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Scanning gate experiments: From strongly to weakly invasive probes
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An open resonator fabricated in a two-dimensional electron gas is used to explore the transition from strongly
invasive scanning gate microscopy to the perturbative regime of weak tip-induced potentials. With the help of
numerical simulations that faithfully reproduce the main experimental findings, we quantify the extent of the
perturbative regime in which the tip-induced conductance change is unambiguously determined by properties
of the unperturbed system. The correspondence between the experimental and numerical results is established
by analyzing the characteristic length scale and the amplitude modulation of the conductance change. In the
perturbative regime, the former is shown to assume a disorder-dependent maximum value, while the latter linearly
increases with the strength of a weak tip potential.
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I. INTRODUCTION

The advent of scanning probe techniques in the 1980’s [1–3]
opened the door for locally investigating electron transport in
high-mobility two-dimensional electron gases (2DEGs) and in
2DEG-based nanostructures at cryogenic temperatures. After
the pioneering work of Eriksson et al. [4,5] introducing the
scanning gate microscopy (SGM) technique, the discovery of
branched electron flow in 2DEGs near a quantum point contact
[6] has been a major achievement.

The experimental technique makes use of a tip-induced
electrostatic potential in the 2DEG plane characterized by
an amplitude Ut in energy, and a characteristic radius w

(width) in space. The imaging mechanism typically employed
in experiments uses a strongly invasive tip potential Ut >

EF, significantly altering the electron flow in the system as
compared to the unperturbed situation. Here, EF is the Fermi-
energy of the 2DEG.

Theoretical attempts to link tip-induced conductance
changes to local properties of the unperturbed system [7]
assumed the use of a weakly invasive tip with Ut � EF. A
connection with the local density of states (LDOS) could be
established in the case of a quantum point contact (QPC)
operating in the regime of conductance quantization [8,9],
while less direct relationships were produced beyond this
particular situation [10,11].

Until now, experimental limitations did not allow exper-
imentalists to perform measurements with Ut � EF. The
reason is that the scattering matrix elements of a weak tip,
as well as the LDOS at the Fermi energy are very small in an
extended two-dimensional system. A significant measurement
signal occurs only if either the LDOS is strongly concentrated
in space (closed geometries), or if large tip-induced potentials
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(Ut > EF) are used, which have the undesired effect of strongly
modifying the local electronic properties under investigation.

In recent publications we have demonstrated that the scan-
ning gate technique loses the fine resolution achieved in open
2DEGs once closed geometries are investigated [12,13]. In
this paper, we aim at the intermediate regime between a closed
and an open geometry, attempting to close the gap between
the interpretations of the two extreme cases. We progressively
concentrate the LDOS in a ballistic cavity, considered as an
open resonator (similar but less open than the resonator of
Ref. [14]), in order to allow for studying the transition from
weakly to strongly invasive measurements. At the same time
the LDOS is extended over a region significantly larger than the
characteristic width w of the tip-induced potential, allowing us
to exploit the spatial resolution capabilities of the technique.

II. SAMPLE AND EXPERIMENTAL SETUP

The sample is based on a GaAs/AlGaAs heterostructure
with a 2DEG 90 nm below the surface. The electron gas has
a density ns = 1.5 × 1011 cm−2 and an electron mobility μ =
3.35 × 106 cm2/Vs at the setup’s base temperature of 270 mK.
Schottky gates (Ti/Au) defined by electron-beam lithography
on top of a photolithography-defined mesa structure form the
device in Fig. 1(a). The QPC visible at the bottom has a
lithographic gap of 300 nm and is controlled by the gate voltage
VQPC. The lower edge of the cavity gate (controlled by the gate
voltage Vcav) visible at the top describes a circular arc with its
center in the QPC opening, a radius of 2 μm, and an opening
angle of 90◦. The gates deplete the 2DEG at voltages below
Vdepl,cav = −0.25 V .

The scanning tip is oriented normal to the surface of the
structure with a voltage Vtip applied relative to the 2DEG.
We raster-scan the tip 65 nm above the sample surface while
measuring the two-terminal conductance of the device. We
record maps G(x, y) = ISD(x, y)/VSD of linear conductance
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FIG. 1. (a) Scanning electron micrograph of the sample. Schottky
gates of the quantum point contact and the cavity gate in light gray,
GaAs surface in dark gray. Scan area outlined by the red rectangle.
Black labels symbolize Ohmic contacts. (b) Conductance G as a
function of the cavity-gate voltage Vcav. The vertical dashed black
line marks voltage of 2DEG depletion below the gate. Inset: G as
a function of VQPC at Vcav = 0. The red line marks the working
point VQPC = −0.5 V. (c) Numerical derivative dG/dVSD as function
of VQPC and VSD. Cavity modes highlighted with white arrows.
(d) Numerical simulation of the conductance as a function of the
height γcav of the cavity-gate potential. Green-blue lines: no disorder.
Red lines: realistic disorder. Dashed and solid lines: T = 0 and
T = 500 mK, respectively. Inset: simulation of G for γcav = 0 as a
function of the QPC gate potential γQPC. The vertical line indicates
the value used in the calculations as a function of γcav.

versus tip position (x, y) by applying an alternating volt-
age VSD = 100 μV rms between source and drain [labeled in
Fig. 1(a)] and measuring the alternating current ISD with a
home-built current-voltage converter and a commercial lock-in
amplifier.

III. EFFECT OF THE CAVITY IN THE ABSENCE
OF THE SCANNING TIP

We first characterize the conductance of the structure in
the absence of the tip. The inset of Fig. 1(b) shows the QPC
conductance for Vcav = 0, as a function of the QPC gate voltage
VQPC. A sequence of at least five conductance steps is seen
quantized in units of 2e2/h. At VQPC = −0.5 V the QPC
transmits three spin-degenerate modes. This is the working
point for the following measurements, indicated in the inset by
the red vertical line.

At this fixed value of VQPC the conductance of the structure
depends strongly on the cavity voltage Vcav, as seen in Fig. 1(b).
For Vcav � Vdepl,cav, the depletion voltage below the cavity
gate, only tiny changes in G can be observed when Vcav is
changed. Once the cavity gate depletes the 2DEG at Vcav =
Vdepl,cav the conductance drops by roughly 15%. At even
smaller Vcav the conductance shows mesoscopic modulations.

They are caused by electron interference: the reflecting edge
of the depletion region defining the cavity shifts linearly with
Vcav [15] by an estimated amount of 350 nm/V. As a result of
the shift, the phase and the amplitude of the reflected electron
waves change with Vcav [16,17]. We estimate λF/2 = 32 nm,
which is consistent with the number of oscillations along
the bar of length 5λF/2 in the figure, and confirm that the
modulation of the conductance occurs on the scale of λF/2.

Numerical simulations in the regime of quantum transport
play a key role for the interpretation of scanning gate ex-
periments [18]. We model the experimental cavity with and
without the action of a charged tip using the KWANT package
[19], that allows to calculate the conductance of noninteracting
electrons through tight-binding systems. Figure 1(d) presents
simulations showing the reflecting effect of the cavity potential
(with an energy γcav assumed to be uniform in the gated
region1) in the absence of the tip with and without disorder
(red and green-blue lines, respectively), at zero temperature
(dashed lines), and at T = 500 mK (solid lines). The QPC is
set to operate on the third conductance plateau (see inset) as in
the experiment. The disorder is modeled by remote impurities
with the experimentally realized density and a distance of
50 nm from the 2DEG. The resulting transport mean-free path
at the Fermi energy of ltr = 23.8 μm is very close to the
experimental value (22.4 μm) extracted from the mobility and
corresponding to the backscattering events only. In contrast, the
elastic mean-free path corresponding to the scattering events
with any deviation angle is l = 0.22 μm.

Like in the experimental case, the cavity potential has a
very weak effect on the conductance until it reaches a value
comparable with the Fermi energy. Beyond this value, the
cavity is defined by the depletion of the 2DEG and the disorder
plays a crucial role. The clean cavity focuses the electrons
back through the QPC, and thus the resulting conductance is
very small. In the presence of disorder, the conductance is
only weakly suppressed by the reflecting effect of the cavity.
Even for the weak disorder we consider here (ltr is much larger
than the cavity size, placing us in the ballistic regime), the
conductance in the presence of the cavity is strongly enhanced
as compared to the clean case. This feature demonstrates the
importance of small-angle scattering and the dramatic effect
of disorder, counteracting the reflecting trend of the cavity and
independent of the opening of the QPC. It allows us to relate
the pinch-off step height of the conductance with the disorder
strength in the cavity.

The zero-temperature conductance fluctuations are sup-
pressed at finite temperature. In the clean case, the conductance
exhibits regular Fabry-Perot–type oscillations. In the presence
of disorder, conductance oscillations on the scale of λF/2 sur-
vive like in the experiment. This is indicated by the horizontal
scale bar of length λF/2. In our model, the shift of the edge
of the depletion region is proportional to ln(EF/γcav). The
amplitude of the oscillations calculated for the temperature
of 500 mK is a little bit larger than that in the experiment.

1The decay of the cavity potential felt in the 2DEG when going away
from the gated region has been chosen as γcav cosh(r/ξ ), where r is
the horizontal distance from the gate and ξ = 40 nm. Such a choice
leads to an exponential decay of the potential far from the gate.
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FIG. 2. Numerically calculated PLDOS at the Fermi energy corresponding to the scattering states entering the cavity through the QPC,
for a depleting cavity gate. The left panel depicts the PLDOS for an ideal clean system, the right panel is for a sample with realistic disorder
strength.

This discrepancy could be resolved by further increasing the
temperature for the calculation, in order to match the energy
scale of the source-drain voltage used in the measurement.

The energy spacing of cavity modes can be experimentally
determined using finite-bias spectroscopy at different values of
VQPC with Vcav at a fixed value. For this purpose, the differential
conductance dI/dVSD is measured as a function of VQPC and
VSD. The numerical derivative d2I/dV 2

SD is plotted in Fig. 1(c)
in order to emphasize the cavity-mode related modulation of
the differential conductance. The dashed lines indicate the
diamond-shaped region of zero differential conductance of
the first QPC conductance plateau extracted directly from the
differential conductance measurement. Marked by the white
arrows, one recognizes a set of diagonal lines which are a
manifestation of the cavity modes. The average spacing of
these modes is �Ecav = (317 ± 14) μeV, which is the same
order of magnitude as the energy separation obtained for a
one-dimensional resonator with the length of the cavity radius.2

IV. SCATTERING STATES IN THE CAVITY

The experimental results of Fig. 1(b), as well as the
simulations shown in Fig. 1(d), reflect the general design
idea of the cavity to form a regular mode pattern in analogy
to an electromagnetic wave mirror cavity [17,20]. In an
ideal semicircular cavity, the energy eigenstates would be
described by a radial and an angular quantum number. The
large openings at the sides of the cavity strongly couple high
angular momentum states to large 2DEG regions. In contrast,
the lowest angular momentum modes are least affected by the
openings and contribute to the local density of states with a
strong modulation in energy. Subsequent peaks in the density
of states correspond to a sequence of modes. That is, states
with an increasing number of nodes in radial direction, giving
rise to oscillations similar to those observed in Figs. 1(b) and
1(d). In Fig. 2(a), we show as an illustration the simulation of
the partial local density of states (PLDOS) for scattering states
injected into the cavity through the QPC at the Fermi energy
EF in the absence of disorder. It is characterized by a spatial

2Note that the bias spectroscopy was done after a cool down where
the gates were prebiased. Compared to the cool downs with grounded
gates an offset in VQPC of 0.2 V has to be taken into account.

modulation in radial direction with a period of half the Fermi
wavelength. A much smoother variation of the PLDOS exists
in the azimuthal direction. Most of the PLDOS is concentrated
close to the QPC reflecting the focusing effect of the cavity
gate.

This view on the disorder-free cavity invoking the
confinement-induced coherent modes contrasts with the ob-
servation of branched flow in open two-dimensional electron
gases [6], an effect relying on small-angle scattering. Similarly
here, the scattering states of the cavity are significantly altered
by the unavoidable disorder potential present even in this
high-mobility system [see Fig. 2(b)]. The disorder significantly
perturbs the PLDOS that attains higher values close to the split
gate near the left and right openings of the cavity, consistent
with the disorder-induced increase of the conductance in the
presence of the cavity shown in Fig. 1(d). The azimuthal
PLDOS pattern of Fig. 2(a) is severely altered. However, the
λF/2 modulation in radial direction survives, in agreement
with the observed cavity-mode related modulation of the
conductance with Vcav in Fig. 1(b).

V. EFFECT OF THE CAVITY ON SCANNING GATE
MEASUREMENTS

We now turn to the discussion of scanning gate measure-
ments, starting with a strongly invasive tip biased at Vtip =
−6 V, for which Ut > EF. In Figs. 3(a)–3(c) we plot the
numerical derivative dG/dx of the measured conductance
G(x, y) for different cavity gate voltages. In Fig. 3(a) measured
at Vcav = 0, we observe branched electron flow [6,13,21,22]
emanating from the QPC, with the usual modulations of the
SGM response on the scale of λF/2. The depletion disk induced
in the 2DEG below the tip scatters electrons back through the
QPC and reduces the conductance whenever placed above a
region of high PLDOS. The branches cannot be seen when
the tip scans above the cavity gate since the latter screens the
tip-induced potential.

For the scan in Fig. 3(b) we apply Vcav = −0.2 V ≈ Vdepl,cav
[cf. Fig. 1(b)] and just about avoid depleting the electron
density below the cavity gate completely. We observe that the
resulting potential barrier contributes significantly to electron
backscattering. The branch pattern disappears almost com-
pletely in a background of cavity-gate-induced conductance
modulations. The branch pattern is no longer dominating the
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FIG. 3. Two cavity-gate voltage scan series showing the derivative dG/dx of the conductance with respect to tip position for tip voltage
Vtip = −6 V in the upper panels (a)–(c), and for Vtip = −1 V in the lower panels (d)–(f). The cavity voltage Vcav is zero in the left panels
(a) and (d). In the central panels (b) and (e), Vcav = −0.2 V does not deplete the 2DEG under the gate, while the value Vcav = −0.3 V used in
the right panels (c) and (f) is beyond the depletion threshold. The dashed gray, solid gray, and solid black lines depict the outline of the cavity
gate that becomes more important from left to right.

electron flow if the cavity is formed. This change of regime is
discussed in detail in Ref. [13]. It is due to multiple scattering
of electrons between the tip-induced potential and the cavity
potential induced by both the split gate and the cavity gate.

Finally, Fig. 3(c) shows a scan at Vcav = −0.3 V where the
2DEG under the cavity gate is fully depleted. The conductance
response is dispersed over the entire cavity area and the
modulation of the resulting conductance is maintained on
the scale of λF/2. With the strongly invasive tip we induce
conductance fluctuations resulting from an effective change
of the sample geometry brought about by the scanning tip-
induced potential. However, from this measurement we cannot
hope to obtain information about the cavity states present in
the absence of the tip.

The set of measurements presented in Figs. 3(a)–3(c), with
the strong influence of the tip within the cavity region and
the vanishing influence outside, shows experimentally that
the cavity geometry indeed concentrates the local density of
states within the cavity area, as suggested by the simulations
in Fig. 2(b). In order to reduce the invasiveness of the tip,
we now increase Vtip and thereby decrease the tip-potential
amplitude Ut below EF. We repeat the measurements shown
in Figs. 3(a)–3(c) at the same cavity gate voltages, but with
Vtip = −1 V, where Ut < EF. A smooth almost unstructured
conductance map is obtained in Fig. 3(d) when the weakly
biased tip is scanned above the system with the grounded
cavity gate. This demonstrates the well-known fact that a weak
potential perturbation cannot scatter electrons back through the
QPC.

As soon as the cavity potential is raised to a sufficiently
high amplitude [see Fig. 3(e)], a clear effect of the tip on the
conductance is observed inside the area between cavity gate
and QPC. At Vcav = −0.3 V [see Fig. 3(f)] we measure rich

spatial structures of the conductance with a pattern modulated
in azimuthal direction emanating in fine strands from the QPC
into the cavity area.

Like for the case of a strongly invasive tip, rising the confine-
ment of the system will cause an increasing concentration of
the local density of states in the cavity at the Fermi energy. The
weak tip-induced potential perturbs this area of concentrated
LDOS to significantly modify the conductance, attaining, for
the strongest confinement, values that are comparable to those
of the invasive tip [Fig. 3(f)]. In contrast to the strongly invasive
regime, the modification of backscattering induced by the
tip is rather due to gentle electron lensing than to hard-wall
reflection.

VI. SCANNING GATE MEASUREMENTS WITH VARYING
TIP VOLTAGE

We measured a series of scans with varying Vtip, some of
which are displayed in Fig. 4. All plots show the change in
conductance �G(x, y) = G(x, y) − G0 as a function of the
tip position (x, y) at a given tip voltage Vtip, where G0 is the
conductance of the system unperturbed by the tip (taken from
the upper right corner of each scan). As stated in Sec. III,
the quantum point contact voltage is kept at VQPC = −0.5 V,
corresponding to the third mode. The cavity is set to a voltage of
Vcav = −0.5 V < Vdepl,cav that produces complete depletion.

Figure 4(d) shows the scan with the value of Vtip exhibiting
the weakest effect on the conductance, which defines the least-
invasive tip voltage Vli = 0.4 V . The experimentally observed
SGM response at Vli is very small, and this small residual
value may be due to the fact that it is impossible to achieve a
perturbation potential which is strictly zero in the vicinity of
the tip, possibly caused by some small charge contamination
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FIG. 4. Conductance change �G as a function of tip position
(x, y ) for four different tip voltages Vtip for a cavity (indicated by solid
lines) created by a voltage Vcav = −0.5 V which depletes the 2DEG
underneath. The dashed horizontal line in panel (d) is the place chosen
to study the characteristic spatial scale of the conductance map (see
text).

[23,24]. A small decrease of Vtip to 0.3 V [Fig. 4(c)] yields
a very similar spatial pattern as before, but with stronger
contrast, as expected in the perturbative regime [7]. We observe
a smoother pattern for Vtip = −0.2 V [Fig. 4(b)] and a more
structured one for Vtip = −1 V [Fig. 4(a)].

From measurements without the cavity, not shown here
[15,25], we find that the tip-induced potential starts to deplete
the electron gas at a voltage of Vdepl,tip = −5 V for which
Ut = EF. Together with Vli this gives us the linear estimate
Ut = ut × EF for the amplitude of the tip-induced potential as
a function of Vtip, where

ut = Vtip − Vli

Vdepl,tip − Vli
. (1)

The values of ut obtained from this estimate are given in Fig. 4,
the Fermi energy in our sample is EF = 5.3 meV.

COMSOL simulations of the electrostatic problem, treating
screening of the tip-induced potential within the Thomas-
Fermi approximation, confirm the linear dependence of Ut on
Vtip as long as Ut � EF.3 The potential profile is found to be
approximately Lorentzian in this regime [4,10,15], while for
Ut > EF a Gaussian profile better describes the tail potential
[25].

Qualitative behavior of the conductance similar to that ob-
served experimentally in Fig. 4 is obtained from the numerical
simulations shown in Fig. 5. The tip-induced potential was
modeled as a Gaussian with peak amplitude Ut = ut × EF,
centered at rtip, and a width parameter σ = 177 nm. The choice

3While the slope of the linear behavior is very close, the precise
quantitative dependence of the resulting potential height on Vtip

within those simulations differs from the experimental observation.
For example, Vtip =0 leads to vanishing potential in the electrostatic
simulation. To compare our conductance calculations to experiment,
we thus used the linear conversion (1) between Ut and Vtip that is
based on two experimentally determined points.

FIG. 5. Numerically calculated tip-induced conductance correc-
tions for two different disorder configurations (left and right panels)
as a function of tip position (x, y ), for the QPC operating on the
third plateau and in the presence of a strong reflector cavity potential
(indicated by solid lines). The upper panels (a) and (f) correspond
to a large tip strength, while the panels (b)–(d) and (g)–(i) depict
the conductance change due to a weakly invasive tip of decreasing
strength. The lowest panels (e) and (j) show the prediction of first-
order perturbation theory (2) that describes well the effect of a weak
tip.

of a Gaussian profile for the simulations is made for simplicity,
and in order to eliminate the effects of long-range tails in the
tip potential. The value of σ was chosen by a comparison to the
electrostatic simulations of the tip potential at large tip voltage.

A quantitative agreement between details of the spatial
conductance pattern in experiment and theory is not expected
for several reasons. First, the realization of the specific disorder
potential in the simulation cannot agree with the experi-
mental one, although the statistical parameters (characteristic
modulation amplitude and correlation length) are chosen to
reproduce the experimental mobility. Second, the simulations
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are restricted to zero temperature, in contrast to the experiment.
Third, it is hard to exactly quantify the width of the experimen-
tal tip-induced potential and compare it to the simulations.

The results of the simulations are shown in Fig. 5 for two
different impurity configurations (left and right columns of
the plot). They reproduce the experimental tendency to evolve
from a structured [Figs. 5(a) and 5(f)] to a smooth pattern when
the tip strength is reduced (in absolute value) taking us from
the invasive to the noninvasive regime [Figs. 5(d) and 5(i)].

Comparing the experimental result of Fig. 4(b) with the
calculated ones of Figs. 5(a) and 5(f) with comparable ut

one recognizes two differences. On one hand, there is fine
structure on a shorter length scale in the calculations than
in the experiment. On the other hand, the amplitude of
the conductance modulations is roughly four times larger
in the simulated data than in the experiment. Most likely,
the differences would both disappear, if a finite temperature
were introduced in the calculation, with the obvious effect
of smearing spatial structure and reducing the modulation
amplitude. However, generating a complete scan at finite
temperature is computationally very costly. The agreement
obtained between the SGM measurements and the calculated
scans is limited for the reasons given above, but it still supports
the modeling used to interpret the experiments.

VII. PERTURBATIVE REGIME

The series of simulations shown in Figs. 5(a)–5(d) and
5(f)–5(i) give us the opportunity to connect to previous exact
theoretical results treating the tip-potential perturbatively. The
goal is to find by comparison the range of validity in ut for
the perturbative treatment in the present realistic scenario.
To lowest order in the tip potential, the conductance change
induced by the tip is [7,8]

G(1) = −8πe2

h
Im[Tr{r†t ′V2,1}], (2)

where r and t ′ are the reflection (from the left) and the
transmission (from the right) matrices, respectively. The entries
of V2,1 in the basis of the conductance channels of the leads
labeled by a and a′ are obtained as the matrix elements

V2,1
a,a′ (rtip ) =

∫
d2r ψ (2)∗

a (r)Utip(r, rtip )ψ (1)
a′ (r) (3)

of the tip potential Utip(r, rtip ) between scattering states
impinging from leads 1 and 2. The conductance correction
obtained from Eq. (2) by using the unperturbed scattering
wave functions, the scattering amplitudes, and the tip potential
[Figs. 5(e) and 5(j)] reproduce with a good accuracy the
corresponding conductance corrections of Figs. 5(d) and 5(i),
showing that for those system parameters we are in the pertur-
bative regime. Note that except for very particular situations
[9], the SGM response of Eq. (2) cannot be expressed in terms
of the PLDOS.

In order to determine the extension of the regime of validity
of first-order perturbation theory, we evaluate the correlation
coefficient between the full calculated SGM response and
the first-order prediction (2). The result for the two disorder
realizations of Fig. 5 is shown in Fig. 6, indicating that the
first-order conductance correction provides a good description
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FIG. 6. The correlation C of the numerically calculated conduc-
tance correction G(x, y ) − G0 in the cavity area with the prediction
of first-order perturbation theory (2), as a function of the tip strength
ut . Olive and red dots are results for the realizations used in the left
and right columns in Fig. 5, respectively.

of the SGM response up to a tip strength of about ut ≈ 0.025.
With the relation (1), that value corresponds to tip voltages of
about 0.135 V around the least invasive value Vli.

At the same time, the experiment yields significant conduc-
tance changes in the regime where the first-order term (2) is
the dominant conductance correction [see Figs. 4(c) and 4(d)].
Within this regime, a change in tip voltage leads to a change
of the global prefactor of the SGM response, without altering
the spatial pattern. We thus confirm that our special purpose
setup is able to access the weakly invasive regime, where the
interpretation of the scanning gate measurements is unambigu-
ously given by nonlocal properties of the unperturbed system
[7,9]. In the next section we will investigate in how far we can
experimentally exploit this theoretical finding.

VIII. CHARACTERISTIC SCALES AND
RELATED SGM REGIMES

The previous observations call for a quantitative analysis
of the extent of the perturbative regime (in Vtip − Vli) and
the change in the spatial resolution of the conductance maps
when going from Figs. 4(a) to 4(d) [and from Figs. 5(a)
and 5(f) to 5(d) and 5(i)]. For this purpose we heuristically
define a characteristic length scale lc for the conductance
modulations seen in the SGM images. For every scan at
a fixed tip voltage, we extract the conductance along the
dashed line shown in Fig. 4(d) at y = ys. The power spectral
density P (k) = |δ̃G(k)|2 of a one-dimensional fast Fourier
transform is calculated for the measured function δG(x, ys ) =
G(x, ys ) − Gys , where Gys is the average conductance along
the line y = ys. Figure 7(c) shows an example of such a power
spectrum for Vtip = −0.2 V .

The experimentally obtained power spectra do not contain
clearly distinguishable peaks, but they show an approximately
exponential decay at small k followed by a nearly constant
background at large k, with the transition between the two
regimes at the characteristic scale k = kc. The value kc allows
us to define a characteristic length scale observed in the SGM
measurements through lc(Vtip ) = k−1

c (Vtip ).
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FIG. 7. (a) Black triangles: characteristic length scale lc as a
function of Vtip (lower axis), extracted from the experimental SGM
response P (k) as described in the text and shown in the insets.
Colored lines and points: lc extracted from the numerically generated
SGM response at T = 500 mK as a function of the corresponding tip
strength ut (upper axis) for four different impurity realizations. The
dashed horizontal lines show intrinsic length scales of the system: the
Fermi wavelength λF, and its half λF/2. (b) The standard deviation
σG of the conductance data as a function of the tip voltage from the
experimental measurements (black triangles) and σG/2 for the same
four disorder configurations used in (a) (colored lines and points).
Three characteristic voltages are marked: Vli is the least-invasive volt-
age; Vdepl the depletion voltage of the tip; Vwi identifies the transition
from the weakly to the strongly invasive Vtip. The disorder broadening
�Vdis is indicated by dotted black lines. The conversion between the
theoretical tip strength parameter ut and Vtip has been assumed to be
linear with parameters chosen such that the experimental data in the
weakly invasive regime are similar to the average of the numerically
obtained ones. (c) The power spectrum (blue line) of the tip-induced
conductance change measured at Vtip = −0.2 V along the dashed line
in Fig. 4(d). The red line is the fit (see text) to extract the characteristic
value kc. (d) The power spectrum found in the theoretical simulation
for the disorder realization that is represented by blue lines and points
in (a) and (b). Dotted and dashed lines are for different weak tip
strengths, the solid line is for a moderately strong tip.

A practical way of determining kc is by fitting P (k) with
the function f (k) = a e−b k + c, and identifying the crossover
point as that of the largest curvature, i.e., kc = b−1 ln(a/c).
In Fig. 7(a), the black triangles show the experimentally
determined values of lc for values of Vtip ranging from the
strongly invasive to the perturbative regime. Note that point-
to-point variations of the measured lc values can arise from poor
self-averaging and little statistics in the case of Vtip close to Vli.
The characteristic scale lc is seen to be maximum and almost
constant around Vli taking the value 120 nm. For more negative

tip voltages lc decays monotonically, leveling off at about λF/2.
For more positive tip voltages a similar, but less clear, trend is
observed. Here the situation is quantitatively different because
in regime (5) the positive tip voltage may induce a screening
charge in the doping plane [26] in our heterostructure.

In addition to lc, we extract the standard deviation σG of the
conductance on the cross-sectional lines G(x, ys ) to quantify
the amplitude of the measured conductance modulation. The
black triangles in Fig. 7(b) represent σG as a function of tip
voltage. It is minimum at Vli and increases almost linearly for
more negative Vtip. At tip voltages Vtip < −1 V it levels off and
shows only a weak increase with decreasing Vtip. Figure 7 thus
shows quantities related to the length scale and amplitude of
the observed conductance modulation present in the scans of
Figs. 4(a)–4(d).

In Fig. 7 we empirically identify five distinct regimes la-
beled (1)–(5). The boundaries between them will be explained
in the following. In regime (1), the tip produces a well-defined
depletion disk within the 2DEG, such that branched electron
flow would be observed at Vcav = 0 [cf. Fig. 3(a)]. When the
cavity is formed, the conductance map shows modulations
limited by lc ≈ λF/2 and with an amplitude σG essentially
independent of Vtip [cf. Figs. 3(b) and 3(c)]. In regime (2),
marked by the depletion voltage Vdepl = −5 V for which the
tip no longer induces a depletion of the 2DEG, the branches
are not observed at Vcav = 0. The characteristic length scale lc
observed in the cavity weakly increases with Vtip and attains
values of the order of λF. In this regime, σG decreases slowly.
Regime (3) is characterized by a strong increase of lc within
a small tip-voltage range, while σG still decreases very little
[cf. Figs. 3(d)–3(f) and Figs. 4(a) and 4(b)]. In regime (4),
σG reduces strongly until a minimum modulation amplitude
is reached at the least invasive tip voltage Vli = 0.4 V [cf.
Figs. 4(c) and 4(d)]. At this voltage the sign of the tip-
induced potential changes. Beyond this voltage, σG increases
symmetrically. In the same regime, lc assumes large values
of more than 100 nanometers. In regime (5), the length scale
of the observed fluctuations decreases significantly while σG

continues to increase.
In order to interpret the physical significance of the five

regimes from strong to weak tip strength, we convert Vtip into
ut using Eq. (1). The corresponding scale for ut is found in
Fig. 7 as the upper horizontal axis of (a). The smallest feature
size of the SGM response that can be imaged in the perturbative
regime is given by the width w of the tip perturbation. Since w

is usually larger than λF /2, small-scale features, as for instance
the cavity-induced interference fringes, cannot be imaged. The
observation of features of the order of λF indicate that the
perturbation by the tip is strong enough to place ourselves in
the invasive regime. The transition between the weakly and
strongly invasive regimes can be characterized by the voltage
Vwi where lc crosses λF . The characteristic amplitude of the
disorder potential Vdis estimated from a model calculation
[13] results in 0.13 EF, and is shown in the figure by black
dotted lines. This value agrees well with the width of regime
(4). In this regime, the tip-induced potential is comparable in
strength to the disorder potential. The correlation length of the
disorder potential 	dis, extracted using the autocorrelation of
our modeled disorder is approximately 100 nm, and therefore
roughly of the order of the maximum values that lc attains.
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However, also other length scales of the experiment, such as
the tip-2DEG separation and the tip radius are of a similar
magnitude. Further theoretical considerations are needed to
clarify the significance of regime (4). We therefore investigate
the characteristic length lc and σG of the numerically calculated
SGM response below. We estimate the SGM response close to
the least-invasive condition using perturbative expressions in
Sec. IX, and we present a perturbative argument based on the
modulation of the density of states in the Appendix.

In order to simulate the experimental data for lc and σG, we
numerically calculate the tip-induced conductance change at
a temperature of 500 mK and perform the Fourier transform
along the dashed line of Fig. 4(d) as in the experiment. Shown
in Fig. 7(d), the power spectrum corresponding to two weak
tips (ut = 0.013 and 0.039), and a moderately strong one (ut =
0.13) exhibit an exponential decay followed by an algebraic
tail. The tail arises from the finite interval on which the Fourier
transform is performed, while the signature of the lattice used
in the discretization of the system appears only at very large k

values that lie outside the range of the figure.
Using the same data analysis as in the experiment allows

us to extract the crossover values kc marking the end of the
exponential regime, and the lengths lc that can be compared
to the experimental values. As shown in Fig. 7, the behavior
of lc and σG extracted from the numerically obtained SGM
response for four different disorder realizations (colored dots)
is similar to the experimental observation. The dispersion in
the maximum values of lc among the four samples is due to the
different impurity configurations used in the simulations.

The observed similarity of the results for several different
disorder realizations is strong support for the generic character
of our numerical simulations and of the experimental data that
have been obtained within a single sample.

IX. INTERPRETATION WITHIN THE
PERTURBATIVE APPROACH

The reduction of lc and the increase of σG away from the
least-invasive tip voltage, found in the experiments and in
the simulations shown in Fig. 7, can be understood within
the perturbative theory. For this analysis we assume that the
tip-induced potential is a function of fixed shape with a linear
dependence on tip strength ut , reading as

Utip(r, rtip ) = EF × utv(r − rtip ). (4)

In the limit of very weak ut the average value Gys along
the scanning line approaches the unperturbed conductance G0.
Thus, δG(x, ys ) = �G(x, ys ) and

P (k) =
∣∣∣∣∣
∑

n

˜G(n)(k)

∣∣∣∣∣
2

, (5)

where ˜G(n)(k) is the Fourier transform of the nth-order con-
ductance correction proportional to un

t .
Staying within first order, by using Eqs. (2) and (3), leads

to the proportionality of σG with |ut|. Such a behavior is
indeed observed in Fig. 7(b). The first-order correction sets the
maximum value attained by lc at the least-invasive tip voltage.

Taking the scanning interval as infinite, ˜G(1)(k) can be written

as

˜G(1)(k) = −8πe2

h
utEF Im

[ ∫
dy ṽ(−k, y − ys)

×
∑

a,a′,a′′
r
†
a,a′ t

′
a′,a′′

∫
dx e−2πikxψ

(2)∗
a′′ (x, y)

×ψ (1)
a (x, y)

]
(6)

in terms of the one-dimensional Fourier transform of the tip
potential ṽ(−k, y − ys) and the wave-function products [last
integral in (6)].

The low-k sector of the power spectrum P (k), where
k � 1/w, is therefore dominated by the decay of the Fourier
transform of the tip-induced potential, modulated by the
azimuthal variations of the scattering wave-function product.4

In the perturbative regime, the slope −b on the logarithmic
scale follows therefore from the characteristic length scale of
v(r) and may be used to estimate w from the measurement.
In particular, if the tip profile v(r) has a Lorentzian shape of
width w, we have b = w.

The high-k sector of P (k) results from the spatial variations
of the scattering states on the scale λF, as well as from
corrections to the Fourier transform caused by the finite spatial
length of the analyzed traces in the x direction.

Understanding the reduction of lc away from the least-
invasive tip voltage necessitates to consider higher-order terms
of the perturbative expansion (5). The nth-order correction
contains products of n matrix elements similar to the one
of Eq. (3) [7,8], such that the spatial dependence of G(n)

contains the nth power of the tip shape (4). Thus, higher-
order conductance corrections are expected to reveal sharper
and sharper structures. The corresponding Fourier transforms
˜G(n)(k) then have a slower and slower decay in the low-k sector.
Their contribution in (5) is increasing with ut , explaining the
increase of kc and the decrease of lc with growing tip strength
until the characteristic length scale of the wave functions λF/2
is reached, as observed in Fig. 7. The previous argument for
the decrease of lc away from ut = 0 remains qualitative since
the quantification of the higher-order conductance corrections
becomes progressively more complicated. Nevertheless, the
perturbative theory allows to explain the impressive resolution
of SGM experiments using strong tips that is enhanced beyond
the size of the tip potential, and the absence of such an
enhancement in the weakly invasive regime.

X. CONCLUSIONS

In this work, we presented scanning gate measurements on
a tunable cavity, demonstrating that the obtained results with
a weak tip potential are in great contrast to experiments with a
strongly invasive tip. The confinement of our cavity geometry
with a weakly perturbing tip gives rise to a regime where

4In the unrealistic case of a very local tip, the decay of the Fourier
transform of the tip-induced potential with k would be very slow,
such that the resulting lc would be dominated by the behavior of the
wave-function products in (6).
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the tip potential only gives the amplitude of the SGM map,
without altering its spatial distribution. We could then access
and quantify the extent of the perturbative regime, where the
SGM response is unequivocally related to properties of the
unperturbed system.

The good agreement found between the SGM measure-
ments and the quantum simulations allowed us to identify the
imaging mechanisms according to the strength of the tip poten-
tial. We found that the size of the tip-induced potential plays
a major role for the spatial resolution and, as a consequence,
couples the tip’s invasiveness and its resolution. These results
lead to a new understanding of weakly invasive scanning gate
imaging.

The finite tip size needs to be considered when it comes
to the interpretation of scanning gate results. In the weakly
invasive regime, the spatial resolution is limited by the tip
geometry, such that a direct connection between the observed
SGM response (Figs. 4 and 5) with the PLDOS (Fig. 2) cannot
be made. Moreover, except for very special situations [9], even
in the case of a local tip, the perturbative prediction for the
SGM response of Eq. (2) in terms of products of scattering
wave functions does not allow to extract the wave functions
nor the PLDOS.

The development of sharper tip potentials, difficult to realize
experimentally, would be of great help to gain in resolution for
the SGM technique in the weakly invasive regime. Only in a
recently developed SGM setup for cold-atomic gases [27] a tip
size comparable to the Fermi wavelength has been achieved.

Increasing the tip strength and entering into the invasive
regime results in sharper spatial structures, but the interpreta-
tion of the SGM measurements in a confined geometry is not as
clear cut as in the noninvasive case. The increase of the spatial
resolution with tip-voltage strength has been characterized in
terms of a length parameter whose behavior can be understood
from perturbation theory.

The connection of SGM measurements with the LDOS of
the unperturbed system has been actively pursued in recent
experimental and theoretical studies, and our work contributes
to such a quest. For one-dimensional systems, when the SGM
setup is modeled by a tight-binding system, a perturbative
approach was able to link the first-order conductance change
produced by a δ tip with the Hilbert transform of the local
density of states [10,11]. In the case of perfect transmission,
i.e., a QPC with an exact conductance quantization [8,9] or a
quantum dot operating close to a resonance [28], the first-order
conductance correction in the tip strength (2) vanishes, and the
second-order correction dominates the SGM response, which
turns out to be proportional to the square of the LDOS. For
quantum dots outside the resonance condition, which is the
case studied in this work, the first-order correction (2) that we
have shown to dominate the SGM response for weak tips, has
no evident correspondence with the LDOS [9,28].
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APPENDIX: A DENSITY OF STATES APPROACH

In this Appendix we provide an alternative approach to that
of Sec. IX allowing us to qualitatively understand the decrease
of the characteristic length lc away from the least-invasive
condition ut = 0. We will then assume that the conductance
changes of the structure are governed by the mesoscopic
density of states fluctuations in the cavity region at the char-
acteristic energy scale �Ecav witnessed by the measurements
shown in Fig. 1(c). The central idea of this approach is that the
conductance on a QPC plateau is modulated by the density
of states of the cavity at the Fermi energy. Scanning the
tip-induced potential at position rtip = (xtip, ytip ) into the cavity
region will scramble the quantum states in the cavity, which
changes the cavity density of states at the Fermi energy and
thereby modulates the conductance G(rtip ).

We estimate this effect by arguing that the tip-induced
potential in Eq. (4) will lift the conduction band bottom within
the cavity on average by

�Ec(rtip ) ≈ utEF

Acav

∫
cav

d2r v(r − rtip ),

where Acav is the cavity area. The density of states modulation
occurs on the scale �Ec(rtip) ∼ �Ecav, which translates into
a correlation distance �rtip determined by

�Ecav ≈ �rtip
utEF

Acav

d

drtip

∫
cav

d2r v(r − rtip ).

For the derivative of the integral over the tip shape with respect
to the tip position, it is crucial to realize that the integral is
limited to the finite area of the cavity. The strongest dependence
on tip position occurs when the maximum of the tip potential
crosses the edge of the cavity. For a simple straight edge parallel
to the y axis and a displacement of the tip in x direction the
value of the derivative is given by the y integral over v(r −
rtip ) = v(x − xtip, y − ytip ). The derivative takes its maximum
value when this integral is maximal. For circular symmetric tip
shapes, we thus have

�Ecav � �xtip
utEF

Acav

∫
dy v(0, y − ytip ). (A1)

We see that the best conceivable resolution is determined by
the integral over a cut through the tip potential. In the case
of a Lorentzian tip-induced potential and full width at half-
maximum 2w, v(r) = w2/(r2 + w2), one estimates

�xtip

w
� 1

ut

�Ecav

EF
× Acav

πw2
. (A2)

We see that this approach predicts a decrease of the correlation
length with increasing strength of the tip-induced potential in
qualitative agreement with the experimental findings in regions
(1)–(3) in Fig. 7(a). It also predicts that the correlation length
can be significantly smaller than the width w of the tip-induced
potential, if �Ecav � EF.
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Identifying �xtip with lc we recognize the decrease of this
characteristic scale away from the least-invasive tip voltage.

However, the previous argument is not able to describe the
limit of very small or very large ut .
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