
PHYSICAL REVIEW B 98, 075413 (2018)

Thermoelectric properties of a quantum dot coupled to magnetic leads
by Rashba spin-orbit interaction

Łukasz Karwacki1,* and Józef Barnaś1,2

1Institute of Molecular Physics, Polish Academy of Sciences, ul. M. Smoluchowskiego 17, 60-179 Poznań, Poland
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We consider a single-level quantum dot coupled to two leads which are ferromagnetic in general. Apart from
tunneling processes conserving electron spin, we also include processes associated with spin flip of tunneling
electrons, which appear due to Rashba spin-orbit coupling. Charge and heat currents are calculated within the
nonequilibrium Green’s function technique. When the electrodes are half metallic (fully spin polarized), the
Rashba spin-orbit coupling leads to Fano-like interference effects, which result in an enhanced thermoelectric
response. It is also shown that such a system can operate as a heat engine with a remarkable efficiency. Furthermore,
the interplay of Rashba spin-orbit coupling and Zeeman splitting due to an external magnetic field is shown to
allow controlling of such parameters of the heat engine as the power and efficiency.
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I. INTRODUCTION

Thermoelectric properties of nanoscale systems have
been the subject of many recent studies in condensed
matter physics [1,2]. It has been shown theoretically that
high thermoelectric figure of merit, which is a measure of
thermoelectric efficiency, can be obtained in zero-dimensional
(0D) systems with discrete density of states (DOS) [3], such
as quantum dots (QDs) or molecules. The discrete DOS of
quantum dots, combined with electrical tunability of their
energy levels, lead to strong energy filtering of charge carriers.
Furthermore, quantum dots can operate in different transport
regimes, from a weakly coupled system to a strongly correlated
one. Each regime displays distinct behavior with characteristic
energy scales. One of the common characteristic features for
both regimes is the sign alternation of the Seebeck coefficient
with a gate voltage applied to the dot, which has been verified
experimentally [4–7]. This effect results from strongly bipolar
transport in quantum dots, where tuning an energy level of
the dot (with gate voltage) around the Fermi level of the
electrodes filters either holes or electrons. A similar effect can
be observed when the time-reversal symmetry is broken due
to either external magnetic field or ferromagnetic electrodes.
The quantum dots can then filter spin-up or spin-down
electrons, which results in spin-dependent transport and spin
thermoelectric effects [8–11].

Another important property of QDs, extensively studied
theoretically, is a large impact of quantum interference ef-
fects on electronic transport in different regimes. One such
phenomena, known as Fano effect [12], can occur when one
of the interfering waves passes through continuum of states
while the other wave passes through a narrow discrete level.
In quantum dot systems, this effect can occur when the two
waves pass through a broad and a narrow discrete level,
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respectively. The Fano effect reveals as characteristic anti-
resonances in electrical conductance, and in multiple quantum
dot structures can also lead to enhanced spin and charge
Seebeck coefficients [13–18].

The most common quantum dots are those based on two-
dimensional electron gas (2DEG) confined at the interface
between two semiconductors, which makes it relatively easy to
control properties of the dots with gate voltages. Alternatively,
the dots can be created in one-dimensional (1D) structures
such as semiconductor nanowires or carbon nanotubes (CNT)
[19–21]. One of the effects that can inevitably arise in such
systems due to inversion-symmetry breaking at interfaces
or due to curvature of CNT is Rashba spin-orbit coupling
(RSOC) [22]. This coupling can be controlled by electrical as
well mechanical means [23–27]. The mentioned experimental
data show that when QD is embedded is such a structure, cou-
pling between the dot and remaining parts (treated as external
leads) can include a spin-orbit contribution. Importantly, both
spin-conserving and spin-orbit coupling terms can be tuned
externally. The spin-orbit coupling can limit spin coherence
due to spin-mixing of transport channels [28–30]. However,
the spin reversal due to spin-orbit coupling can be also used
to induce quantum interference phenomena. For instance,
interference effects in mesoscopic structures with RSOC
have been proposed in superconducting tunnel junctions [31]
and ring interferometers, where Aharonov-Bohm effect and
spin-dependent phase shift between different paths traversed
by spin-↑ and spin-↓ electrons appear [32,33]. Theoretical
studies of such structures indicate some enhancement of the
thermoelectric figure of merit and possibility of pure spin
current generation [34,35].

Although many of the above properties have been already
studied, mostly in the linear response regime, there have been
recently many proposals of quantum-dot-based heat engines,
where one needs to go beyond the linear response limit. The
heat engine based on a single-level quantum dot coupled to two
metallic reservoirs has been theoretically predicted to reach
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FIG. 1. Schematic presentation of the quantum dot coupled to two
ferromagnetic electrodes. The coupling parameter Vkβσ (β = L, R)
represents spin-conserving tunneling process, while the parameter
V so

kβσ represents spin-nonconserving tunneling process due to Rashba
spin-orbit coupling. Temperature and electrostatic potential of the
left electrode are shifted by �T and �V in comparison to the right
electrode.

either the Curzon-Ahlborn efficiency, i.e., the efficiency of
the engine at maximum produced power, or even the Carnot
efficiency when a strong coupling between the heat and particle
fluxes exists [36–43]. Although this condition occurs for very
weakly coupled quantum dots, the possibility of achieving high
thermodynamic efficiency in quantum dot systems has been
recently verified experimentally [44]. More complex heat en-
gines, based on multiple quantum dots and multiple electrodes,
have been proposed as well [45–50]. Conversely, mesoscopic
refrigeration schemes have been also proposed [51–53], paving
the way to studies on quantum heat transport and its relation
with information in the form of Maxwell’s demon [54,55].

Here we show that the quantum dot with RSOC can operate
as a heat engine with the efficiency that can be controlled not
only by position of the dot’s energy level and external magnetic
field, but also by strength of the RSOC. Moreover, we show that
when the quantum dot is coupled to half-metallic electrodes,
the RSOC gives rise to the Fano-like interference effect. This
effect leads to higher thermoelectric parameters and enhanced
efficiency of the heat engine. More complex effects appear
when external magnetic field is applied to the system.

The paper is organized as follows. Section II contains a
description of the model and of the quantities being considered
(charge and heat currents). Basic information on the power
produced by a heat engine and the corresponding efficiency
is also presented there. Section III presents numerical results
obtained for the quantities introduced in Sec. II. A short
summary of the paper is presented in Sec. IV.

II. THEORETICAL DESCRIPTION

A. Model

The system under consideration is presented schematically
in Fig. 1. The quantum dot is coupled to two electrodes by
direct (spin conserving) tunneling and tunneling with Rashba
interaction (spin nonconserving). The system can be described
by the following Hamiltonian:

Ĥ = Ĥe + Ĥqd + Ĥ
0
t + Ĥ

so
t , (1)

where the first term,

Ĥe =
∑
kβσ

εkβσ c
†
kβσ ckβσ , (2)

describes the left (β = L) and right (β = R) electrodes, which
are ferromagnetic in a general case. Magnetic moments of the
electrodes are assumed to be parallel, and orientation of the
moments determines the quantization axis for the system.

The second term in Hamiltonian Eq. (1) stands for the
single-level quantum dot,

Ĥqd =
∑

σ

εσ d†
σ dσ + Un̂↑n̂↓ , (3)

where εσ = εd + σ̂ gμBB/2, with εd being the bare dot’s level,
σ̂ defined as σ̂ = 1(−1) for σ =↑ (↓), B denoting an external
magnetic field, and g and μB standing for the Lande factor
and Bohr magneton, respectively. In turn, U in Eq. (3) is the
Coulomb correlation parameter, while n̂↑(n̂↓) is the occupation
operator for spin-up (spin-down) electrons.

The last two terms in Eq. (1) describe electron tunneling
between the electrodes and quantum dot. One of them, Ĥ

0
t ,

conserves electron spin in the tunneling processes,

Ĥ
0
t =

∑
kβσ

Vkβσ c
†
kβσ dσ + H.c. , (4)

while the second one, Ĥ
so
t , is due to Rashba interaction and

takes the form

Ĥ
so
t = −

∑
kβσ

[
V so

kβσ c
†
kβσ (iσ̂x )σσ dσ

] + H.c. , (5)

where σ̂x denotes the x component of the vector of Pauli
matrices. The latter term is responsible for electron spin-flips
in tunneling processes. When the leads are half metallic, the
above-introduced model is equivalent to a spinless two-level
quantum dot model [56,57].

B. Currents and heat engine

The electric current je flowing in the biased system from
left to right can be described by the formula

je = e

h̄

∫
dε

2π
[fL(ε) − fR (ε)]T (ε) , (6)

where e denotes the electron charge (e < 0), fL(R) is the
Fermi-Dirac distribution in the left (right) electrode, while
T (ε) is the total transmission function, T (ε) = T↑(ε) + T↓(ε),
whose explicit form will be derived in the next subsection. The
spin-dependent transmission T↑(↓)(ε) is defined as the total
transmission from the spin-σ chanel of one electrode to both
spin channels in the second electrode.

Since the dot is coupled, in general, to ferromagnetic
electrodes, the charge current may be accompanied with a
spin current. However, we assume no spin accumulation in
the leads (no spin voltage and no spin thermoelectric effects),
and therefore we do not consider the spin currents.

The charge current is also associated with energy flow, and
the corresponding energy current is given by the formula

jE = 1

h̄

∫
dε

2π
ε[fL(ε) − fR (ε)]T (ε) . (7)
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The energy current is conserved, but the associated heat current
is not conserved in nonequilibrium situations. According to the
second law of thermodynamics, the energy increase of the dot
is equal to the heat flowing into it and the work done on it. The
heat current flowing from the left electrode can be written as

jL
h = 1

h̄

∫
dε

2π
(ε − μL)[fL(ε) − fR (ε)]T (ε) , (8)

where μL is the electrochemical potentials of the left electrode.
A similar formula holds for the heat flowing from the right
electrode to the dot. These heat currents are generally different.
The heat current is conserved only in quasiequilibrium state
(infinitesimally small deviation from equilibrium).

In the linear response regime (quasiequilibrium situation),
the charge and heat currents driven by small bias voltage δV

and temperature difference δT can be written in the following
form:

[
je

jh

]
=

⎡
⎢⎣

e2L0
e

T
L1

eL1
1

T
L2

⎤
⎥⎦

[
δV

δT

]
, (9)

where

Li = 1

h̄

∫
dε

2π
(ε − μ)i

(
−∂f0

∂ε

)
T (ε) (10)

for i = 0, 1, 2. Here, f0 is the Fermi-Dirac distribution func-
tion in equilibrium (corresponding to the chemical potential
μ). Note, according to our definitions, δV = VL − VR =
(μL − μR )/e and δT = TL − TR . Here, TL (TR) stands for the
temperature of the left (right) lead. Similarly, VL (VR) and μL

(μR) stand for the electric and chemical potentials in the left
(right) lead, respectively. The electrical conductance, G, can
then be calculated as G = e2L0, while the thermopower S is
given by the formula S = − δV

δT
= 1

eT
L1
L0

. The linear-response
G and S determine the corresponding power factor P0 as
P0 = GS2.

When the system is supposed to work as a heat engine, the
linear response regime is then not sufficient and one needs to
go beyond this limit. In other words, δV and δT should be
replaced by a finite (not small) �V and �T , where transport
characteristics are nonlinear. The charge and heat currents
cannot then be calculated from Eqs. (9), but instead one should
use Eqs. (6) and (8). Note, the conductance G = je/�V , the
thermopower S,

S = −�V

�T
, (11)

and the corresponding power factor P0 = GS2 depend then on
the voltage �V .

The work done on the system per unit time is je�V . When
the system operates as a heat engine, then it generates a finite
power,

P = −je�V , (12)

where �V is the voltage applied to counteract the thermally
induced current. The maximal power generated by the engine
can be described with the following formula [58]:

Pmax = GV 2
max = 1

4GV 2
b = 1

4P0(�T )2 , (13)

where Vmax = Vb/2 is the voltage for which power is maximal,
while Vb = −S�T is the stopping (or blocking) voltage.

Efficiency of the heat engine is defined as

η = P

jL
h

. (14)

The second law of thermodynamics introduces the upper limit
on the efficiency in the form of Carnot efficiency,

ηC = �T

T
, (15)

where T is the temperature of the hotter (here left) reservoir.
Additionally, for realistic heat engines, when one considers
device output at maximal power, a Curzon-Ahlborn efficiency
can be introduced [36],

ηCA = 1 −
√

1 − ηC , (16)

which for strongly coupled particle and energy currents in
the linear response acquires a finite value, ηCA ≈ ηC/2 +
O(η2

C) [37].

C. Method

To find the charge and heat currents introduced above, one
needs to know the transmission coefficient T (ε) = T↑(ε) +
T↓(ε). Since the temperature assumed in the paper is much
larger than the corresponding Kondo temperature, one can treat
the Coulomb interaction between electrons residing on the dot
in the mean field approximation. Then, one finds

Tσ (ε) = Tr{�Lσ Gr (ε)�RGa (ε)} (17)

for σ =↑,↓. This transmission coefficient can be understood
as coupling of spin σ state from the left electrode to both spin
states of the right electrode, i.e., it can be decomposed into spin-
conserving transmission, and transmission with spin reversal
due to the spin-orbit coupling, i.e,. spin-mixing transmission
coefficient. The Tσ (ε) coefficient can be equivalently defined
as coupling of both spin states from left electrode to a selected
spin state from the right electrode.

The Green’s functions can be derived from the Dyson
equation,

Gr (a) = [(
gr (a)

0

)−1 − �r (a)
]−1

, (18)

with gr (a)
0 being the Green’s function of the corresponding

isolated dot, whose diagonal elements are defined as follows:

g
r (a)
0σσ = 1 − nσ

ε − εσ ± i0+ + nσ

ε − εσ − U ± i0+ , (19)

where nσ = 〈n̂σ 〉. The self-energy �r (a) takes the following
form:

�r (a) = ∓ i

2

∑
β

�β , (20)

where �β = �β↑ + �β↓. The coupling matrices are defined as

�β↑ =
⎡
⎣ �β↑↑ −i

√
�β↑↑�so

β↑↑

i
√

�β↑↑�so
β↑↑ �so

β↑↑

⎤
⎦ (21)
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for spin σ =↑, and

�β↓ =
⎡
⎣ �so

β↓↓ i
√

�β↓↓�so
β↓↓

−i
√

�β↓↓�so
β↓↓ �β↓↓

⎤
⎦ (22)

for spin σ =↓. In the above matrices �βσσ = 2π〈|Vkβσ |2〉ρβσ

and �so
βσσ = 2π〈|V so

kβσ |2〉ρβσ , with ρβσ denoting the spin-
dependent DOS in the βth lead. In the following, we introduce
the parameters �β through the relation �βσσ = (1 + σ̂pβ )�β ,
where pβ is the spin polarization of the lead β. We also
introduce the parameter q defined as �so

βσσ = q�βσσ . This pa-
rameter describes the relative strength of RSOC. Accordingly,
the parameters �L, �R , pL, pR , and q will be used to describe
coupling of the dot to both leads.

To obtain the dot’s mean occupation for spin-σ electrons,
nσ = −i

∫
dε/2πG<

σ , we use the Keldysh formula,

G< = iGr (fL�L + fR�R )Ga , (23)

where G< is the correlation (lesser) Green’s function.

III. NUMERICAL RESULTS

In this section, we present numerical results. The section
is divided into three parts: in the first one we consider
mean occupation of the dot by spin-↑ and spin-↓ electrons
in the absence and presence of an external magnetic field.
Thermoelectric effects and heat engine in the limit of zero
magnetic field are analyzed in the second part, while the
influence of a finite magnetic field is considered in the third
part. In all calculations, we assumed symmetrical coupling
of the dot to both leads, �L = �R = �. Apart from this,
we assumed U = 10� and kBT = 0.5� (unless otherwise
specified), where � = 0.01D is used as the energy unit, with
D being the leads’ half-bandwidth. Note that the temperatures
considered here are much higher than the corresponding Kondo
temperature. The problem of Kondo correlations in the model
under consideration was investigated elsewhere [57].

A. Mean occupations and average spin

To better understand complex behavior of the thermoelec-
tric effects in quantum dots coupled to half-metallic leads
via tunneling with Rashba spin-orbit interaction, it is helpful
to analyze first the mean occupation of the dot by spin-↑
and spin-↓ electrons as well as the dot’s average spin. Due
to Coulomb correlations, these parameters have a significant
impact on charge and spin transport. In Fig. 2, we show these
parameters as a function of the quantum dot’s energy level for
selected values of the RSOC (described by the parameter q),
fixed values of magnetic field gμBB, and half-metallic leads,
pL = pR = 1.

The occupation numbers and the dot’s average spin Sz in
the absence of external magnetic field, gμBB = 0, are shown
in Figs. 2(a), 2(e) and 2(i), respectively. When the RSOC is
absent, q = 0, the dot can be occupied by a single spin-↑
electron only. However, when the RSOC is nonzero, spin of an
electron can rotate when tunneling to the dot, and the quantum
dot can be occupied by a spin-↓ electron as well. Accordingly,
the dot can then be either empty, or singly occupied (by a spin-↑
or spin-↓ electron), or occupied by two electrons (spin-↑ and
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FIG. 2. Mean occupation of the dot by a spin-↑ electron, n↑,
(a)–(d), by spin-↓ electron, n↓, (e)–(h), and the average spin of the
dot, Sz/(h̄/2) ≡ n↑ − n↓, (i)–(l), presented as a function of the dot’s
bare energy level, εd , and calculated in the linear response regime for
indicated values of the Rashba spin-orbit parameter q and Zeeman
splitting gμBB. Other parameters: pL = pR = 1, kBT = 0.5�, and
U = 10�. The dashed line indicates Sz = 0.

spin-↓). Due to a nonzero occupation of the dot by a spin-↓
electron, the average spin Sz of the dot is adequately reduced.
In the case of q = 1, the dot can be occupied equally by
spin-↑ and spin-↓ electrons, which results in zero average spin,
irrespective of the dot’s energy level.

The occupation numbers in the presence of a magnetic field
are shown in Figs. 2(b), 2(f) and 2(j) for gμBB = U/2; in
Figs. 2(c), 2(g) and 2(k) for gμBB = U ; and in Figs. 2(d), 2(h)
and 2(l) for gμBB = 2U . For q = 0, the situation is qualita-
tively similar to that in the absence of magnetic field, i.e., only
a single spin-↑ electron can appear on the dot, so the average
spin of the dot is positive. Some shift of the curves toward
lower energy of the dot’s levels with increasing B results from
the Zeeman splitting of the energy level. Increase in the RSOC
(parameter q) leads to remarkable changes in the dependence
of the occupation numbers n↑ and n↓ (and thus also of the
mean dot’s spin) on the dot’s bare energy level εd . These
changes result from two factors: (i) Zeeman splitting of the
dot’s energy level and (ii) ratio of the spin-conserving and
spin-reversal tunneling rates. The average spin of the dot is
now predominantly negative, though in certain regions of the
level energy the average spin may be positive.

B. Heat engine for B = 0

In this section, we show numerical results on a quantum
dot-based heat engine in the absence of external magnetic
field, B = 0. First, we analyze the electrical conductance,
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FIG. 3. Electrical conductance, G, (a) and (b), Seebeck coeffi-
cient, S, (c) and (d), and power factor, P0, (e) and (f), presented
as a function of the dot’s energy level, εd , and calculated in the
linear response regime for indicated values of the parameter q and
polarization of the leads. Other parameters: gμBB = 0, kBT = 0.5�,
and U = 10�. Insets show the case of q = 0 for pL = pR = 1.

thermopower, and power factor in the linear response regime,
and then the power and efficiency in the nonlinear regime. One
should note that thermoelectric properties of single-level quan-
tum dots in the absence of Rashba coupling have been already
investigated theoretically for different magnetic configurations
of the leads, see, e.g., Ref. [9]. The conductance, thermopower,
and power factor in a nonmagnetic case, pL = pR = 0, pre-
sented in Figs. 3(a), 3(c), and 3(e) as a function of the dot’s
energy level, behave in a similar way as the results presented
in earlier works. However, they additionally show the impact
of RSOC. More specifically, Fig. 3(a) shows that the two-peak
structure of the conductance, i.e., the resonant peak and its
Coulomb counterpart, is conserved when the Rashba coupling
is nonzero. However, both peaks become slightly broadened for
q > 0 due to enhanced effective coupling between the dot and
the leads. Apart from this, the conductance maxima increase
with the parameter q due to enhanced total transmission owing
to the spin-rotation processes. Note that the conductance does
not achieve the conductance quantum 2e2/h due to a finite

temperature. In turn, the Seebeck coefficient shown in Fig. 3(c)
changes sign at the resonances, i.e., for εd = 0 and εd = −U ,
as well as in the particle-hole symmetry point, εd = −U/2.
In the definition used here, the positive (negative) Seebeck
coefficient corresponds to transport mediated by holes (elec-
trons). Thus, this figure shows that the character of transport
carriers is retained for q > 0. A weak drop in the thermopower
with increasing q results from increasing role of spin-reversal
transmission. Due to this decrease in the Seebeck coefficient,
the power factor shown in Fig. 3(e) also decreases, as it is
proportional to S2.

In the case of half-metallic leads, pL = pR = 1, the con-
ductance shown in Fig. 3(b) behaves differently. For q = 0,
there is only one peak in the conductance at εd = 0, which
corresponds to tunneling of spin-↑ electrons through the bare
dot’s level (there are no spin-↓ electrons in the leads). For
a small nonzero value of q, the peak in conductance for
εd = 0 is broadened, but an additional peak emerges at εd =
−U . Moreover, the conductance spectrum is now asymmetric,
which is typical of the Fano antiresonance. The increasing rate
of spin-flip processes with increasing q leads to an increase
in electrical conductance. It is worth noting, however, that the
maximal value of the conductance is comparable to that in the
corresponding nonmagnetic case. The thermopower for q = 0
vanishes only when εd = 0, and is antisymmetric with respect
to this point, as shown in Fig. 3(d). In turn, the thermopower
for q > 0 is neither symmetric nor antisymmetric with respect
to the particle-hole symmetry point, εd = −U/2. This results
from the contribution due to spin-reversal tunneling. More-
over, when the strength of RSOC increases, the thermopower
becomes higher. The maximal value of the thermopower is
negative, which indicates particle(electron)-like character of
transport. This strong dependence of the thermopower on the
type of carriers and Coulomb interaction has a significant
influence on the position of the dot’s energy level where the
Seebeck coefficient changes sign. This change occurs, as has
been already discussed above, for εd = 0, U , and ε±, where

ε± = 1

1 + q
[1 − n↓ − q(1 − n↑)]U

± 1

1 + q

√
(n↓ − 1 + (n↑ − 1)q )(n↓ + n↑q )U 2 . (24)

Since the power factor, shown in Fig. 3(f), reflects the structure
of both thermopower and conductance, it is symmetric with
respect to εd = 0 for q = 0, and strongly asymmetric for q >

0. For q > 0, the power factor achieves the largest value for
εd ≈ −0.75U , where the corresponding Seebeck coefficient is
maximal. It is worth noting that the power factor for q = 0 is
significantly smaller when compared to that for q > 0.

Temperature dependence of the linear conductance, ther-
mopower, and power factor is shown in Fig. 4 for two
positions of the dot’s energy level, εd = −0.9U and εd =
−0.25U . Note, εd = −0.9U (εd = −0.25U ) corresponds to
the Rashba-induced (background) peak in Fig. 3(b). Therefore,
the conductance shown in Fig. 4(a) for εd = −0.9U is small
at low temperatures for q = 0, and achieves remarkable values
when kBT > �. When q > 0, the conductance displays a more
complex behavior. In particular, the Rashba-induced transport
becomes activated so the conductance may be nonzero also
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FIG. 4. Electrical conductance, G, (a) and (b), Seebeck coeffi-
cient, S, (c) and (d), and power factor, P0, (e) and (f), presented as a
function of temperature, kBT (in logarithmic scale), and calculated in
the linear response regime for indicated values of parameter q and the
dot’s energy level εd = −0.9U (left column) and εd = −0.25U (right
column). Other parameters: pL = pR = 1, gμBB = 0, and U = 10�.

at low temperatures. However, due to the Fano antiresonance,
the conductance vanishes at low temperatures, see, e.g., the
curve for q = 0.05 at kBT < 0.1�. When q increases, position
of the antiresonance shifts toward lower energies, and at low
temperatures the conductance achieves a constant value. On
the other hand, for the background channel, εd = −0.25U ,
the conductance shown in Fig. 4(b) varies rather weakly with
increasing q, since the dominant contribution comes from the
spin-↑ peak, which is present even for q = 0. We note that
the Fano antiresonance appears here due to interference of
waves transmitted via the spin-↑ and spin-↓ discrete levels.
In the former case, the transmission appears due to spin-
conserving tunneling processes, while in the latter one due
to spin-orbit interaction. In the second case, the electron
spin rotates from spin-↑ to spin-↓ when the electron tunnels
from the left lead to the dot and then from spin-↓ to spin-↑
when the electron tunnels from the dot to the right lead. The
corresponding temperature dependence of the thermopower
for the Rashba-induced (εd = −0.9U ) and background

(εd = −0.25U ) channels is shown in Figs. 4(c) and 4(d),
respectively. In the former case, the thermopower for q = 0 is
positive and small for kBT < �, while for kBT > � it increases
and achieves a maximal value for kBT ≈ 2.5�. This peak
remains for q > 0, but its height decreases with increasing q

and its position shifts toward higher temperatures. Moreover,
due to the contribution from the Rashba-induced channel, the
variation of the thermopower with temperature then differs
remarkably from that for q = 0. Apart from this, the energy
levels where the thermopower changes sign depend on the
average occupation numbers, see Eq. (24), which depend on
temperature, in general. All this leads to sign reversal of the
thermopower with decreasing temperature, which takes place
twice for small values of q [see the curve for q = 0.05 in
Fig. 4(c)] and once for larger values of q. For εd = −0.25U ,
the thermopower is dominated by the background channel,
and therefore it is only weakly dependent on q, see Fig. 4(d).
The power factor is shown in Fig. 4(e) for εd = −0.9U and
in Fig. 4(f) for εd = −0.25U . It reaches maximum values at
temperatures which approximately correspond to maximum
values of the thermopower. Interestingly, the maximum value
of P0 is for q = 0.2 and not for q = 0.05 where the Seebeck
coefficient is larger. This is due to the fact that the conductance
for q = 0.05 in the relevant temperature range is smaller than
for q = 0.2.

The key parameters that characterize a heat engine are the
generated power P and the efficiency η. The power generated
in the system under consideration, working as a heat engine,
is shown in Fig. 5 as a function of |e�V | and the dot’s energy
level, εd , for indicated values of q and fully polarized leads,
pL = pR = 1. The power was calculated from Eq. (11), in
which �V is a voltage applied to counteract the thermally
induced current je. This means that �V and je have opposite
signs when the system operates as a heat engine. The first row
from the top in Fig. 5 corresponds to positive �V (negative
e�V ) while the second row to negative �V (positive e�V ).

For q = 0, shown in Figs. 5(a) and 5(f), the power exhibits
a single relatively broad peak, which for positive �V appears
for εd > 0 [Fig. 5(a)], while for negative �V appears for
εd < 0 [Fig. 5(f)]. Since the Coulomb blockade peaks are
absent for q = 0 due to full spin polarization of both leads
(double occupancy of the dot is forbidden), there is only one
peak for positive and one for negative voltage. When εd > 0,
then the current is dominated by electrons, while for εd < 0
it is dominated by holes. Accordingly, the currents in these
two regimes have opposite signs and thus the voltages against
these currents also have opposite signs. Note, the correspond-
ing Seebeck coefficients in these two regimes have opposite
signs, too. The power vanishes for εd = 0, because the corre-
sponding Seebeck coefficient is equal to zero, so the voltage
disappears.

The suppression of double occupancy of the dot is lifted
when the spin-orbit channel for transmission is open, which
appears for nonzero values of q. The Coulomb peaks in trans-
port characteristics are then clearly seen, as already mentioned
above. As a result, a second peak in the power appears for
positive as well as for negative �V . Indeed, for a nonzero but
small q, an additional peak in the power appears at εd < 0 for
both �V > 0 and �V < 0, as shown in Figs. 5(b) and 5(g) for
q = 0.05.
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FIG. 5. Power, P , for �V > 0 (a)–(e) and �V < 0 (f)–(j) as a function of the dot’s energy level, εd , and applied bias voltage, |e�V |, for
indicated values of the parameter q. Maximal power, Pmax, and normalized efficiency at maximal power, ηPmax , as a function of the parameter
q for indicated dot’s energy levels [marked also by the white dashed lines in (a) to (j)] and for �V > 0 (k), (l) and �V < 0 (m), (n). Other
parameters: pL = pR = 1, gμBB = 0, U = 10�, kBT = kBTR = 0.5�, and �T = 2T .

Intensity of the peaks changes with increasing q. For �V >

0, intensity of the additional peak (absent for q = 0) increases
with increasing q, whereas the intensity of the peak existing
at q = 0 decreases with increasing q, see Figs. 5(a) to 5(e).
In turn, for �V < 0, see Figs. 5(f) to 5(j), intensity of the
additional peak is rather low, while the intensity of the peak
existing also for q = 0 slightly increases with increasing q.

It is known that for practical purposes a heat engine
should work with the highest efficiency when the power is
maximal. Figures 5(k) to 5(n) show the maximal power and
the efficiency at maximal power, both as a function of the
parameter q and for indicated positions of the dot’s energy
level. These positions are indicated by white dashed lines in
Figs. 5(a)–5(j), and correspond to the background and Rashba-
induced channels. For εd = 0.5U and �V > 0, both maximal
power and the efficiency at maximal power are largest forq = 0
and then both decrease with increasing q. In the vicinity of the
interference-induced resonance, i.e., for εd = −0.8U , there is
no power generated when q � 0.06. Above this threshold, the

maximal power increases and saturates when q approaches the
limit q = 1, whereas the efficiency at maximal power reaches
a maximum for q ≈ 0.6. For �V < 0 and εd = −0.3U ,
both the maximal power and the corresponding efficiency are
weakly dependent on q, taking maximal values for q ≈ 0.5.
For εd ≈ −1.4U , the efficiency decreases monotonically with
increasing q while the maximal power saturates for q � 0.3.
The maximal efficiency for both voltage polarities, however,
is lower than the appropriate Carnot efficiency and lower than
the Curzon-Ahlborn efficiency, ηCA/ηC ≈ 0.64.

C. Heat engine for B �= 0

For B 	= 0 and nonmagnetic leads, pL = pR = 0, the elec-
trical conductance shown in Fig. 6(a) as a function of the
dot’s energy level εd displays two additional peaks due to a
relatively large Zeeman splitting, gμBB = 0.6U . The conduc-
tance is symmetric with respect to the particle-hole symmetry
point, εd = −U/2. The increase in q leads to an increase in
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FIG. 6. Linear conductance, G, (a), (b), Seebeck coefficient, S,
(c), (d), and power factor, P0, (e), (f), as a function of the dot’s bare
energy level, εd , for indicated values of the parameter q, and for
nonmagnetic (left column) and half-metallic (right column) leads.
Other parameters: gμBB = 0.6U , kBT = 0.5�, and U = 10�. Insets
show the case of q = 0 for pL = pR = 1.

conductance due to the spin-mixing processes already dis-
cussed in the previous section. In turn, the thermopower shown
in Fig. 6(c) changes sign two times more than in the case of
B = 0. Such a behavior is typical for a multilevel system, so we
will not discuss it in more detail. With increasing q, the points
where the Seebeck coefficient vanishes are slightly shifted
away from the points where S vanishes for q = 0, except
for the particle-hole symmetry point, which is preserved. The
corresponding power factor is shown in Fig. 6(e). Since the
number of the points where the thermopower vanishes is now
larger, the variation of the power factor with the dot’s energy
level is more complex, i.e., the number of peaks is larger.
Heights of these peaks, however, decrease with increasing
parameter q due to decreasing thermopower.

The conductance, thermopower, and power factor in the
case of half-metallic leads are shown in Figs. 6(b), 6(d)
and 6(f). Since there is only one spin channel in the leads,
only one component of the Zeeman-split level is then active in
transport for q = 0, and therefore only one peak appears in the

conductance when Rashba coupling vanishes. Because energy
of the spin-↑ level is shifted up by gμBB/2 due to Zeeman
energy, the corresponding peak appears for εd = −gμBB/2.
However, a more complex conductance spectrum emerges
when q > 0. First, both components of the Zeeman-split level
contribute to transport. Second, the Coulomb counterparts also
appear as now two electrons of opposite spins can reside in the
dot.

In turn, the corresponding thermopower for q = 0 changes
sign only for εd = ε↑, as follows from the inset in Fig. 6(d).
For q > 0, behavior of the thermopower with the dot’s energy
level is more complex and is correlated with the corresponding
conductance spectra, as already discussed before. Since the
power factor, shown in Fig. 6(f), is determined by both
conductance and thermopower, it is evident that the power for
B 	= 0 can be generated in a range of the bare dot’s level energy,
which is broader than that for B = 0. However, the dependence
on q is nonmonotonic, mainly due to nonmonotonic variation
of the thermopower with q. Nonetheless, for different strengths

FIG. 7. Linear conductance, G, (a) and (b), Seebeck coefficient,
S, (c) and (d), and power factor, P0, (e) and (f), as a function of
temperature, kBT (in logarithmic scale), for indicated values of the
parameter q, and for εd = 0.1U (left column) and εd = −0.8U (right
column). Other parameters: pL = pR = 1, gμBB = 0.6U , kBT =
0.5�, and U = 10�.
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FIG. 8. Power, P , (a)–(j), as functions of the dot’s energy level, εd , and applied bias voltage, |e|�V , calculated for indicated values of the
parameter q and �V > 0 (a)–(e) and �V < 0 (f)–(j). Maximal power, Pmax, and normalized efficiency at maximal power, ηPmax , as a function
of the parameter q for indicated dot’s energy levels [marked also by the white dashed lines in (a) to (j)] and for �V > 0, (k), (l), and �V < 0,
(m), (n). Other parameters: pL = pR = 1, gμBB = 0.6U , kBT = kBTR = 0.5�, U = 10�, and �T = 2T .

of the spin-orbit coupling, one can tune the dot’s energy level
to reach the maximal power.

Due to the Zeeman splitting of the dot’s level, the temper-
ature dependence of electric and thermoelectric coefficients is
more complex than in the absence of magnetic field. This tem-
perature dependence of electric conductance, thermopower,
and power factor for pL = pR = 1 is shown in Fig. 7 for
indicated values of q and two values of the dot’s energy level,
εd = 0.1U and εd = −0.8U . From Fig. 6(b), it follows that
both these energies are in the vicinity of the peaks associated
with the Rashba-induced channels, where the dependence on
q is quite significant. This leads to a nontrivial dependence of
the electric conductance, thermopower, and power factor on
temperature. Physical origin of this behavior is similar to that
presented already in the case of zero magnetic field, so we will
not describe it in more detail.

Finite Zeeman splitting of the dot’s energy level leads
to additional peaks in power—similarly as it leads to the
additional peaks in other transport/thermoelectric quantities

discussed above. The power generated in the system under
consideration in the presence of external magnetic field is
shown in Figs. 8(a)–8(j). The upper row in Figs. 8(a)–8(e)
corresponds to �V > 0, while the second row, Figs. 8(f)–8(j),
corresponds to �V < 0. For q = 0, the power spectrum shown
in Figs. 8(a) and 8(f) for �V > 0 and �V < 0, respectively,
is similar to the corresponding one in the absence of external
magnetic field, i.e., it exhibits a single peak due to a single
active spin channel only, which, however, is shifted toward the
lower bare dot’s energy level. This is because transport occurs
through the ε↑ component of the Zeeman spin-split dot’s level.

As in the case of zero magnetic field, the Rashba spin-
flip tunneling for q > 0 opens the second spin channel for
electronic transport through the quantum dot. Moreover, it
also leads to interference effects (Fano antiresonance). For
q > 0, the power shown in Figs. 8(b)–8(e) for �V > 0 and
in Figs. 8(g)–8(j) for �V < 0 can be generated in broader
ranges of the voltage and dot’s level energy, in contrast to
the case of q = 0, where only a single transport channel is
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FIG. 9. Power, P , (a)–(e), and normalized efficiency, η/ηC , (f)–(j), as functions of the dot’s energy level, εd , and magnetic field, gμBB,
for indicated values of parameter q. Other parameters: pL = pR = 1, kBT = 0.5�, U = 10�, e�V = −0.05U , and �T = 2T . White dotted
lines represent spin-dependent energy levels, ε↑ and ε↓.

open. The broadest voltage range where the power can be
generated (maximal blocking voltage) occurs for small spin-
orbit coupling (small q), where the Fano effect is relatively
strong. Indeed, as shown in Fig. 6(b) for the linear response
regime, the Fano antiresonance becomes less pronounced with
increasing q.

The maximal power and the corresponding efficiency are
shown in Figs. 8(k)–8(m) for selected positions of the dot’s
energy level and both voltage polarities. For �V > 0, there
is a rapid onset of the power due to activation of the spin-↓
channel and appearance of the antiresonance for εd = −U . In
contrast, maximal power obtained when the transport occurs
through spin-↑ channel vanishes quickly with increasing q due
to increasing separation between the spin-↑ and spin-↓ levels.

The efficiency corresponding to maximal power, on the
other hand, is the largest for the spin-↑ channel and small q.
This is due to a small heat current flowing into the dot. How-
ever, the corresponding maximal efficiency rapidly decreases
with increasing q since the power is no longer generated
in this channel. In turn, the efficiency at maximal power in
the Rashba-induced channel follows the q-dependence of the
maximal power, as the dot’s energy for which the generated
power is maximal shifts toward lower values with increasing q.
Similarly, the maximal power and the corresponding efficiency
for �V < 0, shown in Figs. 8(m) and 8(n), respectively,
decay more quickly in the case of spin-↑ channel than for
spin-↓ one.

The power generated in the system as well as the cor-
responding efficiency remarkably depend on the strength of
magnetic field, as shown in Fig. 9 for the bias voltage, roughly
corresponding to maximal values of the power and efficiency
shown in Fig. 8, i.e., |e|�V = 0.05U . For q = 0, the power
and efficiency shown in Figs. 9(a) and 9(f), are roughly constant

with respect to magnetic field. However, the dot’s energy level,
for which the heat-to-work conversion occurs, depends linearly
on magnetic field, as the transport occurs through the single
spin-↑ level.

For q > 0, the spin-↓ channel is activated due to finite
RSOC. This activation leads to complex interplay between the
effects due to external magnetic field, RSOC, and Coulomb
interaction. When the strength of spin-orbit coupling increases,
the power shown in Figs. 9(b)–9(e) can be generated when the
energy of spin-↓ electron overcomes the Coulomb blockade.
For small q, the power is generated mostly through the spin-↑
channel. There is, however, relatively weak spin-↓ transport
through the interference-induced resonant channel. With in-
creasing q, the contribution of spin-↓ carriers increases as well,
which results in an enhanced power generated in this channel,
especially for large magnetic fields, when the spin-dependent
energy levels are well separated. The corresponding efficiency,
shown in Figs. 9(g)–9(j), for small q is the largest when the
transport occurs through the interference-induced resonant ↓
channel, as the heat current flowing in this channel is smaller
than that in the ↑ one. Consequently, an increase in q results
in a larger contribution due to spin-↓ carriers, i.e., greater heat
current, and thus in a decrease in efficiency. This indicates
that the strength of RSOC should be relatively small to ensure
larger efficiency.

IV. SUMMARY

In summary, we have analyzed a heat engine based on a
quantum dot connected to half-metallic ferromagnetic leads.
Both spin-conserving and spin-flip tunneling processes be-
tween the dot and electrodes were taken into account. The latter
occur due to Rashba spin-orbit interaction. Basic parameters of
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the engine, such as power and efficiency, can then be modulated
not only by properties of the dot itself, such as position of the
energy level or Coulomb correlation parameter, but also by
RSOC. The latter, in principle, can be controlled by an external
electric field.

A particularly interesting case occurs when the ferromag-
netic leads are fully spin polarized and have aligned magnetic
moments (parallel configuration). Even though only electrons
of one spin orientation are then present in the electrodes, the
RSOC activates the dot’s level of the opposite spin, so the

effects due to double occupancy (Coulomb blockade) play an
important role. Moreover, this also leads to resonant effects,
especially to the Fano-like interference, where the spin-↓
channel takes the role of a resonant channel, while the spin-↑
channel assumes the role of background channel. This, in turn,
leads to an enhanced thermoelectric response of the system.
Moreover, when an external magnetic field is applied to the
system, the complex interplay between the effects due to
spin-orbit coupling, magnetic field, and Coulomb interaction
leads to spin-selective power generation.
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