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Thermal and dynamical properties of optical and transport conductivities in doped buckled honeycomb lattices
are studied for various doping densities and band gaps. At finite temperatures, a thermally convoluted polarization
function is calculated by employing analytically derived temperature-dependent chemical potentials. With this
finite-temperature polarization function, the optical conductivity, originating from an induced polarization current,
is obtained in the long-wavelength limit, where both steps and negative peaks are shown as a function of
frequency in its real and imaginary parts, respectively. Such spectral features can be used for analyzing plasmon
dampings in silicene and ultrafast light modulations based on field-tunable band gaps. Additionally, in the
presence of static screening, derived with the aid of the polarization function, for impurity elastic scattering,
the transport conductivities are calculated for different doping densities and band gaps within the second-order
Born approximation. The enhanced transport conductivity with a smaller band gap at intermediate temperatures
will lead to high-mobility electron transistors for ultrafast electronics.
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I. INTRODUCTION

The successful mechanical exfoliation of group-IV and -V
layered materials has spurred a substantial amount of interest in
two-dimensional (2D) materials in condensed matter physics
(see Ref. [1] and other references therein). Their planar or
buckled structures, lattice asymmetry, nanoscale thickness, as
well as their stacking configurations cause these 2D materials
to possess some unusual physical and chemical properties.
This causes some of them to have interesting electronic,
optoelectronic, and spintronic device applications. Other buck-
led group-IV hexagonal 2D lattices include germanene [2–8]
and others. Free-standing germanium allotropes had been
previously predicted to be stable, low-buckled honeycomb
structures with a much larger band gap (∼23.9 meV) opened
by spin-orbit coupling (SOC). The experimentally determined
linear V-shaped density of states (DoS) provides strong verifi-
cation for a gapped Dirac dispersion relation in germanene [9].

The Hamiltonians used to model these buckled-lattice sys-
tems need to take into account the effect of SOC and interlayer
atomic interactions. While graphene and silicene are two repre-
sentatives of these established 2D materials, sharing many sim-
ilar electronic properties due to a hexagonal lattice [10–13], the
unique silicon-based 2D Kane-Mele topological insulator [14],
however, has a relatively large spin-orbit band gap (∼1.55 eV)
which could be nearly doubled under an external strain [15,16].
The band gap is associated with sublattice asymmetry and leads
to a tunable energy band structure in the presence of an external
electric field [14,15,17–24], enabling potential applications
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to ultrafast light modulation with a high extinction ratio for
ultrawideband digital communications. All these effects can
be attributed directly to a finite out-of-plane buckling caused
by a larger ionic radius of a silicon atom compared to carbon
and by the sp3 hybridization of electronic orbitals [17,21] at
the same time. These interesting band-gap properties also offer
tremendous advantages to controlling a current flow because
electrons could be effectively confined by electrostatic gate
voltages yielding variable potential barriers. More importantly,
these silicene-based devices are compatible with silicon wafer
processing in manufacturing silicon-based integrated circuits.
Compelling experimental evidence for the existence of such
graphene-like lattices while synthesizing epitaxial silicene
sheets on silver is shown and discussed in Ref. [15].

There have been a number of key reports on silicene’s ther-
mal conductivity and transport coefficients [25–27], molecular
dynamics studies [28], first-principle calculations of electron-
phonon coupling and its effects on electron mobility [29],
unusual thermoelectric behavior in Rashba spintronic materials
[30], inhomogeneous quantum critical fluids [31], effects of
anisotropy in phosphorenes [32], and detailed Monte Carlo
studies [33].

The works in Refs. [34,35] presented detailed fundamental
studies of ac and dc transport in buckled honeycomb lattices,
including the calculations of spin and charge currents for
individual valleys, investigation of the thermospin effect, and
modification of the Kubo formalism by adding an effective
magnetization to their model. It has been shown that the spin-
and valley-Hall conductivities exhibit a strong temperature de-
pendence. Another theoretical paper [36] on quantum spin- and
valley-Hall effects was devoted to a spin-separation process
by the valley-Hall effect in the absence of a magnetic field,
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which could be important for potential device applications. A
study on optical response of silicene and other low-buckled
structures under electron doping was reported in Ref. [37];
it demonstrated a strong dependence of its conductivity on a
field-induced band gap.

In a pioneering work [38], analytic calculation for the con-
ductivity of free-standing graphene in the frequency and wave
vector domains was performed at various temperatures. It was
demonstrated that, for each chosen temperature range, a simple
analytical expression for the conductivity could be derived
[39]. At low enough temperatures and carrier concentrations,
the interband contribution is shown to play a leading role.

The semiclassical Boltzmann transport theory has been
extensively used for hot electrons in semiconductor quantum-
wire systems beyond the relaxation-time approximation
[40–42]. Boltzmann transport in the presence of scattering
by ionized impurities has been investigated thoroughly for
graphene for a low bias field [43–45], demonstrating agree-
ment between theory and available experimental data [46,47].
Carrier transport has also been studied in bilayer graphene [48]
and in low-density silicon inversion layers [49].

However, the combined effects due to doping and finite
temperatures on the electron transport in buckled honeycomb
lattices with two diverse energy subbands and band gaps
have not been explored extensively and will be chosen as the
principal focus here.

The rest of our paper is organized as follows. We first briefly
introduce the low-energy Hamiltonian and obtain associated
electronic states in Sec. II for buckled honeycomb lattices. For
doped silicene, we study the chemical potential at an arbitrary
temperature using linear DoS for a wide class of gapped Dirac
structures [50]. Applying the random-phase approximation
(RPA), we further compute in Sec. III the dynamic polarization
function and discuss its limiting behaviors at either small
wave vectors or low frequencies, which become crucial in
determining optical [51] and transport [52] conductivities,
respectively. In Sec. IV, both the optical- and transport-
conductivity calculations are performed, along with displayed
numerical results, in the long-wavelength limit for incident
light and within the screened second-order Born approximation
for elastic scattering. For silicene, there exist two inequivalent
subbands and both intra- and intersubband impurity scatterings
are considered for energy-relaxation time of doped electrons.
Finally, our concluding remarks providing an overview are
provided in Sec. V.

II. LOW-ENERGY ELECTRONIC STATES
AND CHEMICAL POTENTIAL

We begin this section by exploiting previously reported
band-structure models for low-energy electronic states of
buckled honeycomb lattices. We first consider silicene as
an example, but keep in mind that similar properties—e.g.,
constant internal spin-orbit band gap (�SO) and field (E⊥)
dependent sublattice-asymmetry band gap �z ∼ E⊥, as well
as two inequivalent subbands—could also be applied to ger-
manene.

The low-energy dispersion relations for a buckled honey-
comb lattice, obtained from a block-diagonal Hammiltonian

matrix [17,24], have been shown to be

ε
γ

ξ,σ (k) = γ

√
(ξσ�z − �SO )2 + (h̄vF k)2 ≡ ε

γ

β (k), (1)

where k = (kx, ky ) is a 2D wave vector of electrons, vF the
Fermi velocity, σ = ±1 a real spin index, and ξ = ±1 a valley
index. From these dispersions we obtain two symmetrical
subbands for electrons (γ = +1) and holes (γ = −1), respec-
tively. Here, each subband in Eq. (1) is specified by its two
gap parameters �〈,〉 = |�SO ∓ �z|, depending only on the
composite indexes β = ξσ . This composite index β will be
used throughout this paper.

It is evident that both band gaps �β = �〈,〉 depend on E⊥
through �z. By increasing E⊥ from zero, �< is reduced, which
corresponds to a topological-insulator state for �z < �SO .
When �z = �SO , we find �< = 0 for the lower gap. This
unique state is referred to as the valley-spin polarized metal
(VSPM) [17,24]. If �z > �SO , we return to the standard
band-insulator (BI) phase.

In performing numerical calculations, energies and frequen-
cies will be given in units of an energy scale E0 = 5.22 meV,
which corresponds to a gapless-graphene electron doping
density n0 = 1 × 1011 cm−2. Here, the wave number is in units
of k0 = E0/h̄vF , and the Fermi energyEF = E0 will be always
assumed unless it is stated in figure captions for cases with
varied EF .

The silicene band structure in Eq. (1) gives rise to the
following piecewise linear density of states (DoS) [35,37,53]:

ρd (ε) = ε

π (h̄vF )2

∑
γ=±1

∑
β=〈,〉

�(ε/γ − �β ), (2)

where �(x) is the Heaviside step function, accounting for
unavailable electronic states within the lower gap, as illustrated
schematically in Fig. 6(a). Equation (2) can be employed to
determine EF at zero temperature (T = 0) with a fixed carrier
density nc, leading to [50,54]

2π (h̄vF )2 nc =
{
E2

F − �2
< for EF < �>,

2E2
F − (�2

< + �2
>) for EF > �>.

(3)
Here, the upper subband is occupied only for nc �
2�SO�z/π h̄2v2

F , which corresponds to the second line in
Eq. (3).

Moreover, the T -dependent chemical potential μT , which
equals to EF at T = 0, can be decided from the conservation
of carrier numbers in thermal-equilibrium states. The details
about the derivation of μT can be found from Ref. [50], which
yields [50,53,55]

π

(
h̄vF

kBT

)2

nc =
∑
β=〈,〉

∑
γ=±1

[
−Li 2

(−e
γμT −�β

kB T
)

+ �β

kBT
ln
(
1 + e

γμT −�β

kB T
)]

γ, (4)

where Li2(x) is a polylogarithm function, and nc is related to
EF by Eq. (3). From Eq. (4) we find that μT depends on both
T and EF , as shown in Fig. 1, and the dependence is controlled
by energy gaps �< and �>. Furthermore, we find significant
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FIG. 1. Silicene μT dependence on T and EF . Panel (a) shows μT

as functions of kBT for EF /E0 = 1, �</E0 = 0.6, and �>/E0 = 0.6
(red solid curve), 0.7 (black short-dashed), 0.8 (blue dash-dotted), 0.9
(green dashed). Plot (b) displays μT as functions of EF for kBT /E0 =
2 and kBT /E0 = 0.5 (inset). Here, colors and types of various curves
for different �β are defined in the same way as in (a).

difference in μT at low and intermediate T . For kBT � EF ,
Eq. (4) reduces to previous approximate results [56,57].

III. OPTICAL-POLARIZATION FUNCTION

We now turn our attention to an investigation of the dynam-
ical polarization function �T (q, ω | μT ,�β ) for n-doped sil-
icene at arbitrary temperature. The function �T (q, ω | μT ,�β )
is recognized as one of the most important quantities in
characterizing optical properties of an electronic system. In
order to account for screening effect on a Coulomb potential
between two electrons, we use a dielectric function εT (q, ω),
which, under the random-phase approximation (RPA), takes
the form

εT (q, ω) = 1 − v(q ) �T (q, ω | μT ,�β ), (5)

where v(q ) = 2πe2/εsq is the 2D Fourier-transformed
Coulomb potential, and εs = 4πε0εb with εb as the background
dielectric constant in which the 2D material is embedded. In
Eq. (5), zeros of εT (q, ω) determine the dispersion ωpl (q )
of plasmon excitations [58,59]. For silicene, these plasmon
modes become spin and valley polarized and they also rely
on an external electric field [60]. The full optical-polarization
function is a sum [24] of two results for gapped graphene [59],

�T (q, ω | μT ) =
∑

β

�T (q, ω | μT ,�β ), (6)

which depends on μT , �<, and �>.
In the one-loop approximation, the dynamical polarization

function in Eq. (6) at finite T is given by

�T (q, ω | μT ,�β )

=
∑

γ,γ ′=±1

∫
d2k
2π2

Fγ,γ ′ (k, q | �β )

× f0
(
ε

γ

β (k)
) − f0

(
ε

γ ′
β (|k + q|))

h̄ω + i0+ + ε
γ

β (k) − ε
γ ′
β (|k + q|)

, (7)

where the electron transitions between different spins or val-
leys are excluded, f0(x) = {1 + exp[(x − μT )/kBT ]}−1 is the
Fermi functions for thermal-equilibrium electrons and holes,
and it reduces to Heaviside function �(EF − ε

γ

β (k)) at T = 0.
Meanwhile, the prefactor Fγ,γ ′ (k, q | �β ) in Eq. (7) represents
an overlap of the electron (γ = +1) and hole (γ = −1) wave

FIG. 2. Im[�T (q, ω | μT , �β )] (in units of k2
0/E0) for silicene

with �SO/E0 = 0.6, �z/E0 = 0.2 and various values of nc. Panels
(a)-(c) present h̄ω dependence for q = 0.8 k0 (a), 1.5 k0 (b) and (c).
Different curves in (a) and (b) are associated with EF /E0 = 1, and
kBT /E0 = 0.05 (red solid), 0.1 (black dashed), 0.25 (blue dash-
dotted), 0.35 (green dashed). Panel (c) presents similar results for
kBT /E0 = 0.1, and EF /E0 = 1 (red solid), 1.2 (black short-dashed),
1.5 (blue dash-dotted), 1.7 (green dashed). Plot (d) shows kBT

dependence with EF /E0 = 1, q = 1.4 k0, and h̄ω/E0 = 1.5 (red
solid), 1.7 (black short-dash), 2 (blue dash-dotted), 2.5 (green dashed)
for various curves.

functions of the same subband (fixed β for the same spin and
valley) at two different wave vectors k and k + q, i.e.,

2Fγ,γ ′ (k, q | �β ) = 1 + γ γ ′ (h̄vF )2 k · (k + q ) + �2
β∣∣εγ

β (k) ε
γ

β (|k + q|)∣∣ . (8)

Here, no valley or spin change under optical excitations is
allowed so that only one index β occurs in Eq. (6), different
from the summation over electron/hole indexes γ and γ ′ in
Eq. (7) for pseudospins.

For ease of computation, instead of using Eq. (7) directly,
we utilize a thermal-convolution technique [61] for T > 0
from the zero-T polarization function �(0)(q, ω | EF ,�β ).
Compared to Eq. (7), this approach has an advantage of
dealing with a known analytic expression [24,58,59,62] for
�(0)(q, ω | EF ,�β ). This thermal convolution will be done for
all accessible frequencies ω and wave numbers q, including the
static and long-wavelength limits.

The imaginary part of �T (q, ω | μT ,�β ) (associated with
Landau damping) as functions of ω and T for various nc (re-
lated to EF ) and T is presented in Fig. 2. The plasmon Landau
damping has a resonance for fixed q = 0.8k0 in (a), which
becomes more significant with increasing T . In comparison
with (a), a high-frequency shoulder-like feature develops as
q = 1.5 k0 in (b). As doping density nc (or EF ) is increased
in (c) with q = 1.5 k0 and kBT /E0 = 0.1, the resonance in
Landau damping is greatly enhanced and shifted to higher
frequencies. However, for nonresonant Landau damping as
a function of kBT in (d) with EF /E0 = 1.0 and q = 1.4 k0,
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FIG. 3. Re[�T (q, ω | μT , �β )] (in units of k2
0/E0) for silicene

with �SO/E0 = 0.6, �z/E0 = 0.2, and EF /E0 = 1. Panels (a) and
(b) show h̄ω dependence for various curves with q/k0 = 0.05 (red
solid), 0.1 (black short-dashed), 0.2 (blue dash-dotted), 0.3 (green
dashed), 0.4 (orange solid). Plots (c) and (d) demonstrate q depen-
dence of curves with relatively small h̄ω/E0 = 0.05 (red solid), 0.1
(black short-dashed), 0.2 (blue dash-dotted), 0.3 (green dashed). In
addition, kBT /E0 = 0.05 in (a) and (c) while kBT /E0 = 0.5 in (b)
and (d).

its reduction with T becomes less and less significant with
increasing ω.

On the other hand, the real part of �T (q, ω | μT ,�β ) as
functions of ω and q for different fixed q and ω values
are presented in Fig. 3. At kBT /E0 = 0.05, we find from
(a) that the plasmon energy is pushed up by increase of q. This
enhancement of plasmon energy with q (or the group velocity)
becomes larger at a relatively high temperature kBT /E0 = 0.5
in (b). Similar increases of plasmon wave number can also be
seen from (c) and (d) as the frequency ω goes up at both low
and intermediate T , respectively.

IV. CONDUCTIVITIES

We now further proceed to conductivities for doped sil-
icene by using the obtained T and EF dependent optical-
polarization function in Sec. III. We will mainly focus on
optical conductivity, which is related to polarization function
in the long-wavelength limit, as well as the transport con-
ductivity, which is calculated based on semiclassical Boltz-
mann theory including the polarization function in the static
limit.

A. Optical conductivity

The optical conductivity, which connects the polarization-
current density (per atomic-layer thickness) to the incident
electromagnetic field with various frequencies due to light-
induced density fluctuations (mostly direct interband opti-
cal transitions of electrons), is often used in characterizing
material optical properties, e.g., absorptions, transmissions,
and reflections. For graphene, these optical properties were
examined in both visible and infrared frequency ranges. In the

former case, graphene transmittance was predicted [63–65]
to be independent of light frequency ω, and it was con-
firmed [66] by directly measuring the optical conductivity,
reflectivity, and transmission for photon energies exceeding
200 meV. The calculations of graphene optical conductivity in
the visible range using the next-nearest-neighbor tight-binding
model justified the Dirac-cone approximations well above the
normally accepted energy range. Applying the Dirac-cone
approximation, we have shown [67] that the induced optical
polarization in graphene affects the hybridization of radiative
and evanescent electromagnetic fields, which results in local-
ized polarization fields along with a modification of an incident
surface plasmon-polariton field. Studies of Dirac quasiparticle
transport in graphene under a magnetic field, e.g., Hall and
optical conductivities, were reported in Ref. [68]. Additionally,
a generalized model for the nonlinear optical conductivity
of generic two-band systems (gapped or gapless graphene)
demonstrated that such nonlinearities can be controlled by a
single dimensionless parameter proportional to the incident-
field strength [69].

The general relation between the optical conductivity and
optical-polarization function was discussed by us before [51].
In the long-wavelength limit (q → 0), an incident electro-
magnetic field can be treated as a spatially uniform one. In
the following, we present a detailed study on the dependence
of optical conductivity on T , EF , and �β in silicene. Under
the long-wavelength limit, the optical conductivity for a weak
incident light is simply related to the dynamical polarization
function through [70,71]

σ
(T )
O (ω | μT ,�β ) = iω e2 lim

q→0

�T (q, ω | μT ,�β )

q2
. (9)

Here, it is important to point out that �T (q, ω | μT ,�β ) ∼
q2 as q → 0 for all 2D systems, regardless of the band
gaps [59] and temperatures [54,57,72]. Therefore, the optical
conductivity in Eq. (9) becomes independent of q. Meanwhile,
such a limiting behavior in �T (q, ω | μT ,�β ) also contributes
a ∼√

q dependence to the plasmon dispersion relation.
By starting the case with T = 0, the polarization function

for q → 0 is given explicitly by [58,59,72]

Re[�(0)(q, ω | EF ,�β )]

= q2

4πh̄ω

∑
β=±1

{
4EF

h̄ω

[
1 −

(
�β

EF

)2
]

+
[

1 +
(

2�β

h̄ω

)2
]

ln

∣∣∣∣2EF − h̄ω

2EF + h̄ω

∣∣∣∣
}

,

Im[�(0)(q, ω | EF ,�β )]

= − q2

4h̄ω
�(h̄ω − 2EF )

∑
β=±1

[
1 +

(
2�β

h̄ω

)2
]
, (10)

where the logarithm term in Re[�(0)(q, ω | EF ,�β )] has
a negligible contribution to the undamped plasmon dis-
persion relation for h̄ω � EF and it is often neglected
in previous studies. Equation (10) leads to the so-
called absorption threshold [63–65] defined as ω0 ∼ 2EF /h̄
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under which Im[�(0)(q, ω | EF ,�β )] = 0, and it is indepen-
dent of �β . However, this logarithm term can still signif-
icantly affect Re[�(0)(q, ω | EF ,�β )] above this absorption
threshold.

From Eq. (9) we know that the real (imaginary) part of
σ

(T )
O (ω | μT ,�β ) is related to the imaginary (real) part of

�T (q, ω | μT ,�β ). Using Eq. (10) we find for T = 0

Im
[
σ

(0)
O (ω | EF ,�β )

]
= e2

4πh̄

∑
β=±1

{
4EF

h̄ω

[
1 −

(
�β

EF

)2
]

+
[

1 +
(

2�β

h̄ω

)2
]

ln

∣∣∣∣2EF − h̄ω

2EF + h̄ω

∣∣∣∣
}

,

Re
[
σ

(0)
O (ω | EF ,�β )

]
= e2

4h̄
�(h̄ω − 2EF )

∑
β=±1

[
1 +

(
2�β

h̄ω

)2
]
, (11)

where Re[σ (0)
O (ω | EF ,�β )] = 0 as long as h̄ω < 2EF , which

is referred to as a state-blocking effect [66,68,69] due to
Pauli exclusions and is attributed to the step-like distribution
function at T = 0 in Eq. (7). At finite T , however, the step-like
distribution function in Eq. (7) can still be approximated by
[63,73]

�
(
EF − ε

γ

β (k)
) =⇒ 1

2

{
1 − tanh

[
ε

γ

β (k) − μT

2kBT

]}
. (12)

Consequently, the ω dependence in Re[σ (T )
O (ω | μT ,�β )] will

be smooth and nonzero. Furthermore, we know from Eqs. (10)
and (12) that Im[�T (q, ω | μT ,�β )] is nonzero at finite T with
a thermal tail. This leads to a nonzero Re[σ (T )

O (ω | μT ,�β )] as
a function of ω. We further expect that Re[σ (T )

O (ω | μT ,�β )]
will depend on T substantially since Im[�T (q, ω | μT ,�β )]
decreases as 1/T in the high-T limit for all q values.

Making use of the results in Ref. [57], for gapless (�β = 0)
but doped (EF > 0) graphene we obtain a simple result for
optical conductivity in the high-T limit (kBT  EF and h̄ω):

σ
(T )
O (ω | μT ,�β = 0)

� e2

h̄

{
h̄ω

16kBT

[
1 − 1

3

(
h̄ω

4kBT

)2
]

+ i
2 ln 2 kBT

πh̄ω

[
1 + 2 ln 2

(
EF

4 ln 2 kBT

)4
]}

, (13)

where we have already employed the relation [57] μT ≈
(E2

F /4 ln 2 kBT ) for high T . It is evident from Eq. (13) that
Im[σ (T )

O (ω | μT ,�β = 0)] is large but only weakly depends
on EF . Meanwhile, Re[σ (T )

O (ω | μT ,�β = 0)] is small and
decreases as 1/T within this high-T limit.

On the other hand, for gapped (�β = �0) but undoped
(EF = 0) graphene at high T (kBT  �0 and h̄ω), we find

FIG. 4. σ
(T )
O (ω | μT ) (in units of e2/h̄) of silicene from Eq. (15) in

the low-T regime. Panels (a), (c) show its real part as function of h̄ω,
while panels (b), (d) give its imaginary part. Here, we take T = 0 for
(a), (b) but kBT /E0 = 0.3 in (c), (d). Different curves correspond
to �SO/E0 = 0.6, �z/E0 = 0.2, EF /E0 = 1 (red); �SO = �z =
0, EF /E0 = 1 (black); �SO/E0 = 0.9, �z/E0 = 0.3, EF /E0 =
1.5 (blue); �SO = �z = 0, EF /E0 = 1.5 (green); �SO/E0 = 1.32,
�z/E0 = 0.44, EF /E0 = 2.2 (orange).

the optical conductivity

Re
[
σ

(T )
O (ω|μT ,�0)

]
EF =0 = e2

16h̄

(
h̄ω

kBT

)(
1 − �0

h̄ω

)
,

Im
[
σ

(T )
O (ω|μT ,�0)

]
EF =0 = 4e2

πh̄

(
kBT

h̄ω

){
2 ln 2 −

(
�0

kBT

)2

×
[
C0 − ln

(
�0

2kBT

)]}
, (14)

where C0 � 0.79 is a constant. It is interesting to note from
Eq. (14) that the real and imaginary parts of σ

(T )
O (ω | μT ,�0)

for EF = 0 acquire an inverse dependence on h̄ω/kBT . Again,
Im[σ (T )

O (ω | μT ,�0)] only weakly depends on �0. If T is really
high, the thermal population of the upper Dirac cone cannot
be ignored even for EF = 0. In this case, the factor kBT /h̄ω

in Eq. (14) plays a roel similar to that of EF /h̄ω in Eq. (11)
for the imaginary part of the optical conductivity at T = 0.

Finally, for silicene with two inequivalent band gaps �β =
�>,<, the corresponding result is a summation over these two
band gaps, yielding

σ
(T )
O (ω | μT ) =

∑
β=±1

σ
(T )
O (ω | μT ,�β ). (15)

Here, no analytical results for optical conductivity at inter-
mediate T can be obtained. For this situation, we present our
numerical results in Figs. 4 and 5.

The real and imaginary parts of �T (q, ω | μT ) are con-
nected by the Kramers-Kronig relations, implying similar con-
nections between the real and imaginary parts of σ

(T )
O (ω | μT ).

Specifically, the discontinuities in Re[σ (T )
O (ω | μT )] can be

related to the negative peaks in Im[σ (T )
O (ω | μT )], as shown
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FIG. 5. σ
(T )
O (ω | μT ) (in units of e2/h̄) of silicene at intermediate

T . Panels (a), (c) display its real part as function of h̄ω, while panels
(b), (d) present its imaginary part. Here, we choose kBT /E0 = 0.7
for (a), (b) while kBT /E0 = 1 in (c), (d). Various curves are related
to �SO/E0 = 0.6, �z/E0 = 0.2, EF /E0 = 1 (red); �SO = �z =
0, EF /E0 = 1 (black); �SO/E0 = 0.9, �z/E0 = 0.3, EF /E0 =
1.5 (blue); �SO = �z = 0, EF /E0 = 1.5 (green); �SO/E0 = 1.32,
�z/E0 = 0.44, EF /E0 = 2.2 (orange).

in Figs. 4(a) and 4(b) for T = 0. Moreover, the peak positions
depend on T , as seen from Figs. 4(b) and 4(d), mainly due to
a nontrivial T dependence of μT (see the labels for calculated
μT in Figs. 4 and 5). In fact, the steps or peaks at T = 0
are found exactly at the absorption threshold h̄ω = 2EF . For
high T , however, the absorption threshold for graphene is
approximated by [63,65] (h̄ω − 2EF )2 =⇒ (h̄ω − 2μT )2 +
(2kBT )2, where μT decreases with T . Consequently, the peak
positions will not simply follow h̄ω = 2μT at finite T .

As seen from Fig. 4, the ω dependence in σ
(T )
O (ω | μT ) at

low T is similar to the case of T = 0, where σ
(0)
O (ω | EF )

can be analytically calculated based on the derived expres-
sions for �(0)(q, ω | EF ) in Ref. [24]. At kBT /E0 = 0.3,
our systems with zero band gaps show no negative peaks
in Im[σ (T )

O (ω | μT )], and Re[σ (T )
O (ω | μT )] only displays a

smooth and monotonic increase (no discontinuities) with ω

up to 1/4. For intermediate T , as exhibited in Fig. 5, two
steps (rising above 1/4) and double peaks appear clearly in
Re[σ (T )

O (ω | μT )] and Im[σ (T )
O (ω | μT )], respectively, due to the

presence of two different continua for interband particle-hole
modes (from different band gaps�<,�>). Even for kBT /E0 =
1, two negative peaks and jumps are still visible in Figs. 5(c)
and 5(d).

B. Transport conductivity

We now turn to calculating the transport conductivity in
doped silicene and gapped graphene in the presence of an
elastic scattering of electrons by ionized impurities screened by
a temperature-dependent dielectric function εT (q ) determined
from Eq. (5) under the static limit ω → 0. Based on the
Boltzmann transport equation, effects of elastic, inelastic,
and electron-pair scatterings were extensively studied by us

in semiconductors [40–42] and graphene [52] beyond the
relaxation-time approximation [74] for a strong bias field. For
a weak bias field, the Boltzmann theory was used in Ref. [56]
for the transport conductivity of gapless graphene, showing
a nonmonotonic temperature dependence. In the presence of
band gaps, however, the nontrivial T dependence in μT must
be taken into account, as discussed in Sec. II.

When the external bias voltage is very low in comparison
with EF , the general Boltzmann transport equation can be
simplified by the relaxation-time approximation for particle
collisions. Consequently, we obtain the transport conductivity
for γ = γ ′ = +1 from

σ
(T )
B (μT |�0) = e2v2

F

2

∫ ∞

�0

dε

[
−∂f0(ε)

∂ε

]

× ρd (ε)τ (T )
e (ε)

(
1 − �2

0

ε2

)
, (16)

where ρd (ε) is the DoS only for γ = +1, τ (T )
e (ε) is the energy-

relaxation time for driven carriers, and the factor (1 − �2
0/ε

2)
represents the reduction of group velocity by a band gap.
For electron doping with EF > 0 in gapped graphene, the
integration in Eq. (16) is only carried out over the conduc-
tion band energies. At T = 0, we have [−∂f0(ε)/∂ε] =⇒
δ(ε − EF ) and EF > �0. For low temperatures kBT � EF ,
[−∂f0(ε)/∂ε] can still be approximated by δ(ε − EF ), and
therefore only electrons around the Fermi energy EF will
contribute to conduction. For high temperatures kBT  EF ,
on the other hand, [−∂f0(ε)/∂ε] becomes nonzero for all
energies outside the band gap region ε > �0. This situation is
illustrated in Fig. 6(a) for silicene with two inequivalent band
gaps �β = �> or �<. Consequently, we expect that a large
�β value always reduces conductivities due to a smaller group
velocity and a reduced DoS for contributions of low-energy
electrons at high T , as seen from Fig. 6(b).

An important quantity in our conductivity calculation is the
energy-relaxation time τ (T )

e (ε|�β ) calculated by the second-
order Born approximation [56,75,76] for γ = +1 as

1

τ
(T )
e (ε|�β )

= 2πNi

h̄

∫
d2k′

(2π )2

∣∣∣∣ v(|k′ − k|)
εT (|k′ − k|)

∣∣∣∣
2

δ
(
ε

γ

β (k) − ε
γ

β (k′)
)

× Fγ,γ (k, k′ − k | �β )(1 − cos θk,k′ ), (17)

where Ni represents the impurity areal density, the intervalley
impurity scattering is ignored due to very large momentum
transfer, the energy-conservation constraint for elastic impurity
scattering is employed, i.e., γ = γ ′ = 1, θk,k′ is the elastic
scattering angle [74], and εT (q ) ≡ εT (q, ω = 0) given by
Eq. (5). The overlap factor Fγ,γ ′ (k, q|�β ) is determined
from Eq. (21), and the angular dependence of the factor
F1,1(k, q|�0) (1 − cos θ ) in Eq. (17) for k = k0 and different
values of �0 is displayed in Fig. 6(c), from which we find
that the results for two-dimensional electron gas (2DEG)
and gapless monolayer graphene are quite different. The full
backscattering (θ = π ) becomes very strong for 2DEG but
vanishes for gapless graphene. A finite �0 value lifts the full
backscattering from zero in gapped graphene. The increase
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FIG. 6. Panel (a) shows the overlay of the two-step DoS ρd (E) (in units of k2
0/E0) of silicene with ∂f0(E)/∂E (in units of E−1

0 ) as functions of
energy E at various T . Plot (b) presents the transport conductivity σ

(T )
B (μT |�β ) (in units of e2/h̄) as functions of kBT for different combinations

of EF /E0, �</E0, and �>/E0. Plot (c) displays the dimensionless factor F1,1(k, q|�0 ) (1 − cos θ ) as functions of scattering angle θ with
fixed k = k0 and different values of �0, where |q| = 2k sin(θ/2) and the result for 2DEG is also shown for a comparison.

of �0 enhances the peak strength, pushes the peak θ value
towards a larger one, and gradually enhances the scattering
rate in Eq. (17). As a result, the energy-relaxation time τ (T )

e (ε)
in Eq. (16) decreases with �0, which provides an additional
mechanism for a decreasing transport conductivity besides the
reduced group velocity and DoS.

If graphene is subjected to an irradiation of circularly po-
larized light [77], the opened energy gap is found also leading
to a monotonic decrease of the transport conductivity [78] by
the ratio � (E2

F − �2
0)/(E2

F + 3�2
0), which is attributed to the

decrease of the Fermi velocity from vF for gapless graphene
to vF [1 − (�0/EF )2]1/2 in the presence of a band gap �0.

Equation (17) could be further simplified due to the pres-
ence of the delta function for energy conservation in elastic
scattering. Let us first consider gapped graphene with fourfold-
degenerate energy subbands and a single, finite gap �0. One
way is to perform the radial integration first with respect to k′
by using the delta function, which leads to

1

τ
(T )
e (ε|�0)

= 2Ni

πh̄

√
ε2
k −�2

0

(h̄vF )2

∫ 1

0
dξ

ξ 2√
1−ξ 2

×
{

1 + �2
0 + (1−2ξ 2)

(
ε2
k −�2

0

)
ε2
k

}

×
(

kξ

απ
−�T (2ξk, ω = 0 | μT ,�0)

)−2

, (18)

where ε ≡ εk =
√

(h̄vF k)2 + �2
0 � �0, and the expression in

Eq. (21) for F1,1(k, k′ − k|�0) has been employed. Alterna-
tively, we can also calculate first the angular θ integration with
respect to k′ under the condition |k| = |k′|, yielding

1

τ
(T )
e (ε|�0)

= Ni

πh̄

ε

(h̄vF )2

∫ 2k

0

dq

k

(q

k

)2
[

1 −
( q

2k

)2
]−1/2

×
[

1 + �2
0 + (h̄vF k)2 (1 − 2q2/k2)

�2
0 + (h̄vF k)2

]

×
[

q

2πα
− �T (q, ω = 0|μT ,�0)

]−2

, (19)

where q = 2k sin(θ/2) and k =
√

ε2 − �2
0/(h̄vF ).

Silicene has two inequivalent band gaps �〈,〉, and we need
to calculate the wave-function overlaps between these two
different band gaps as a generalization of the result in Eq. (8).
For this case, the pseudospin wave function is written as

�
γ

β (k | �β ) = 1√
2Eβ (k)

[ √
Eβ (k) + γ�β

γ
√
Eβ (k) − γ�β ei�k

]
, (20)

where �k = tan−1(ky/kx ) and Eβ (k) = ε
γ

β (k)/γ =√
(h̄vF k)2 + �2

β = |εγ

β (k)|. Therefore, it is straightforward to
calculate the overlap from

Fγ,γ ′ (k, q | �1,2)

= ∣∣〈�γ

1 (k | �1) | �γ ′
2 (|k + q| | �2)

〉∣∣2
= 1

2

{
1 + γ γ ′ �1�2 + (h̄vF )2 k |k + q| cos θk,k+q

E1(k)E2(|k + q|)
}
,

(21)

which reduces to Eq. (8) after taking �1 = �2 and E1 =
E2. Here, we can apply a geometrical relation, i.e., |k +
q| cos θk,k+q = k + q cos φ (see Fig. 7), so as to express the
final result of Eq. (17) by an integration variable ξ = − cos φ,
yielding

1

τ
(T )
e (ε | �β )

= 1

4

∑
i,j=1,2

1

τ
(T )
e (ε | �1,�2)

, (22)

which includes electron transitions between a pair of states with
either the same or different band gaps: Ei =⇒ Ei , Ei =⇒ Ej ,
Ej =⇒ Ei , and Ej =⇒ Ej . For a gapped graphene, we have
�1 = �2 = �0 for all four terms in Eq. (22) and arrive at
Eq. (18).

For two nondegenerate subbands in general, the allowed
angle φ is determined by the following equation for the silicene
lattice:

cos φ = �2
i − �2

j

2 (h̄vF )2kq
− q

2k
, (23)

where each �i,j could take either �> or �<, i.e., three different
φ values are possible for given k and q. If two band gaps
become the same, there exists only one value from cos φ =
−q/2k, as shown in Fig. 7.
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FIG. 7. Schematics for wave-vector relationships in an elastic scattering between ε
γ=1
β=±1(k) and ε

γ=1
β=±1(k′) electron states with fourfold

degeneracies gc = gsgv = 4 in graphene and partially degenerate subbands in silicene lattice. For the latter, intersubband transitions with
different magnitudes of wave vectors (|k| �= |k′|) are allowed.

For silicene at T = 0, the polarization function with two
different band gaps �β = �〈,〉 = |�SO + β�z| is given by
[24,59]

�(0)(q, ω = 0 | EF ,�β ) = −EF

π

∑
β=±1

f<(q ) �(�β −EF )

+ f>(q ) �(EF − �β ), (24)

where

f<(q ) = �β

2EF

+
(

h̄vF q

4EF

− �2
β

4h̄vF q EF

)

× arcsin

⎛
⎝
√

1 +
(

2�β

h̄vF q

)2
⎞
⎠,

f>(q ) = 1 − �
(
q − 2k

β

F

)
⎡
⎢⎢⎣1

2

√√√√1 −
(

2k
β

F

q

)2

−
(

h̄vF q

4EF

− �2
β

4h̄vF q EF

)

× arctan

⎛
⎝ h̄vF

√
q2 − 4

(
k

β

F

)2

2EF

⎞
⎠
⎤
⎦. (25)

Here, two inequivalent Fermi wave numbers k
β

F =√
E2

F − �2
β/h̄vF depend on band gaps �β . For gapped

graphene, this result is simplified by the substitution
�〈,〉 = �0.

Our numerical results for the energy-relaxation rate
1/τ (T )

e (ε | �β ) and the transport conductivity σ
(T )
B (μT | �β )

are presented in Fig. 8. σ
(T )
B (μT | �β ) in Fig. 8(c) is found

to increase with T due to thermal occupations of high-energy
states in the upper subband with a larger group velocity. On
the other hand, as T increases, the enhanced screening to the
impurity scattering will reduce the energy-relaxation rate, as
exhibited in Figs. 8(a) and 8(b). Moreover, the polarization
function is expected to decrease with a band gap at all tem-
peratures, especially showing a [1 − (�0/EF )2] dependence
at T = 0 in the long-wavelength limit.

V. CONCLUDING REMARKS

We have carried out calculations to investigate the optical
and transport properties, i.e., the polarizability and transport
current conductivity, for doped buckled honeycomb lattices
with two inequivalent energy subbands. Emphasis has been
placed on the effects of finite dopings and temperatures on the
conductivities, i.e., by considering doped systems at arbitrary
temperatures.

In our calculations, the dynamical polarization function is
found to play a key role in studies of both optical and transport
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FIG. 8. 1/τ (T )
e (ε| �B ) (in units of E0/h̄) and σ

(T )
B (μT | �β ) (in units of e2/h) for silicene at various T . Plots (a) and (b) present the T

dependence of 1/τ (T )
e (ε | �β ) for EF /E0 = 1.0, �> = �< = 0 (red), EF = 1.0, �>/E0 = 0.3, �< = 0 (black), EF /E0 = 1.0, �>/E0 = 0.5,

�< = 0 (blue), and EF /E0 = 1.0, �>/E0 = 0.7, �< = 0 (green). Panel (a) corresponds to ε/E0 = 1.5, while plot (b) corresponds to ε/E0 =
3.0. Panel (c) shows the T dependence of σ

(T )
B (μT | �β ) for silicene with EF /E0 = 1.0, �> = �< = 0 (red), EF /E0 = 1.0, �>/E0 = 0.8,

�< = 0 (black), EF /E0 = 2.0, �> = �< = 0.8 (blue), and EF /E0 = 2.0, �> = �< = 0 (green).

currents. For finite temperatures, the polarizability is computed
either through a thermal-convolution approach starting with a
zero-temperature one, or by a direct substitution of the Fermi
functions. In either case, it is necessary to find out in advance
a temperature-dependent chemical potential or a thermal path
for a chosen system. Quite different from the two-dimensional
electron gases, the calculated chemical potential decreases
with temperature but never reaches zero for band structures
with an electron/hole symmetry, such as silicene. In fact,
the chemical potential increases monotonically with doping
density (or Fermi energy) at all temperatures but becomes more
significant at low densities or high temperatures. The unique
temperature dependence found in a chemical potential due
to thermal populations of an upper subband leads to specific
thermal features in both the dynamical polarization function
and static screening to electron-impurity interactions included
in the Boltzmann transport equation. The interplay between
electron doping and temperature in the real and imaginary
parts of a dynamical polarization function is found to be
nontrivial due to the existence of dual band gaps. All of these
physical effects have been applied to the Boltzmann transport
equation.

Starting with some known results for the polarizability in
gapless graphene, we have derived analytic expressions for
the optical conductivities for gapped graphene and silicene in
both zero-temperature and high-temperature limits. At zero
temperature, the existing negative peaks in Im[σ (T )

O (ω| μT )]
correspond to the absorption threshold at h̄ω = 2EF , in-
dependent of band gaps. Instead, the band gaps do affect
the nonrectangular shape of steps in Re[σ (T )

O (ω| μT )]. At
finite temperatures, the sharp step is rounded off and the
negative peaks shift to low frequencies. Physically, both steps
and negative peaks originate from the intraband particle-hole
modes in the q → 0 limit, which depend on temperature
but not through the chemical potential. Each peak has been
calculated and identified. The thermal shift of a negative
peak (h̄ω = 2EF at T = 0) in the imaginary part of an
optical conductivity does not follow the expected h̄ω =
2μT (EF , T ) temperature dependence and has been attributed
to thermal variations in the boundaries of two separated
continua with respect to different intersubband particle-hole

modes under dual band gaps. These unique spectra features
can be applied to study plasmon damping in silicene and
used for ultrafast light modulators based on field-tuned band
gaps.

Finally, we have also explored the transport conductiv-
ity σ

(T )
B (μT | �β ) within the energy-relaxation-time approx-

imation for gapped graphene and silicene. By extending
the semianalytic expressions for gapless-graphene inverse-
relaxation time obtained in Ref. [56] to finite band gaps, we
have found a significant reduction in σ

(T )
B (μT | �β ) at low

temperatures. In the presence of two inequivalent subbands
of silicene, we have observed that σ

(T )
B (μT | �β ) increases

with temperatures and doping densities due to enhanced
group velocities at higher electron energies as well as due to
enlarged screening to the impurity scattering at the same time.
Contrary to previously considered graphene with or without
energy band gap, the inclusion of two new band gaps in
buckled honeycomb lattices gives rise to additional intersub-
band elastic-scattering channels. As a result, more electron
transitions can contribute to an energy-relaxation rate, which
dramatically modifies the electron dynamics in Boltzmann
transport.

In comparison with the Kubo formula for band transports,
the use of the Boltzmann transport equation for doped buckled
honeycomb lattices at finite temperatures has its own ad-
vantages in rigorously treating particle collisions. For elastic
scattering of electrons with impurities, we have calculated
explicitly the energy-dependent relaxation rate within the
second-order Born approximation, instead of treating it as
a phenomenological parameter as in Kubo’s formula. These
findings for transport conductivities are useful for investigat-
ing electron dynamics in innovative gapped Dirac materials
and can be applied to quantum-ballistic bipolar electronic
devices.
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