PHYSICAL REVIEW B 98, 075423 (2018)

Autler-Townes doublet observation via a Cooper-pair beam splitter
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We present a proof-of-principle of how electronic transport measurements permit the observation of the Autler-
Townes doublet, an optical property of nanodevices. The quantum physical system consists of one optically
pumped quantum dot, a second auxiliary quantum dot, and a superconductor lead, which provides an effective
coupling between the dots via crossed Andreev reflection. Electrodes, working as sources or drains, act as

nonequilibrium electronic reservoirs. Our calculations of the photocurrent at both transient and stationary regimes,
obtained using a density matrix formalism for open quantum systems, shows signatures of the formation of the
Autler-Townes doublet, caused by the interplay between the optical pumping and the crossed Andreev reflection.
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I. INTRODUCTION

Since the seminal work of Loss and DiVincenzo on quantum
computation [1], semiconductor quantum dots have become
an outstanding system for future development of integrated
photonic and electronic scalable devices [2,3]. Such an inte-
gration has fundamental importance on the development of
quantum computers and quantum internet [4,5]. In the last
case, a quantum network is required, where fixed quantum
nodes, defined by the quantum dots, exchange information
through flying qubits, those codified on the state of the
photons [6,7]. Such an implementation is feasible because of
the entanglement between spin states on quantum dot and a
single photon [8,9].

Quantum dots under the action of laser fields have been
intensively investigated in recent years [10—12]. The optical
response of such a level configuration is rich, ranging from the
appearance of the so-called Autler Townes doublet (ATD) [13],
to robust states and tunneling-induced transparency (TIT)
[14-18]. Originally, ATD was first reported in a molecular
system composed of gaseous carbonyl sulfide (OCS) being
excited by a rf field and probed via a microwave field [13].
It occurs in a three-level system where a double transition is
observed between dressed states by the presence of a radiation
field [19]. Since then, it has been observed in atoms [20] and
superconductor qubits [21-23]. More recently, it was predicted
that a nonlinearity in the current of a photodiode will appear
when one of the ATD splitted levels crosses the Fermi level of
electronic reservoirs [24].

Extending the functionalities of quantum dots, they have
also been used to create hybrid systems composed of quantum
dots and superconductors [25-30]. One device known as a
Cooper-pair beam splitter has been implemented using differ-
ent experimental setups [31-33]. In these systems, a Cooper
pair is split into two electrons going to different contacts in a
process known as crossed Andreev reflection (CAR) [34—40].
This effect attracted a great deal of attention in the last two
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decades, including works in the context of quantum dots
[41-43], mainly due to possibility of spin-entangled electrons
formation [26].

Here, we present a proof-of-principle of probing the
formation of the ATD through quantum transport. In the
literature, the ATD is reported only through spectroscopic
measurements [44-46]. As far as we are concerned, this
is the first proposal to detect ATD relying on measure-
ments of photoinduced current, driven by optical pumping
of quantum dots. The interplay between CAR and the elec-
tromagnetic field can be mapped into a three-level system,
that sustains an Autler-Townes doublet in a nonequilibrium
regime.

This paper is organized as follows: in Secs. II and III, we
present the effective model and a discussion of the physical
setup that allows the formation of an Autler-Townes doublet,
along to the closed dynamics defined in the effective three-level
quantum systems. Section IV presents the theoretical treatment
for studying the action of reservoirs. In Sec. V, we discuss the
behavior of photocurrent, which has signatures of ATD and,
finally, Sec. VI contains the final remarks.

II. PHYSICAL SYSTEM AND THE EFFECTIVE MODEL

A schematic illustration of the physical setup is shown
in Fig. 1(a), consisting of two quantum dots: quantum dot
A (QDA) and quantum dot B (QDB), which are indirectly
coupled to each other via a superconductor lead. This geometry
was proposed in Ref. [41] to investigate adiabatic pumping
in a Cooper-pair beam splitter (CPBS). A CPBS creates or
annihilates a pair of electrons with opposite spins on the
conduction band (CB) of QDA and QDB in a process known as
crossed Andreev reflection (CAR) [41,42]. We assume that the
superconductor gap is large enough, thus forbidding tunneling
of single particles to the superconductor [47]. Additionally,
a monochromatic optical field, promotes electrons from the
valence band (VB) (labeled as 3) to the CB (labeled as 1) of
QDA. We consider only the CB of QDB (labeled as 2), as we
have assumed a large mismatch between the energies of the
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FIG. 1. (a) [llustration of the experimental setup: a laser pumping,
with strength 2 and frequency w, promotes electrons from valence (3)
to conduction (1) band on QDA. CAR creates an effective coupling,
quantified by ys, between the CBs of QDA (1) and QDB (2).
Reservoirs L and R act as sources, as shown here, or drains, through
incoherent tunneling rates I';. (b), (c) Schematic representation of
energy parameters and couplings of the effective three-level systems:
(b) A configuration, for states with even number of particles, and
(c) V configuration, for states with odd number of particles. (d), (e)
Closed dynamics of the quantum system (I'; = I'; = 0), as function
of time and §E = &, — ¢, considering the initial state |001) (V
configuration): (d) occupation of VB of QDA, n3 and (e) occupation
of CB of QDB, n,. Physical parameters are setase; = 0,0 = ¢, — &3
and ys = Q/4.

optical field and the band gap. The QDs are also coupled to
normal leads, indicated as R and L in Fig. 1(a), that operate as
source or drain of particles [41].

Based on Refs. [43] and [48], we can write the Hamiltonian
accounting for the spin degree of freedom as

Hyn = Z Z it mdm + VS(dezTL - dILd;T)
i=1 o=1,]

+Q e d] dy + Qe d] d3) +Hee., (1)

where d;, (d ) annihilates (creates) one electron with energy
€2 and spin o in the ith level. The second term accounts for
the CAR process with strength ys. Terms with Q4 provides
the optical coupling of a circularly polarized light in QDA,
that selects a specific spin component (£2_ for spin 1 and Q2
for spin | ) [48,49]. Here w is the frequency of the optical ﬁeld
In principle, the energies 5 has spin degeneracy, & i = sl 0
i=1,2,3). In our spe(:1ﬁc setup, we assume the use of
local magnetic fields in the QDs, which lifts the energy levels

degeneracy due to the Zeeman interaction. In this simplified
model, for instance, g1y = E?T —lez| and &1 = s(h + lez|
for QDA, while &y = ng + lez] and & = ezg¢ — |ez| for
QDB, by considering appropriate orientations and strengths
of local magnetic fields on each quantum dot and calling ||
as the Zeeman energy. In addition, by tuning 8(1)0 and sgg with
gate voltages, one can set €14 and &, in resonance with the
Fermi level of the superconductor lead. Moreover, by optically
selecting one spin component (e.g., 24 = 0 and Q_ # 0), the
specific spin configuration |11;2];3%) turns out to be more
accessible than other possible alignments. In a similar way,
one could tune the parameters to select the spin configuration
[11;24;3]). An alternative setup consists on the action of
magnetic field over the whole system (quantum dots and leads)
in the Coulomb blockade regime, so it acts as a spin filter [50].

Once the spin degree of freedom is fixed, we can work with
the effective spinless Hamiltonian,

3
Hg = edld + Qe dldy + ysd]d} + He.,  (2)
i=1
where theT first term is the free Hamiltonian for the QDs,
and d; (diT ) annihilates (creates) one electron in level i with
energy ¢&;. Local electric fields can be used to manipulate
the difference between the energies of the conduction levels,
defined as § E = g, — &;. This model shares similarities with
those found in quantum optics and atomic physics, systems
with strong spatial confinement of electronic states [19,51].
The CAR process plays a similar role as the tunneling in
double QDs with excitons [52-56]. In the Appendix, we
compare the eigenvalues and eigenvectors for both Hy, and
Hy . By appropriately tuning the physical parameters, a subset
of eigenvalues and eigenvectors of Hp,y matches to the ones
found for Hy, corresponding to the relevant three-dimensional
subspaces, as described in the section below.

III. EFFECTIVE THREE-LEVEL SYSTEMS
AND FORMATION OF ATD

Let us consider initially a closed quantum system (I', =
I's = 0) to focus on the action of the superconductor lead as
a Cooper-pair beam splitter (CPBS) [31-33]. Assuming the
computational basis composed by states of the form |n;n,n3),
withn; = 1(0)indicating occupation (vacancy) of one electron
in level i, there are two possible mechanisms for the formation
of ATD, as illustrated in Figs. 1(b) and 1(c). The first one
[Fig. 1(b)] corresponds to a subspace spanned by states with
an even number of particles, i.e., {|011),]000), |110)}. Two
coupling mechanisms take place within this subspace: the
optical transition Q2 exp[iwt]|011) (110] + H.c. and the CAR
process ys [110) (000| + H.c. These two combined effects turn
into a three-level system in a A configuration if §E > 0. The
second one [Fig. 1(c)] corresponds to the subspace spanned by
{|001), [111),]100)}, with an odd number of particles. Here
the states |001) and [100) are optically coupled, while the
states |001) and |111) couples via CAR, in a V configuration
if §E > 0. Both subspace can be experimentally accessed via
suitable choice of states initialization.

Figures 1(d) and 1(e) show the occupations n; =
Tr[djd,',os(t)] (i =2,3), as a function of time and §E for
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FIG. 2. (a)—(c) Closed dynamics of the quantum system (I, = I'; = 0), as function of time and § E = &, — ¢, considering the initial state
|011) (A configuration): (a) occupations 1, of the conduction band of QDA, (b) occupation n, of the conduction band of QDB, and (c¢) occupation
ns of the valence band of QDA. Physical parameters are set as &, = 0, w = ¢; — €3 and ys = Q/4.

a decoherence free system. Here the system is initialized
at ps(0) =001) (001|. The appearance of fast Rabi
oscillations on n3 [Fig. 1(d)], with time scale r ~ 1/Q is a
characteristic of a two-level system under the action of optical
fields [57]. More interestingly, in Fig. 1(e) we see an enhance-
ment of the population n, for two specific energy values,
8E = £Q. Those energies are characteristic of the ATD.

In Fig. 2 we show the time evolution of the populations
ny, ny, and n3, when the system is initialized at ps(0) =
[011) (O11]. Similar features to those found in Figs. 1(d)
and 1(e) are observed here. The main contrast is found for
ny, Fig. 2(b): while in Fig. 1(e) the Autler-Townes doublet
is manifested via two peaks of n, at §E = ££2, here the
Autler-Townes doublet appears as two dips, as a result of the
initialization n, = 1.

IV. DYNAMICS OF THE OPEN QUANTUM SYSTEM

Once we have demonstrated the conditions for the appear-
ance of the ATD in the closed system, we proceed to include
the action of the reservoirs as considered in Fig. 1(a). The
Hamiltonian including reservoir terms would read as

H=Hy+ Z 8ka}:nC‘kn + Z V3d§Ck3 =+ Z ng;ckz + H.c.

.k k3 ko
3)
The second term in Eq. (3) is the free Hamiltonian for the reser-
voirs, where the operators ¢y, (czn) annihilate (create) electrons
with momentum k in reservoir 7. The last two terms describe
the electronic tunneling between the QDs and reservoirs, with
momentum independent strengths V; (i =2, 3). Here, n =
2(3) for the right (left) reservoir. The quantum dynamics and
the electronic transport are obtained by solving a differential
equation for the reduced density matrix pg(#) of the quantum
dots system. The first step is to perform the unitary transforma-
tion U (1) = exp [iwt(d}d) — didy — dlds — ok, c,tvckn)/Z],
which drops the time-dependent exponential from the optical
pumping. The transformed Hamiltonian would read as H' =
Hy + V, where

3
Ho =) %dld; + Y &cl ci, + Qdlds + ysdd] + Hee.,

i=1 1.k,

V = Z V3di€k3 + Z Vzd;ckz +H.c., “4)
k3 ko

with 2] = & — w/2, 32(3) = &3) + /2, and Ek” = &, +
w/2. The evolution of the density matrix p(¢) for the full
system (dots and reservoirs) is given by the Von Neumann
equation, p(t) = —i[H’, p(¢)] (h = 1). We first write p(1) =
el p(t)e~H' | where the hat symbol over the operators
stands for the interaction picture. The exact solution for
the dynamics of the system is given by f)(t) = L(t)py +
fol dt L()L(t1)p(t1), where L(¢) is the Liouvillian superop-
erator, £(1)p(t;) = —i[V (1), p(t;)], and V(¢) is the dots-to-
reservoirs coupling in the interaction picture.

At this point, we use the Born approximation p(z) =
Ps(t) ® pr ® Pr, where ps(t) = Trp g[0(2)] is the reduced
matrix after taking the partial trace over the reservoirs degrees
of freedom. The quantities p; and pg are the density matrices
for the left and right reservoirs. Within this calculation, we
arrive in an integrodifferential equation that describes the
dynamics of the reduced density matrix pg(f):

ps(t) = —i / dn Y (85t t)d] ()d; (1)ps(tr)
0

i,J
— &5t O (0)ps(r)d (1)
— &5t Od(0)dl (1)ps (1)
+g5(t. 1)d (Dps()d; ()] + Hee., )

where each term contains the first-order correlation
functions for the free-electrons on reservoirs defined
as g5 (t.1) = 8| VilP X, i) (1), (1) and  g7(1,1') =
(Sij|V,-|2 Zki(—i)(ék,.(t)é,ti(t’)). In the wideband approxima-
tion [58], they take the form

gi;(t.1) = 18,2 D; Vil fid(t — 1),
g (t. 1) = —is; 2n Dy |Vil*(1 = £)8(t — 1), (6)

where the function f; is the Fermi function and D; is a constant
density of states for ith reservoir. Fermi functions take the
values f; = 0 (f; = 1), if the reservoir is a drain (source) of
particles. Using Eq. (6) into Eq. (5) and integrating over time,
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we obtain

. 1 o ~
ps() = 3 Z Ti{—(1 — f)Id] ()di(1)ps(1)

—dipsdl (O] — fild: (0] (1)ps()
—d]0psd(n] + Hel), o

with T'; = 27D;|V;|? being the strength of the coupling to the
reservoirs. In the Schrodinger picture, we find the Lindblad
equation [59],

1
ps = —ilHs. psl = 5 D TilAL] + (1= fILT] (8)

where Hy is the system Hamiltonian, without the reservoirs
terms in Eq. (4). The dissipative terms describing the action
of the reservoirs (source or drglin) of electrons are given
by L} =did ps + psdid| —2d) psd;, and L7 = d!d;ps +
psdid; — 2d; psd).

Performing a vectorization procedure of the density matrix,
ps = vee[ps], Eq. (8) takes the following form [60]:

ps(t) = e M 55(0), )

where M is a matrix with dimension %3 @ I®3, for I
being the 2D identity matrix. This matrix is defined as
M = Mgy —iT/2, where My = 1% ® Hg — H{ Q@ I®* de-
scribes the system (superscript 7 meaning matrix transpo-
sition) and I contains the effect of reservoir, defined as
=Y, 0fiLf + (1l — f)L7, with LY = I® @ did] +
(did))" ® I®? —2d; @ d; and Ly = I®° @ dd; + (d}d))” ®
193 — 24! @ d [60].

To solve Eq. (9), by numerical procedures, we write opera-
tors d; in terms of the Jordan-Wigner transformation [60,61] as
d=0_Q0,0,db=10_Qo,anddz;=1Q1 Roc_.
This procedure automatically writes any state or operators as-
sociated with the system of quantum dots in the basis given by
{|111), ]110), |101), ]100), |011}), |010), |001), |000)}. These
eight elements permit the description of a nonequilibrium
scenario where electrons can flow in and out of the quantum
dots.

V. SIGNATURES OF ATD ON PHOTOCURRENT

To obtain the electronic currents through L and R reservoirs,
we use rate equations [62], i.e., Ig = Io[ 2Py — (1 — fo)P)]
and I = Iy f3 Py, where Iy = eI'/h, with T, = T'; = I'. The
occupation probabilities are calculated according to le =
Zi’mzo (nlm| pg |nlm), where I =0 (1) if CB on QDB is

empty (full), and P30 = Z,', 1—o (nl0] ps |nl0), for anempty VB
in QDA. Figure 3 shows the left (I1) and the right (/) currents
for the cases where the right reservoir acts as a (i) drain f, = 0
[Figs. 3(a) and 3(b)], or as a (ii) source f, =1 [Figs. 3(c)
and 3(d)]. Concerning the first case, Fig. 3(a) shows that I},
has a positive value, meaning that the electrons flow from the
reservoir L into QDA, as they are being photoexcited. The
signature of the action of optical pumping is an oscillation at
short times that matches with the Rabi oscillations shown in
Fig. 1(d). As time increases, the incoherent coupling between
the system and the reservoirs causes the attenuation of these

0 2 4 6 8 101214 16 18 20 0 2 4 6 8 10 1214 16 18 20

Qi () Qt(m)
1) - (T
10 08 06 04 02 00 02 —04

FIG. 3. The currents I, panels (a) and (c), and /g, panels (b)
and (d) (in unities of 1), as functions of time and § E, and the initial
condition is set as ps(0) = |001) (001|. In panels (a) and (b), f, =0
so the reservoir R acts as a drain of electrons. In panels (c) and (d),
the reservoir becomes a source of electrons with f, = 1. Physical
parameters: &, = 0, w = ¢; — &3, ' = /20, and ys = Q/4.

oscillations, with the current being suppressed for increasing
times. Interestingly, the current in the right electrode shows
negative values for the condition § E = £ as seen in Fig. 3(b),
although, both Iz and I; go to zero as time evolves. The
explanation for such a behavior is as follows: the R electrode
operates as a drain of electrons, so whenever an electron is
created in QDB via CAR, ithas a finite probability to be drained
into the right lead, generating an outgoing probability current.
As soon as the electron leaves QDB, its pairing electron in
the CB of QDA stays locked, thus forbidding further optical
transitions or CAR process. This fact results on a vanishing
photocurrent at the stationary regime, so we can assert that
this configuration permits the detection of ATD from current
measurements only at the transient time scale.

The previous situation changes when f> = 1, as shown in
Figs. 3(c) and 3(d). Again, we still observe the signatures
of Rabi oscillations on both currents; however, two main
differences can be noticed: (i) Iz takes positive values only,
due to the fact that electrode R acts as a source, (ii) high values
of current, even at long times, are predicted at the condition
of ATD, § E = . These differences came from the fact that,
while QDB is populated by electrons coming from the right
lead, electrons are optically pumped in QDA. At this point,
CAR process annihilates both electrons in the dots, opening
the possibility of further injection and optical excitation of
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FIG. 4. The currents I, panels (a) and (c), and I, panels (b) and
(d), in unities of Iy, as functions of time and § E considering I' = y5/5
and the initial condition pg(0) = |011) (011|, which is part of the A
configuration. In panels (a) and (b), f, = 0 so the reservoir R acts as a
drain of electrons. In panels (c) and (d), the reservoir becomes a source
of electrons with f, = 1. Physical parameters: ¢, = 0, = &; — €3,
and ys = Q/4.

electrons in the dots. Then the sequence repeats again, resulting
in a finite current in the stationary regime.

The same features can be seen if the system is initialized
at ps(0) = |011) (O11]. In Fig. 4 we show the currents /; and
I as a function of time and § E. The major contrast between
these results to those shown in Fig. 3 is observed at transient
timescales. In Fig. 4(b) the current /5 is predominantly nega-
tive for short timescales. This behavior is noticed because QDB
is initially populated by a single electron, so this is observed
as a finite current probability for the electron in QDB to tunnel
to the right reservoir ( f, = 0), at short times. In contrast, the
current /g seen in Fig. 4(d) (f, = 1) starts at zero. Since
QDB is initially occupied by a single electron, this particle
should be drained into the superconductor lead before a current
takes place from the right reservoir (f, = 1) into QDB. The
Autler-Townes doublet found in the stationary regime remains
the same regardless of initial state. Because this stationary
current is significantly high at the ATD condition 6 E = %2,
our results are a proof-of-principle that this optical phenomena
can be detected by performing current measurements.

To conclude our discussion, we now show the behavior of
the characteristic ATD profile in Fig. 5(a), as imprinted in
the stationary current [ = Iz = I, as a function of §E for
different values of 2. From this panel, it is clear to notice two
resolved peaks at s E &~ %2, for Q/ys > 1, while for Q/ys —
1, these two peaks merge into a single one. This behavior re-
sembles the characteristic profile of the luminescence spectrum

—
o
=

(a) eﬂ% oo0000 {1 = s 6 A
i = - = e 2 = QA/S 0 -:_/__-
04— o o m——Q=dys L
A
[ (c) 4
- —-—==—=-1
- ~ —
= .

P P I
F () oosd
C 1a0®
SREHRHREL
[ go0°® ]
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—4 0 4 8

0B (vs)

FIG. 5. (a) Autler-Townes doublet observed in the electric current
considering I' = y;/5. (b)—(d) The eigenvalues of the effective three-
level system for 2 = 4yg (black solid line), 2y (red dashed line),
and ys (blue open circles), respectively.

for an excitonic system, when laser intensity is varied [63].
To clarify the appearance of the peaks on the current, in
Figs. 5(b)-5(d), we show the eigenvalues associated to the
three-level subspace formed by {|001), [111), |100)} for dif-
ferent values of Q2 = 4ys, 2ys, and ys (eigenvalues were
shifted to appear around zero). The eigenvalues present anti-
crossings around the Rabi energy, revealing a strong coupling
between the levels of the quantum dots when § E &~ ££2. This
coupling opens up a transmission channel in the system that
allows the flow of a stationary current. The values of optical
pumping strength close to ys yields to a low resolution of
anticrossings, as shown in Fig. 5(d) for & = yg, which in
transport appears as the single peak (blue open circles) in
Fig. 5(a).

VI. SUMMARY

We present a proposal for the detection of an optical
phenomenon through measurements of quantum transport in a
nonequilibrium system. We first describe the formation process
of an Autler-Townes doublet on quantum dots coupled with a
superconductor lead, which results from the combination of the
action of an optical pumping and crossed Andreev reflection.
Calculations performed with density matrix formalism shows
that signatures of the formation of this doublet can be found
on transport measurements, even in a stationary regime, with
the appropriate parameter conditions.
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APPENDIX: COMPARISON BETWEEN THE SPINFULL
AND SPINLESS MODEL.

In this Appendix, we compare the spectrum of the effective
spinless model, Eq. (2), to the spinfull Hamiltonian Hpy,
given by Eq. (1). To do so, we consider a basis composed
of states in the form |nyy, ny;n24, n2y;n34, n3y), where njq
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FIG. 6. Comparison between eigenvalues of Hamiltonian Eq. (1)
and the spinless Hamiltonian Eq. (2): (a) energy spectrum of Hyy
(open circles) and Hy (solid black line) as function of § E. (b) Zoom
in for the even branch and for the odd branch in panel (c). The blue-
triangles and the pink-squares represents the energy eigenvalues for
the even and odd family of states for the spinless model, respectively.
The parameters used are |ez| = 5Q_, and w = 100Q2_, with Q_ =
4ygand Q. =0.

assumes the value 1 (0), indicating that state i with spin
projection o is occupied (empty). Here, we follow again
the convention i =1 for CB of QDA, i =2 for CB of
QDB, and i =3 for VB of QDA. This basis includes all
possible combinations, with 2% = 64 states, ranging from
[141,;141,5141;) t0]040,;040,;040,). To drop the exponen-
tial factor e, we apply the unitary transformation U () =
exp [ (df diy +d] di) — Y, Yy, d},dis)]. over the
time-dependent Hamiltonian Hpy, Eq. (1), and then use a
numerical procedure of diagonalization to obtain the dressed
eigenvalues and eigenstates. The eigenvalues of the trans-
formed spinfull Hamiltonian is shown as open circles in
Fig. 6(a), as we vary the energy difference SE = &7 — &13.
The parameters used here are setas |ez| = 52_,Q2_ = 4ygand

Q4 =0, and the optical frequency w is assumed to be much
larger than other energy scales of the system, w = 10092_.
Additionally, the levels &5 and €14 are set around zero.

One can notice from Fig. 6(a) that the energy spectrum
shows families of branches, and inside each family the levels
are spaced by ~|ez|, while the energy shift between families
is of the order of w/2, which results from the unitary trans-
formation. From this complete spectrum, we can identify two
particular branches of three eigenvalues each. For the sake of
clarity, we have labeled these branches in Fig. 6 as even and
odd, where the first one is found around E = 0.0y, while the
second has energies around £ = —200ys.

InFigs. 6(b) and 6(c) are shown a zoom of these two specific
groups, where we can notice two anticrossings at §E = £Q_.
By checking the eigenstates, we have verified that the eigen-
values around E = 0.0y are combinations of the following
states with even number of particles: |04, 0,;04, 1;;14,0,),
|0T’ 0¢;0¢, Ol; OT’ Oi) and |1T’ 0¢;0¢, ll;OT’ Oi) HOWCVGI‘,
the second branch with eigenvalues around E = —200ys is
associated with [04,0,;04,0,;14,0,), [14,0;04, 1;514,0,)
and [14,0;;04,0,;04,0,), all states with an odd number of
particles. As the eigenvalues forming each branch are relatively
well separated in energy from the other eigenvalues, we can
expect that these two groups of three states each, the even and
odd ones, can behave as two independent three-level systems.

In principle, one could expect additional transition pro-
cesses that couple the subspaces spanned by the even and odd
states to additional states of the whole basis, not accounted for
in the simplified Hamiltonian Hy. However, such processes are
suppressed for the set of parameters adopted. This becomes
clear when we compare the eigenvalues of Hpy to the ones
of the spinless model Hy. In Figs. 6(b) and 6(c), we also
show the eigenvalues of H as solid lines. Notice that the
eigenvalues for both Hy,) and H are in perfect agreement.
Also, the eigenstates of Hy corresponding to the even subspace
are linear combinations of |011), |000), |110), while for the
odd subspace are linear combinations of [001), |111), [100).
We plot the eigenvalues of the two separate three level systems
as blue triangles for the even family and pink squares for the
odd family of state in Figs. 6(a)-6(c).
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