we have vph,ϕ > 0 and vg,ϕ > 0 [region 3—
green color in Fig. 13(b)]. Thus, in region 2 we have a negative
refractive index along the ϕ direction. Existence of negative
refraction for TPSS will result in many interesting effects
[37–43]. From Fig. 15 one can see that negative refraction
takes place indeed. In particular, in the case of excitation of
TPSS with a point source one can expect superlens effect
[36–43].

IX. CONCLUSIONS

We have investigated the optical properties of bianisotropic
waveguides with nontrivial topological structure in momentum

space surrounded by an ordinary dielectric matrix. In particu-
lar, we have derived the exact analytical solution of eigenmodes
for the system in the entire parameter space. Our results
reveal that the concept of TPSS has only a limited region of
applicability in the parameter space. For example, outside this
applicable region such as too small radius of the waveguide,
TPSS disappear due to the dimensional quantization of the
wave vector. Moreover, permittivity εd of host dielectric matrix
is also found to have significant impact on the structure of
TPSS, and TPSS could even disappear when εd becomes
sufficiently large. This effect is absent in the case of topological
insulators, where the existence of edge states depends only
on the topological structure of the band zones rather than
on topology of the environment. The critical value of the
waveguide radius below which TPSS vanish is also shown to
depend on the εd value. Based on the analytic solution, we have
constructed a TPSS phase diagram in space εd and 1/k0R, as
shown in Fig. 16.

We also have studied phase and group velocities of TPSS,
and discover that in certain parameter regions, phase and
group velocities of TPSS have opposite signs, i.e., TPSS have
a negative refractive index. Our interesting findings would
be important for designing optical interconnects [22,23]
based on waveguides with nontrivial topological structure in
momentum space.
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