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We consider an α-T3 lattice illuminated by intense circularly polarized radiation in the terahertz regime. We
present the quasienergy band structure, time-averaged energy spectrum, and time-averaged density of states of
an α-T3 lattice by solving the Floquet Hamiltonian numerically. We obtain exact analytical expressions of the
quasienergies at the Dirac points for all values of α and field strength. We find that the quasienergy band gaps
at the Dirac point decrease with increase of α. Approximate forms of quasienergy and band gaps at single- and
multiphoton resonant points are derived using the rotating wave approximation. The expressions reveal a stark
dependence of quasienergy on the Berry phase of the charge carrier. The quasienergy flat band remains unaltered
in the presence of radiation for a dice lattice (α = 1). However, it acquires a dispersion in and around the Dirac
and even-photon resonant points when 0 < α < 1. The valley degeneracy and electron-hole symmetry in the
quasienergy spectrum are broken for 0 < α < 1. Unlike graphene, the mean energy closely follows the linear
dispersion of the Dirac cones until near the single-photon resonant point in the dice lattice. There are additional
peaks in the time-averaged density of states at the Dirac point for 0 < α � 1.
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I. INTRODUCTION

In recent years, the dynamical effect of an intense ac field
on electronic, transport, and optical properties in quantum two-
dimensional materials having a Dirac-like spectrum has drawn
much interest [1–12]. It is seen that an intense time-periodic
field substantially changes the energy-band structure by pho-
ton dressing and, consequently, the topological properties of
materials. Inducing a gap in Dirac materials is an important
issue for electronic devices. A stationary energy gap appears at
the Dirac points under a circularly polarized radiation [6,8,9].
Also, the gaps appear in the quasienergy spectrum [10] due to
single-photon and multiphoton resonances, which decreases
with increase in momentum. Oka and Aoki showed that the
photovoltaic Hall effect can be induced in graphene under
intense ac field [6], even in the absence of uniform magnetic
field. The energy gap at the Dirac point closes as soon as
the spin-orbit interaction in the graphene monolayer is taken
into account [11]. The optical conductivity of the graphene
monolayer under intense field has been reported to show
multi-step-like behavior due to sideband-modulated optical
transitions [10]. A photo-induced topological phase transition
in silicene has been proposed by Ezawa [13]. The photoinduced
zero-momentum pseudospin polarization, quasienergy band
structure, and time-averaged density of states (DOS) of the
charge carriers in monolayer silicene have also been studied
[14].

There exists an analogous lattice of graphene [15], known
as the α-T3 lattice, in which quasiparticles are described by the
Dirac-Weyl equation. The α-T3 lattice, as shown in Fig. 1(a), is
a honeycomb lattice with two sites (A,B) and an additional site
(C) at the center of each hexagon. The C sites are bonded to
the alternate corners of the hexagon, say B sites. The hopping
parameter between the A and B sites is t and that between the

C and B sites is αt . The sites in such a lattice can be subdivided
into two categories on the basis of the number of nearest
neighbors—hub (B) sites with coordination number 6 and rim
(A,C) sites with coordination number 3. The rim sites form a
hexagonal lattice with no bonds among them. The hub sites
form a triangular lattice. Each hub site is connected to six rim
sites out of which three are equivalent. The hopping parameter
alternates between t and αt among the six hub-rim bonds
from a single hub site. The α = 0 results in the honeycomb
lattice resembling monolayer graphene, which corresponds
to a Dirac-Weyl system with pseudospin 1/2. On the other
hand, α = 1 leads to the well-studied T3 or dice lattice with
pseudospin 1 [16–23]. Tuning of α from 0 to 1 gradually allows
us to study the continuous changes in the electronic properties
of massless fermions.

The dice lattice can naturally be built by growing trilayers
of cubic lattices (e.g., SrTiO3/SrIrO3/SrTiO3) in the (111)
direction [24]. An optical dice lattice can be produced by
a suitable arrangement of three counterpropagating pairs of
laser beams [19]. The α-T3 optical lattice can be realized by
dephasing one of the pairs of laser beams with respect to
the other two [19,25]. The Hamiltonian of the Hg1−xCdxTe
quantum well can also be mapped to that of the low-energy
α-T3 model with effective α = 1/

√
3 on appropriate doping

[26].
Recently, a list of physical quantities such as orbital suscep-

tibility [25], optical conductivity [27–29], magnetotransport
properties [26,30–32], Klein tunneling [20,33], and wave-
packet dynamics [34] in the α-T3 lattice has been studied
extensively. The Berry phase has become an indispensable
ingredient in modern condensed-matter physics due to its
strong influence on magnetic, transport, and optical properties
[35]. For example, the variation of the orbital susceptibility
with α is a direct consequence of the variable Berry phase of the
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FIG. 1. (a) Sketch of the α-T3 lattice. (b) Band structure of the
α-T3 lattice using a tight-binding lattice.

α-T3 lattice [25]. It has been pointed out that the quantization of
the Hall plateaus [26,30,31] and behavior of the SdH oscillation
[30] change with the Berry phase of the α-T3 lattice. The Berry
phase dependence of the longitudinal optical conductivity of
the α-T3 lattice has also been reported [27].

In this work, we study quasienergy band structure, time-
averaged energy spectrum, and time-averaged density of states
of the α-T3 lattice irradiated by circularly polarized light. We
provide exact and approximate analytical expressions of the
quasienergies at the Dirac points as well as at resonant k points
for all values of α, respectively. The valley degeneracy and the
electron-hole symmetry are destroyed by the circularly polar-
ized radiation for 0 < α < 1. We establish a direct connection
between the quasienergy spectrum and the variable Berry
phase, which is responsible for the broken valley degeneracy.
The quasienergy gap at the Dirac point decreases with α.
The behaviors of the time-averaged energy and time-averaged
density states for 0 < α � 1 are appreciably different from that
of monolayer graphene.

This paper is organized as follows. In Sec. II, we present
preliminary information of the α-T3 lattice. In Sec. III, we solve
the Floquet eigensystem for the α-T3 lattice driven by circu-
larly polarized light. In particular, we present numerical and
analytical results of quasienergy bands and the corresponding
band gaps. In Sec. IV, the results of the time-averaged energy
spectrum and time-averaged density of states are presented. In
Sec. V, we discuss the main results of our study.

II. BASIC INFORMATION OF α − T3 LATTICE

The rescaled tight-binding Hamiltonian of the system con-
sidering only nearest-neighbor (NN) hopping is given by

H0(k) =
⎛
⎝ 0 tf ∗(k) cos φ 0

tf (k) cos φ 0 tf ∗(k) sin φ

0 tf (k) sin φ 0

⎞
⎠,

(1)

where t is the NN hopping amplitude, α is parameterized
by the angle φ as α = tan φ, and f (k) = ∑3

j=1 eik·aj . Here,
aj ’s are the position vectors of the three nearest neighbors
with respect to the rim site. Diagonalizing the Hamiltonian
gives three energy bands (Eλ) independent of α [36]: E±(k) =
±t |f (k)| and E0(k) = 0. Here, λ = +1, 0,−1 correspond
to the conduction, flat, and valence bands, respectively. A

unique feature of its band structure is that a flat band E0(k) is
sandwiched between two dispersive bands E±(k) which have
electron-hole symmetry. The nondispersive band also appears
in the Lieb [37–40] as well as kagome [41] models. Recently,
the dispersionless flat band has been engineered in a photonic
Lieb lattice formed by a two-dimensional array of optical
waveguides [42,43]. The flat band remains dispersionless for
all values of α and k. On the other hand, the dispersion of the
conduction and valence bands is identical to that of graphene.
The full band structure is shown in Fig. 1(b).

The low-energy Hamiltonian around the two inequivalent
Dirac points K and K′ can be written as

H
μ
0 (k) = h̄vf S(α) · k, (2)

where vf = 3at/(2h̄), k = μkx x̂ + ky ŷ with μ = ±1 refer-
ring to the K and K′ valleys, respectively, and the components
of the spin matrix S(α) are defined as

Sx (α) =
⎛
⎝ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎞
⎠, (3)

Sy (α) =
⎛
⎝ 0 −i cos φ 0

i cos φ 0 −i sin φ

0 i sin φ 0

⎞
⎠. (4)

In the vicinity of the two Dirac points, E±(k) are linear in k,
i.e., E±(k) = ±h̄vf |k|, implying massless excitations around
the Dirac points, as in the case of graphene.

In contrast to the band structure, the normalized eigenvec-
tors ψk,λ depend on α and are given by

ψk,± = 1√
2

⎛
⎝μ cos φe−iμθk

±1
μ sin φeiμθk

⎞
⎠, ψk,0 =

⎛
⎝ sin φe−iμθk

0
− cos φeiμθk

⎞
⎠,

where θk = tan−1(ky/kx ). Moreover, the elements of the
spinors from top to bottom represent the probability amplitude
of staying in sublattices A (rim), B (hub), and C (rim),
respectively. The flat-band wave function exhibits that the
probability amplitude of an electronic wave function centered
over the hub sites is always zero. Hence, electrons in the flat
band remain localized around the rim sites.

For α = 1, Eq. (2) reduces to the pseudospin-1 Dirac-Weyl
Hamiltonian H

μ
0 (k) = h̄vf S · k, where S = (Sx, Sy, Sz) are

the standard spin-1 matrices.
Berry phase. The topological Berry phase for α = 0 is

simply π , which is independent of the valleys. For α > 0,
the α-dependent Berry phase [27] φ

λ,μ

B in the conduction and
valence bands is given by

φ
±1,μ

B = πμ cos(2φ) = πμ

(
1 − α2

1 + α2

)
, (5)

and for the flat band is given by

φ
0,μ

B = −2πμ cos(2φ) = −2πμ

(
1 − α2

1 + α2

)
. (6)

Note that the Berry phase is different in the K and K′ valleys,
except for α = 1. The Berry phase is smoothly decreasing with
increase of α and becomes zero at α = 1. Later, we will show
how the Berry phase appears in quasienergy gaps.
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III. FLOQUET EIGENSYSTEM FOR α-T3 LATTICE

We consider a circularly polarized electromagnetic radia-
tion propagating perpendicular to the α-T3 lattice placed in
the x-y plane. The corresponding vector potential is given
by A(t ) = A0(cos ωt x̂ + ν sin ωt ŷ), where A0 = E0/ω in
which E0 is the amplitude of the electric field and ω is the
frequency of the radiation. Also, ν = ±1 denotes counter-
clockwise and clockwise rotations of the circularly polarized
light, respectively. The frequency of the driving is small
compared to the bandwidth of the system. The vector potential
satisfies the time periodicity: A(t + T ) = A(t ) with the time
period T = 2π/ω. The minimal coupling between the charge
carrier and the electric field is obtained through the Peierls
substitution: h̄k → [h̄k − qA(t )], with q = −e being the
electronic charge. The Hamiltonian for the coupling between
the charge carriers and the electromagnetic field can be written
as

H
μν
1 (t ) = h̄ωβ[Sμν

− eiωt + S
μν
+ e−iωt ], (7)

where the 3 × 3 matrices are S
μν
± = 1

2 [μSx (α) ± iνSy (α)] and
the dimensionless parameter β = eE0lω/(h̄ω) characterizes
the strength of the coupling between the electromagnetic
radiation and charge carrier with lω/a = 3πt/h̄ω � 1 in the
THz frequency regime. The dimensionless parameter β is less
than 1 for the typical intensity of lasers available in the THz
frequency regime. In the semiclassical picture, eE0lω is the
energy gained by the charge carrier while traveling a distance
lω with the speed vf during one period of the radiation. On
the other hand, the charge carrier is dressed with the minimal
photon energy h̄ω.

The total Hamiltonian of a charge carrier near the Dirac
point in the presence of the electromagnetic radiation is
Hμν (k, t ) = H

μ
0 (k) + H

μν
1 (t ), which is periodic in time. By

Floquet theory, the solution of the time-dependent Schrodinger
equation

ih̄
∂

∂t

∣∣ψμν
η (k, t )

〉 = Hμν (k, t )
∣∣ψμν

η (k, t )
〉

(8)

is given by ∣∣ψμν
η (k, t )

〉 = e−iε
μν
η (k)t/h̄

∣∣φμν
η (k, t )

〉
. (9)

Here, |φμν
η (k, t )〉 are the time-periodic 1 × 3 pseudospinors

and εμν
η (k) are the corresponding quasienergies. There are

three independent quasienergy branches along with the three
corresponding eigenstates indexed by η = 1, 0,−1. Substitut-
ing Eq. (9) into Eq. (8), the time-periodic spinor |φμν

η (k, t )〉
becomes the eigenstate of the Floquet Hamiltonian H

μν

F =
Hμν (k, t ) − ih̄ ∂

∂t
with the eigenvalue εμν

η (k):[
Hμν (k, t ) − ih̄

∂

∂t

]∣∣φμν
η (k, t )

〉 = εμν
η (k)

∣∣φμν
η (k, t )

〉
. (10)

Multiplying a phase e−imωt , with m being an integer to
Eq. (9), and substituting it back to Eq. (10), we obtain[

Hμν (k, t ) − ih̄
∂

∂t

]∣∣φμν
η (k, t )

〉
= [

εμν
η (k) + mh̄ω

]∣∣φμν
η (k, t )

〉
. (11)

This is also an eigenvalue equation like Eq. (10), but with a
shifted quasienergy ε

μν
ηm(k) = εμν

η (k) + mh̄ω. Equations (10)
and (11) yield the same Floquet mode, with quasienergies
differing by an integer multiple of photon energy h̄ω. Hence,
the index η corresponds to a whole class of solutions indexed by
η′ = (η,m),m = 0,±1,±2, . . . having a discrete spectrum
of quasienergies εη,m(k). Thus, a given Floquet state has
multiple quasienergy values repeating in the intervals of h̄ω.
For the α-T3 lattice, we have three independent values of
quasienergy for a given momentum, which can be attributed
to the three independent eigenvalue equations (η = 1, 0,−1).
Due to the infinite spectrum without physical distinguisha-
bility, the quasienergies can also be confined to a reduced
Brillouin zone in the energy space with |εμν

η (k)| < h̄ω/2.
In order to calculate the quasienergies and the correspond-

ing states of the Floquet Hamiltonian, we consider the Fourier
expansion of |φμν

η (k, t )〉,
∣∣φμν

η (k, t )
〉 =

∞∑
n=−∞

e−inωt
∣∣χnμν

η (k)
〉
, (12)

which follows from the temporal periodicity of the Floquet
mode. Using Eq. (12), the time-dependent differential given by
Eq. (10) reduces to the time-independent eigensystem problem
as ∑

m

[
H

μν

0F,mn + H
μν

1F,mn − εμν
η (k)

]∣∣χmμν
η (k)

〉 = 0, (13)

where the diagonal Floquet Hamiltonian in the Floquet basis
is

H
μν

0F,mn = [h̄vf S(α) · k + mh̄ω]δmn, (14)

and the off-diagonal interaction Hamiltonian

H
μν

1F,mn = h̄ωβ[Sμν
− δm,n−1 + S

μν
+ δm,n+1] (15)

couples various Fourier modes. Thus, by Floquet matrix theory,
we numerically compute the Floquet quasienergies εμν

η in
units of h̄ω and the corresponding Floquet states |ψμν

η (k, t )〉
of the Floquet Hamiltonian H

μν

F . The following parameters
have been used in the numerical calculation: ω = 2π × 5 THz,
E0 = 2 kV/cm, vf = 106 m/s, and β = 0.3. Also, μ = ν =
+1 are considered for all the plots unless otherwise stated.

A. Exact analytical expressions of quasienergies
and band gap at the Dirac points

First, we present exact analytical results of quasienergies
and band gaps at the Dirac points. At the Dirac points (k = 0),
the time-dependent Hamiltonian (in units of h̄ω) can be written
as

H̄
μν
1 (t̃ ) = β[Sμν

− eit̃ + S
μν
+ e−it̃ ], (16)

where t̃ = ωt . The corresponding Floquet Hamiltonian can be
written explicitly as

H̃
μν

F (t̃ ) = μβ

⎡
⎢⎣

−i ∂
∂t̃

cos φe−iμνt̃ 0

cos φeiμνt̃ −i ∂
∂t̃

sin φe−iμνt̃

0 sin φeiμνt̃ −i ∂
∂t̃

⎤
⎥⎦.

(17)
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Let us define a unitary operator Q̂ given by

Q̂ = e−iμν(I+Sz )t̃ , (18)

where I is the 3 × 3 identity matrix. By performing the unitary
transformation Q̂†H̃μν

F (t̃ )Q̂, an effective time-independent
Floquet Hamiltonian is obtained:

H̃
μν

F = μ

⎡
⎣ −2ν β cos φ 0

β cos φ −ν β sin φ

0 β sin φ 0

⎤
⎦. (19)

The zero-momentum quasienergy spectra are given by

λ1 = −μν + 2μ√
3

√
1 + β2 cos �, (20)

λ2 = −μν − μ

3

√
1 + β2(

√
3 cos � + 3 sin �), (21)

λ3 = −μν − μ

3

√
1 + β2(

√
3 cos � − 3 sin �), (22)

where � = (1/3)Arg[−ξ +
√

ξ 2 − 108(1 + β2)3] and ξ =
27νβ2( 1−α2

1+α2 ), with Arg[z] giving the argument of the complex
number z. The corresponding normalized Floquet states are
given by

|ψμν (t̃ )〉 = e−i(λi+μν)t̃√
1 + β2

[ cos2 φ

(2μν+λi )2 + sin2 φ

λ2
i

]
⎛
⎜⎜⎝

β cos φ

2μν+λi
e−iμνt̃

1
β sin φ

λi
eiμνt̃

⎞
⎟⎟⎠.

The parameter ξ can be expressed in terms of the Berry phase
given by Eqs. (5) and (6). Thus, the quasienergy is directly
related to the Berry phase acquired during a cyclic motion of
the charge carriers in the presence of a circularly polarized
radiation.

The three Floquet quasienergy branches may be labeled
as (i, m), where i = 1, 2, 3 represent three branches and m

the Floquet index. The corresponding quasienergy λi,m = λi +
m. The quasienergies of the three branches in the first energy
Brillouin zone (BZ) are given by λ1 + μ(ν − 1), λ2 + μ(ν +
1), and λ3 + μν. The threefold degeneracy at the Dirac point is
simply the limiting case (β → 0) of these quasienergies. The
variation of these quasienergies with α for β = 0.3 is shown in
Fig. 2. Figure 2 displays the photoinduced valley and electron-
hole symmetry breaking at the Dirac point for 0 < α < 1. The
quasienergy variations for the pair having the same value of μν

(i.e., μν = 1 [Figs. 2(a) and 2(b)] or μν = −1 [Figs. 2(c) and
2(d)]) are identical to each other, apart from the interchange
of branches. Also, the quasienergy structure for the cases of
μν = 1 and μν = −1 are inverted copies of each other for
0 < α < 1. This implies that the spectrum undergoes a flipping
on (i) switching between valleys K and K′ for a given sense of
circular polarization and (ii) changing sense of rotation of the
polarization for a given valley. The flipping of quasienergies
is trivially symmetric for graphene (α = 0) and a dice lattice
(α = 1) on switching of valleys or polarization.

For α = 0, the quasienergies within the first energy BZ are
obtained as

λ± = ± 1
2 (

√
4β2 + 1 − 1). (23)

 
 

FIG. 2. Plots of quasienergies at the Dirac point vs α for various
combinations of μ and ν: (a) μ = ν = 1, (b) μ = ν = −1, (c) μ =
1, ν = −1, (d) μ = −1, ν = 1. The green, red, and blue dotted curves
correspond to λ1, λ2, and λ3.

The same results are obtained by Oka and Aoki [6] for
irradiated graphene. On the other hand, the quasienergies for
the dice lattice (α = 1) obtained from Eqs. (20)–(22) are
λ0 = 0 and

λ± = ±(
√

β2 + 1 − 1). (24)

Equations (23) and (24) can be combined to write a general
form for quasienergy at the Dirac point as

λ±(S) = ±(
√

β2 + S2 − S), (25)

where S is the pseudospin of the underlying lattice. The
energy gap at the Dirac point for the pseudospin S is
�S = λ+(S) − λ−(S) = 2(

√
β2 + S2 − S). The energy gap

for graphene is �S= 1
2

= (
√

4β2 + 1 − 1) and that for the dice

lattice is �S=1 = 2(
√

β2 + 1 − 1). It can be easily checked
from Fig. 3(a) as well as from Eq. (25) that �S=1 < �S= 1

2
.

The quasienergy gap at the Dirac point for graphene is higher
than that of dice lattice. Thus, the flat band has a shielding
effect on the dipole coupling between the electron-photon
levels.

In Fig. 3, we show the variation of the three quasienergy
branches with α and β. The color labeling of Fig. 3 is the
same as that of Fig. 2(a). Figure 3(a) shows that our numerical
results match very well with the exact results. The quasienergy
at the Dirac point increases with the field strength β seen in
Fig. 3(b).

FIG. 3. Plots of variation of the exact quasienergy at the Dirac
point with (a) α for β = 0.3 and (b) β for different values of α. Exact
numerical results are denoted by the triangles. In (b), the solid green,
blue, and red lines are for α = 1, the dotted lines for α = 0.5, and the
purple-orange pair is for α = 0.
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FIG. 4. Floquet quasienergy bands for different values of α: (a) α = 0, (b) α = 0.5, (c) α = 1.

B. Floquet quasienergy branches and band gaps
for large values of momentum

In this section, we present the results obtained by solving the
low-energy Floquet Hamiltonian numerically and display the
quasienergy band structure within the first two energy Brillouin
zones in Fig. 4 for α = 0, 0.5, and 1. The dotted lines indicate
the spectrum for zero intensity of radiation, which are identical
for all values of α. First of all, the quasienergies of the α-T3

lattice pertaining to different η satisfy ε
μν
1 (k) = −ε

μν
−1(k) for

α = 0, 1 and εμν
η (k) = εμν

η (−k) for 0 � α � 1. The known
results of graphene (α = 0) are reproduced in Fig. 4(a). For
better visualization, the quasienergy band for η = 0 is shown
separately in Fig. 5. The quasienergy branch corresponding to
the flat band becomes dispersive mainly around the Dirac and
even-photon resonant points for 0 < α < 1. This is due to the
fact that the flat-band states are dressed with integral number of
photons in the vicinity of these resonant points, which allows
them to mix with dressed conduction- and valence-band states.
The mixing results in dispersion due to shifting of energies of
the erstwhile nondispersive states. On the other hand, the band
does not undergo any significant modification at odd-photon
resonances, as it cannot be dressed with a half-integral number
of photons. The dispersion gets completely wiped out at α =
1. The height of the spikes of the dispersion decreases with
increases of the momentum. The band structure gets inverted
about the k axis on changing the rotation of the electric-field
vector of the circularly polarized light. The band remains flat

FIG. 5. Quasienergy band for η = 0 at different values of α: (i)
α = 0.3 (green), (ii) α = 0.5 (red), (iii) α = 0.8 (purple), and α = 1
(blue).

for all values of α when applied radiation is linearly polarized.
It is to be noted that there is no splitting in the flat band since
it does not have any partner band.

The gaps between the bands (η = ±1) open up at k = 0 and
at km = mω/2vf with m = ±1,±2, . . .. The gap at km arises
due to the ac Stark splitting occurring due to the multiphoton
resonances [12,44–48]. There is a set of Bloch states lying on
a circle in the vicinity of the Dirac point k space with radius
km such that the energy difference between the bands is m

multiples of the photon energy: 2vf km = mω. On illumination,
new electron-photon states with energy Eλ = h̄vf km + Nλh̄ω

(λ band with Nλ photons) and Eλ′ = −h̄vf km + Nλ′ h̄ω with
λ′ 	= λ (λ′ state with Nλ′ photons) are formed. When Eλ = Eλ′ ,
i.e., Nλ − Nλ′ = mh̄ω, the degenerate levels split due to the
coupling between the electron and the radiation field and the
gap opens up at km. All the gaps tend to diminish at higher
values of momentum.

Using the rotating wave approximation (see the Appendix),
the approximate quasienergies for α = 0 (for any integer m)
and α = 1 (for even m) are, respectively, given by

(λ±)α=0 = ±β

2
|Jm+1(2β ) − Jm−1(2β )|, (26)

(λ±)α=1 = ±β

2
|Jm/2+1(β ) − Jm/2−1(β )|. (27)

From the above expressions, we can see that (λ±)α=0 and
(λ±)α=1 are proportional to the difference between two con-
secutive integral and even-ordered Bessel functions, respec-
tively. The magnitude of the gaps is strongly affected by
the argument of the Bessel functions which, for graphene, is
twice that of the dice lattice. For β 
 1, the asymptotic forms
of the quasienergy gaps are (�m)α=0 ∼ βm and (�m)α=1 ∼
(β/2)m/2. For weak fields, (�1)α=0 and (�2)α=1 vary linearly
with β. The variation of the gaps �m with β and α are
shown in Figs. 6 and 7, respectively. The curves represent the
numerical results, while their corresponding markers represent
the results obtained from the exact analytical expressions (�0)
and rotating wave approximation (�1,�2,�3). All the gaps
increase monotonically with β. Moreover, �0 (solid blue)
and �1 (dashed purple) get reduced at higher α. In contrast,
�2 (dotted red) is found to increase with α. The gap �3

(dash-dotted green) increases very slowly with α. The splitting
at even-photon resonant points is affected by the intervention
of the flat band dressed with an integral number of photons. The
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FIG. 6. Plots of variation of gaps �m with β for (a) α = 0,
(b) α = 0.5, and (c) α = 1.

interplay of the three bands results in an increase in magnitude
of the gap as α increases. We see that the agreement between
numerical and analytical results does not hold well at higher
momentum.

IV. TIME-AVERAGED ENERGIES AND
DENSITY OF STATES

In this section, we discuss time-averaged quantities such
as mean energy and the corresponding density of states. The
mean energy is a single-valued quantity, which is independent
of the choice of the quasienergy of the Floquet state. The mean
energy helps one to understand whether the Floquet states are
occupied or unoccupied [12,46,47]. For example, the Floquet
states having lower mean quasienergy will be accommodated

FIG. 7. Plots of variation of gaps �m with α for β = 0.3.

first. Also, the mean quasienergy can be used to characterize
whether the state is electronlike or holelike [10].

Time-averaged energies. The expectation value of the
Hamiltonian in a Floquet state is a periodic function of time.
This helps us to formulate the energy averaged over a full cycle
of a periodic driving and is given by

¯E
μν
η (k) = 1

T

∫ T

0

〈
ψμν

η (k, t )
∣∣Hμν (k, t )

∣∣ψμν
η (k, t )

〉
dt. (28)

Incorporating the Fourier series [Eq. (12)] into the above
equation, we get

Ēμν
η (k) = εμν

η (k) +
∞∑

n=−∞
nh̄ω

〈
χnμν

η (k)
∣∣χnμ

η (k)
〉
. (29)

Hence, the averaged energy can be viewed as the weighted
average of energies possessed by the Fourier harmonics of the
Floquet modes.

The time-averaged energy (around the K valley) corre-
sponding to the Floquet states of the three branches for different
values of α is shown in Fig. 8. The blue, green, and red bands
represent the quasielectron, flat band, and quasihole states,
respectively. For 0 < α < 1, the mean energy-band structure
around K′ can be obtained by simply inverting the same for
the K valley. Due to the absence of inversion symmetry of the
band structure for 0 < α < 1, the valley degeneracy is broken.
As β → 0, we obtain the field-free Dirac cones shown by the
dotted lines. For 0 � α < 1, the mean energy goes to zero near
one-photon and two-photon resonant points due to crossover
between quasielectron and quasihole states [10]. The vanishing
of mean energies at these resonant points is also observed for
α < 1. But, the dice lattice has a nonzero mean energy near
one-photon resonance. This can be attributed to the fact that
the gap at one-photon resonance becomes vanishingly small
and mimics the radiation-free case for α = 1. A finite gap
exists at the Dirac point for all values of α. The threefold
degeneracy at the Dirac point is lifted by the radiation. Careful
examination reveals that the symmetric nature of the η = ±1
bands (electron-hole symmetry) is slightly disrupted near the
Dirac point for 0 < α < 1. The symmetry is restored at α = 1.
A distortion occurs in the mean energy spectrum of the flat band
at k = 0,±ω/vf , similar to that obtained in the quasienergy
spectrum. The distortions flatten out at α = 1.

Time-averaged density of states. The time-averaged density
of states over a driving cycle is defined as

D(E) = gs

∑
n,η,μ,k

〈
χn

η (k)
∣∣χn

η (k)
〉
δ{E − [εη(k) + nh̄ω]}.

(30)

Here, the factor gs = 2 appears due to the spin degeneracy. On
converting the sum over k to integral, i.e.,

∑
k → 1

(2π )2

∫ k
d2k,

and using the azimuthal symmetry of the quasienergy band
structure for circularly polarized light, we get the density of
states per unit area as

g(E) = D0

∑
η,n,μ

∫ ∞

0

〈
χnμ

η (k̃)
∣∣χnμ

η (k̃)
〉

× δ
{
ε̃ − [

ε̃μ
η (k̃) + n

]}
k̃dk̃, (31)
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FIG. 8. Time-averaged energy of the three Floquet branches for (a) α = 0, (b) α = 0.5, (c) α = 1.

where D0 = gsω/(2πh̄v2
f ) = 1.515 × 1013 meV−1 m−2. ε̃

and ε̃μ
η (k̃) are the dimensionless quasienergies such that E =

ε̃h̄ω. Using the property of the Dirac δ function, the above
integral can be further simplified as

g(E) = D0

∑
γ,k̃

(γ )
i (ε̃)

〈
χnμ

η

(
k̃

(γ )
i (ε̃)

∣∣χnμ
η

(
k̃

(γ )
i (ε̃)

〉
k̃

(γ )
i (ε̃)∣∣ε̃′

η

(
k̃

(γ )
i ε̃

)∣∣ , (32)

where γ = {n, η, μ} is a set of quantum numbers and k̃
(γ )
i (ε̃)

is the ith positive root of ε̃ − [ε̃μ
η (k̃) + n] = 0 for a given n.

FIG. 9. Time-averaged density of states of quasielectron and
quasihole states for (a) α = 0, (b) α = 0.5, (c) α = 1.

The time-averaged density of states of electronlike and
holelike quasienergy bands for three different values of α is
shown in Fig. 9. Figure 9(a) shows the DOS for α = 0, which
is similar to the results obtained by other groups [6,10]. The
peaks represent the van Hove singularities occurring due to the
extrema in the quasienergy band structure. Apart from large
peaks, there are spikes around E = ±ω/2 and E = ±ω with
vanishingly small DOS. This is because of the photoinduced
gaps at the boundaries of the energy Brillouin zones. A small
but finite contribution of DOS in these energy ranges appears
due to closing of gaps at higher momenta. Additional peaks
are born at the Dirac point for finite 0 < α � 1, as seen in
Figs. 9(b) and 9(c). The separation between the peaks centered
around E = ±ω/2 decreases with α, while that around E =
±ω increases with α. This is related to the fact that �1(�2)
decreases (increases) with α.

The time-averaged DOS for the flat-band quasienergy
around the Dirac point is shown in Fig. 10. Since the regions
between two consecutive even-photon resonant points are
predominantly flat, a large peak appears at zero energy. The
dispersion at even-photon resonant points in the flat band lead
to the occurrence of additional peaks symmetrically placed
around around the peak at zero energy. A similar feature in
the DOS is repeated at energies equal to integral multiples of
photon energy. In the dice lattice, only central peaks are present
at Nh̄ω (N being the integer) due to the absence of dispersion
in the flat band.

V. SUMMARY AND CONCLUSION

We have investigated the Floquet quasienergy spectrum
numerically and analytically for the α-T3 lattice driven by
circularly polarized radiation. Exact analytical expressions of

FIG. 10. Time-averaged density of states of quasiflat band around
the Dirac point for α = 0.5.

075422-7



BASHAB DEY AND TARUN KANTI GHOSH PHYSICAL REVIEW B 98, 075422 (2018)

the quasienergy at the Dirac points for all values of α and field
strength are provided. The band gap at the Dirac point appears
due to the circularly polarized radiation for all values of α. The
quasienergy gap at the Dirac point decreases with the increase
of α. Within the rotating wave approximation, we are able to get
approximate expressions of quasienergy at single-photon and
multiphoton resonant points. Approximate results match very
well with the numerical results based on the Floquet method.
The expressions reveal that the quasienergy is directly related
to the Berry phase acquired during a cyclic motion driven by the
rotating electric field. The valley symmetry is broken due to the
different Berry phase for different valleys for 0 < α < 1. The
quasienergy flat band remains dispersionless in the presence
of radiation for the dice lattice. However, dispersive spikes
appear in and around the Dirac and even-photon resonant
points for 0 < α < 1. The mean energy is nonvanishing around
the single-photon resonance point for the dice lattice, unlike
α < 1. In contrast to graphene, we find that additional peaks
appear in the time-averaged density of states at the Dirac
point for 0 < α � 1. The pattern of the DOS near the single-
photon and two-photon resonant points varies significantly
with α.

Floquet-Bloch states on the surface of a topological in-
sulator have been observed using time- and angle-resolved
photoemission spectroscopy (TrARPES) [49]. There is a pos-
sibility that the quasienergy band structure of the α-T3 lattice
may be probed using TrARPES on subjecting the lattice to
intense microwave pulses perpendicular to the lattice plane.
The variation in quasienergy band gaps with α may be observed
by modulating the phase of one of the three counterpropagating
laser beams. Similarly, the quasienergy band structure for
α = 1/

√
3 may be verified by devising a suitable means to

irradiate Hg1−xCdxTe quantum wells. The radiation-dressed
band structure of such systems may open up doors for new
optoelectronic devices.
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APPENDIX: ANALYTICAL RESULTS WITHIN ROTATING
WAVE APPROXIMATION

In this Appendix, we shall derive analytical expressions of
the quasienergy branches within the rotating wave approxima-
tion [10]. The analytical expressions help us to understand the
Berry phase dependency of the quasienergy bands and band
gaps.

The time-periodic Hamiltonian Hμν (k, t ) can be trans-
formed in the basis formed by the eigenvectors of the

low-energy Hamiltonian H
μ
0 (k) with the help of the unitary

operator Ûk given by

Ûk= 1√
2

⎛
⎜⎝

μ cos φe−iμθk
√

2 sin φe−iμθk μ cos φe−iμθk

1 0 −1

μ sin φeiμθk −√
2 cos φeiμθk sin φeiμθk

⎞
⎟⎠.

The transformed Hamiltonian Û
†
kHμν (k, t )Ûk = H̃μν (k, t )

reads

H̃μν (k, t ) = h̄ω

[
vf k

ω
Sz + H̃intra (t ) + H̃inter (t )

]
, (A1)

where H̃intra (t ) = β(cos μθk cos ωt + μν sin μθk sin ωt )Sz,
with Sz being the z component of the spin-1 matrix and

H̃inter (t )= if (t )√
2

⎡
⎣ 0 sin 2φ

√
2μ cos 2φ

− sin 2φ 0 sin 2φ

−√
2μ cos 2φ − sin 2φ 0

⎤
⎦,

(A2)

where f (t ) = β(ν cos μθk sin ωt − μ sin μθk cos ωt ).
The Schrodinger equation is then given by{
i

ω
∂t −

[
vf k

ω
Sz + H̃intra (t ) + H̃inter (t )

]}
|ψη(k, t )〉 = 0.

(A3)

We solve the Schrodinger equation by omitting the inter-
band term H̃inter (t ) and get the following solutions:

∣∣ψ (0)
+1 (k, t )

〉 = e−ivf ktu(θk, t )

⎛
⎝1

0
0

⎞
⎠,

∣∣ψ (0)
−1 (k, t )

〉 = eivf ktu∗(θk, t )

⎛
⎝0

0
1

⎞
⎠,

∣∣ψ (0)
0 (k, t )

〉 =
⎛
⎝0

1
0

⎞
⎠,

(A4)

where u(θk, t ) = exp{iβ[− cos μθk sin ωt + μν sin μθk
(cos ωt − 1)]}. Note that u(θk, t ) is also a time-periodic
function. The quasienergy of ψ

(0)
(k,η)(t ) is exactly the same as

the zero-field case. It tells us that all the quasienergy gaps
appear due to the interband term H̃inter (t ).

Let the solution of Eq. (A3) be of the form

|ψη(k, t )〉 =
1∑

γ=−1

aη,γ (t )
∣∣ψ (0)

γ (k, t )
〉
.

We get

∂taη,1(t ) = ω√
2
{
√

2μ cos 2φ aη,−1(t )e2ivf kt [u∗(θk, t )]2 + sin 2φ eivf ktu∗(θk, t )aη,0(t )}f (t ), (A5)

∂t̄aη,0(t ) = ω√
2

[−aη,1(t )e−ivf ktu(θk, t ) + aη,−1(t )eivf ktu∗(θk, t )] sin 2φ f (t ), (A6)

∂t̄aη,−1(t ) = − ω√
2
{
√

2μ cos 2φ aη,1(t )e−2ivf kt [u(θk, t )]2 + sin 2φ e−ivf ktu(θk, t )aη,0(t )}f (t ). (A7)
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Taking (βω/
√

2)yl (θk ) and (βω/
√

2)zl (θk ) as the discrete Fourier transform of the periodic functions [u(θk, t )]2f (t ) and
u(θk, t )f (t ), respectively, we have

∂taη,1(t ) = βω

2

[√
2 cos 2φ aη,−1(t )

∞∑
l=−∞

y∗
l (θk )ei(2vf k−lω)t + sin 2φ aη,0(t )

∞∑
l=−∞

z∗
l (θk )ei(vf k−lω)t

]
, (A8)

∂taη,0(t ) = βω

2

[
−aη,1(t )

∞∑
l=−∞

zl (θk )e−i(vf k−lω)t + aη,−1(t )
∞∑

l=−∞
z∗
l (θk )ei(vf k−lω)t

]
sin 2φ, (A9)

∂taη,−1(t ) = −βω

2

[√
2 cos 2φ aη,1(t )

∞∑
l=−∞

yl (θk )e−i(2vf k−lω)t + sin 2φ aη,0(t )
∞∑

l=−∞
zl (θk )e−i(vf k−lω)t

]
. (A10)

Here,

zl (θk ) = 1√
2

[
u

(1)
l+1(θk )(−μ sin μθk + iν cos μθk )

−u
(1)
l−1(θk )(μ sin μθk + iν cos μθk )

]
(A11)

and

yl (θk ) = 1√
2

[
u

(2)
l+1(θk )(−μ sin μθk + iν cos μθk )

−u
(2)
l−1(θk )(μ sin μθk + iν cos μθk )

]
, (A12)

where u
(j )
l (θk ) with (j = 1, 2) is defined as

u
(j )
l (θk ) = 1

T

∫ T

0
[u(θk, t )]j e−ilωtdt. (A13)

The exact expressions of u
(1)
l (θk ) and u

(2)
l (θk ) are obtained as

u
(1)
l (θk ) = e−iμνβ sin μθkJl (2|p(θk )|)

[−p(θk )

|p(θk )|
]l

, (A14)

u
(2)
l (θk ) = e−i2μνβ sin μθkJl (2|q(θk )|)

[−q(θk )

|q(θk )|
]l

, (A15)

where Jl (x) is the lth-order Bessel function, p(θk ) =
β

2 (cos μθk − iμν sin μθk ), and q(θk ) = β(cos μθk −
iμν sin μθk ). It is not possible to solve Eqs. (A8)–(A10) in
closed analytical form. However, owing to the high frequency
of the radiation, the standard rotating wave approximation
(RWA) can be used to obtain closed-form expressions.

There are two frequency detuning terms, namely, δ1 =
2vf k − mω and δ2 = vf k − mω, due to the presence of an
additional dispersionless band. Near the resonance points,
(δ1,2 � 0), the momentum values km are such that the energy
difference between the bands equals m multiples of photon
energy h̄ω.

For even m (excluding 0), the terms ym(θk ) and zm/2(θk )
are retained in their respective series. But, for odd-integer
m, we see that retaining the mth term from the yl (θk ) series
allots vf k/ω an odd-integer value. So within RWA, all the
terms in the zl (θk ) series will be rapidly oscillating, allowing
us to discard this series altogether. Hence, for odd m, we
retain only ym(θk ). This leads to two distinct cases for even
and odd integers, each of which produces separate systems of
coupled differential equations for the determination of Floquet
quasienergies.

Case I. For the even-m case, Eqs. (A8)–(A10) become

∂taη,1(t ) = βω

2
[
√

2μ cos 2φ aη,−1(t )y∗
m(θk )eiδ1t

+ sin 2φ aη,0(t )z∗
m/2(θk )eiδ2t ], (A16)

∂taη,0(t ) = βω

2
[−aη,1(t )zm/2(θk )e−iδ2t

+ aη,−1(t )z∗
m/2(θk )eiδ2t ] sin 2φ, (A17)

∂taη,−1(t ) = −βω

2
[
√

2μ cos 2φ aη,1(t )ym(θk )e−iδ1t

+ sin 2φ aη,0(t )zm/2(θk )e−iδ2t ]. (A18)

Note that Eq. (A17) is redundant for the α = 0 case.
Equations (A16) and (A18) with α = 0 reproduce all the
approximate analytical results for graphene provided by Zhou
and Wu [10].

Furthermore, the above set of equations cannot be solved
analytically unless we solve it on exact resonance, i.e., δ1 =
δ2 = 0. On exact resonance condition, the approximate ex-
pressions of the quasienergies for 0 < α < 1 obtained from
Eqs. (A16)–(A18) are λ0 = 0 and

λ± = ± β√
2

√
cos2 2φ|ym(θk )|2 + sin2 2φ|zm/2(θk )|2.

(A19)

From the above expression, we see that the quasienergy is
proportional to the root mean modulus squared of the coupling
parameters ym(θk ) and zm/2(θk ) weighted by terms dependent
on the Berry phase (∼ cos 2φ) of the system. The sum of the
weights is unity for all α. Since the Berry phase varies smoothly
from π to 0 as α goes 0 to 1, the weight of ym(θk ) decreases
while that of zm/2(θk ) increases with α. The quasieigenenergy
for special cases such as α = 0 and α = 1 can be obtained
easily. For α = 0, λ± = ± β√

2
|ym(θk )|. This is the same result

as obtained for monolayer graphene [10]. On the other hand,
for the dice lattice (α = 1), we get λ± = ± β√

2
|zm/2(θk )| and

λ0 = 0. For the dice lattice, the quasienergy gap between η =
±1 at the resonance point is

�m(θk ) =
√

2β|zm/2(θk )|. (A20)
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The magnitude of the gap in graphene and the dice lattice
depends on the effective coupling parameters |ym(θk )| and
|zm/2(θk )|, respectively. The behavior of the gap in graphene
and the dice lattice is quite different.

Case II. For the odd-m case, Eqs. (A8)–(A10) can be
approximated as

∂taη,1(t ) ≈ βωμ√
2

cos 2φ aη,−1(t )y∗
m(θk )eiδ1t , (A21)

∂taη,0(t ) ≈ 0, (A22)

∂taη,−1(t ) ≈ −βωμ√
2

cos 2φ aη,1(t )ym(θk )e−iδ1t . (A23)

Thus, for odd m, we obtain a simplified expression of
quasienergy for a given α,

λ± ≈ ± β√
2
|ym(θk )|

(
1 − α2

1 + α2

)
, (A24)

and λ0 = 0. Interestingly, it shows that the gap with odd values
of m closes in the dice lattice, which is in sharp contrast with
the graphene case. Although Eq. (A24) shows that �m = 0 for
α = 1, this is not the case. We will get a small nonzero value of
�m on taking into account the higher-order contribution from
Eqs. (A8)–(A10).

The quasienergy gap is essentially determined by the Berry
phase and two coupling parameters |ym(θk )| and |zm/2(θk )|.
The expressions of the coupling parameters can be simplified
further by setting θk = 0 since the quasienergy spectrum is
isotropic for all values of α for circularly polarized light. On
substitution of θk = 0 into Eqs. (A11) and (A12), we get

yl (0) = iν√
2

(−1)l[Jl−1(2β ) − Jl+1(2β )], (A25)

zl (0) = iν√
2

(−1)l[Jl−1(β ) − Jl+1(β )]. (A26)

Thus, the approximate forms of the quasienergies for α = 0
(for any integer m) and α = 1 (for even m) turn out to be

(λ±)α=0 = ±β

2
|Jm+1(2β ) − Jm−1(2β )|, (A27)

(λ±)α=1 = ±β

2
|Jm/2+1(β ) − Jm/2−1(β )|. (A28)

For the weak field (β 
 1), the asymptotic forms of the
quasienergy gaps are obtained from the above expressions as

(�m)α=0 ∼ βm

(m − 1)!
and (�m)α=1 ∼ 2(β/2)m/2

(m/2 − 1)!
.

(A29)
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