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Within the context of dry friction, the ultralow friction regime has been reported at various atomically small
contacts. Realization of large superlubric contacts under ordinary environmental conditions would greatly impact
daily life and technology. Here, we focus on the multiatomic nature of a finite-size nanoparticle sliding on an
atomically clean surface. The particle is subject to an effective field propagated by the surface and intermediated by
the contact layer of the particle. The structural parameters, including the size, rigidity, and atomic configuration
of the contact layer are taken into account to study the friction of the sliding nanoparticle. Several collective
features show up once the particle contact layer is incommensurate with the surface potential, and the intralayer
atomic coupling is strong. For a rigid layer, a considerable reduction of the friction is predicted at some particular
sizes. In addition to these superlubric sizes that are determined by the lattice mismatch ratio only, enhancing
the multiatomic feature by increasing the layer size and/or the intralayer coupling strength results in a friction
reduction, which is essentially exponential for different values of the normal load (represented by the interaction
amplitude). The latter kind of superlubricity is attributed to the increase of the number and synchronization of the
intermediate slips of individual atoms in the contact layer that prevents the formation of high potential barriers.
The edge atoms, on the other hand, are shown to be determinant in increasing the friction when they refuse to

contribute to the collective slips.
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I. INTRODUCTION

Friction is perhaps the most pervasive mechanical phe-
nomenon in nature. Static friction is beneficial to our daily life
by keeping surfaces stationary on each other. Kinetic friction,
on the other hand, is a major source of wear of solid surfaces
and energy loss into heat. The difference between the macro-
scopic and microscopic pictures of friction [1] manifests itself
easily. Recall Coulomb and Amontons’ laws: friction force is
independent of contact area and sliding velocity but increases
linearly with the normal load at the macroscopic interfaces.
In contrast, friction between two atomic-scale surfaces does
depend on the contact size and sliding speed [2,3] and varies
nonmonotonically with load [4]. Compared to the macro-
scopic scale, better control and more details are accessible
in friction experiments at the nanoscale. In particular, kinetic
friction between macroscopic bodies is traditionally reduced
by introducing lubricants into the contacts while a complete
elimination of dry (i.e., no lubricant) friction has been realized
at nanocontacts [5,6].

The intriguing state known as structural lubricity emerges
at the atomically clean interface of two lattices if their relative
orientation is set out of commensurate (locking) angles or if
the ratio of the lattice parameters is an irrational number [5].
In the thermodynamic limit of an infinitely large interface,
the frictional forces felt by the atoms of each surface overly
sum up to zero due to translational symmetry under the
incommensuration condition [7]. Thus, one may call this really
frictionless and nondissipative motion the superlubricity (SL)
state. Even under ambient conditions [8] or for finite-size
contacts [9,10] the possibility of sliding with very low or
negligible friction has been proven. Commonly, this ultralow
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friction state is categorized in the same family as the SL state
to distinguish it from the high frictional stick-slip (SS) motion.
This nonlinear phenomenon happens if the two surfaces remain
stuck together until the external pulling force overcomes the
static friction and breaks down the sticking state. The surfaces
slip suddenly past each other and the stored elastic energy
is dissipated, but they stick together again at a new relative
position, and so on. This regular SS motion is highly frictional
and dissipative, and is observed at almost any length scale:
relative motion of the earth’s plates [11], noisy scratching
of chalk on a blackboard, peeling of an adhesive tape from
the roller [12], dragging an atomically sharp friction force
microscope (FFM) tip on a graphite surface [13], etc.
Investigating the difference between the two frictional
regimes (SL and SS) from a microscopic viewpoint has
attracted a considerable attention. The SL to SS transition on
different model interfaces has been studied by playing around
with several physical parameters. For example, it is shown that
the dragging of a graphene nanoribbon on a clean metallic
surface is frictionless [9] only if the ribbon is not longer
than a critical length [14-16]. The SS motion is shown to be
induced by, e.g., pinning the edges of the flake to the metallic
substrate lattice [9,14,16—18], or by increased normal load on
the FFM tip over NaCl surface [6]. Here, we aim to study
the effect of the multiparticle nature of the nanocontact on its
frictional behavior. In the rest of this paper, we first describe
our atomistic model that reduces efficiently the complexity
of the phenomenon by introducing an effective field within
the adiabatic approximation. For asymptotically stiff or loose
contact layer, analytic expressions for the frictional quantities
are obtained. Then numerical results for arbitrary structural
parameters are presented and a few interesting observations
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FIG. 1. Sketch of the model with point (left) or extended (right)
apex. The particle has a rigid body (shown by a rectangular box),
which is attached elastically to its apex on the bottom and to a moving
support on the top. The large apex is composed of N (quasi)atoms,
being subject to the surface potential with an amplitude normalized
by N, and are connected to the particle body by N identical springs of
relative stiffness 1/N while the intralayer relative stiffness is . The
particle interacts via the apex with the substrate surface represented by
a sinusoidal potential of periodicity a. The particle-support elasticity
is k¢, relative to that of the particle apex.

are discussed in comparison with the already-published exper-
imental and theoretical results.

II. MODEL

A rigid support of instantaneous position X; = V't drives
a nanoparticle at constant speed V over a rigid surface, as
illustrated schematically in Fig. 1. The sliding nanoparticle
is flexible and consists of three components: (i) the particle
body, (ii) a handle (cantilever) that connects the particle body
to the rigid support, and finally (iii) the foremost atomic
layer of the particle that is in an immediate contact with
the substrate surface. The contact layer is represented by a
one-dimensional (1D) chain of N atoms with mutual harmonic
coupling of stiffness x K between the nearest neighbors only.
(The dimensionless stiffness « characterizes the lateral rigidity
of the contact layer.) We denote the position of the centroid
of the contact layer, referred to as apex hereafter, by X, =
% Zi X;,where X;[ X ,(X;)]represents the i th atomic position
when the support is at position X and the particle body at
X . So far, three central quantities are introduced as positions
X, Xp, and X,. For convenience, the arbitrary reference of
the positions of the particle body and contact layer atoms are
chosen such that the natural (i.e., in the absence of the substrate)
values of the central quantities coincide Xg = X?, =X,. A
trivial choice for the contact layer is a regular lattice of spacing
b= (X% — XV)/(N —1) so that the atomic rest positions
become X? =X, +ib— (N + 1)b/2. A glassy structure can
be obtained by introducing randomized distortions of given
amplitudes to these positions.

To have comparable results with the conventional single-
atomic models, we intend to keep the overall layer-to-particle
stiffness equal to K independent of the number N of the atoms
in the chain. Therefore, N identical springs, each of constant
K /N, attach the N atoms of the contact layer to the particle
body at positions X ?. In the absence of the substrate, no force
is felt by the particle body from the apex as it is relaxed.
When the contact layer is deformed due to interaction with
the substrate, the force on the particle body from the layer
is given by summing up all atomic contributions and reads
+K 3 (XY — X;) = K(X, — X,). Note that this force is N

independent as we imposed. The particle body is equilibrated
if this force is canceled by the elastic force k¢ K (X; — X))
exerted by the support via the elastic cantilever of an effective
spring constant k4K and instantaneous elongation X; — X .
At the moment, we do not restrict ourselves to the equilibrium
state.

For a given support position Xy, the Lagrangian of our
tricomponent model system, having N + 1 degrees of freedom,
reads

N
1. 1 .
L= EM,,Xj + § EM,-X? —U(Xp; X1y 0 Xn).
i=1

The potential energy is given by

y -k

2
The first term represents the elastic contribution due to the
cantilever deformation while the second term describes the
interaction with the sample surface. We model the sample
surface as a rigid atomic lattice of periodicity a that interacts
with every atom in the contact layer via a sinusoidal potential
of peak-to-peak amplitude £ /N (if more than the first Fourier
component of the surface potential are significant, they can
be included in a similar way). The overall particle-surface
interaction depends also on the size, atomic arrangement,
and rigidity of the particle contact layer. More precisely, the
effective surface potential energy

1 [ E X\ K 02
VN_N;[_ECOS( P >+?(X,—Xl)i|

N-1

S [Xi— X0 - (X0, - X)) @

i=1

[X, — X;OP + V(X3 X1, ..., Xn). (1)

=

+

describes the interaction between the particle and the substrate
intermediated by the N-atom contact layer by taking into
account the collective response to the external shear strain
by the layer atoms. The periodic term in Vy tends to put
the atoms in the substrate potential wells by rearranging
them into a lattice commensurate with the substrate, while
the two elastic terms tend to keep the atoms in their natural
positions X?. For N =1 (i.e., when the «-dependent term
is missing), this competition is usually characterized by the
substrate corrugation parameter
_ 2n2E 3
= (3)

For finite sizes the multiatomic parameters come into play, too.
For example, arguing that all the springs connected to the layer
atoms act simply as they are in parallel, one may replace K by
N(K/N)+ (N — 1)k K to obtain

o__n_
1+ (N — i’

The argument is, however, not valid because not only the
many-body nature and collective response of the atomic layer
are completely ignored, but also it is assumed that all the atoms
experience identically the surface potential, i.e., the layer and
surface lattices match perfectly. In general, the misfit param-
eter m = b/a is not an integer and the effective corrugation

N
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becomes N and m dependent (and perhaps unrepresentable
analytically in general) as will be explored in Sec. IITA.

Units. Hereafter we take a/2m as the length unit and
Ka*/47? as the energy unit. Then the unit of force is
Ka/2m, see Eqgs. (4)-(6). For experimentally relevant values
a=3.14 A and K = 1 N/m (known as tip stiffness in FEM
experiments), we have Ka/2m =50 pN and Ka?/4n? =
0.031 eV so that n = 1 corresponds to a substrate corrugation
E = 0.62 eV. It would be reasonable to limit our investigation
to the range 1 < n < 20. Note that k4, ~ 10-100 corresponds
to typical cantilever stiffnesses in FFM experiments. In a
previous work, we have estimated the stiffness per unit for a
C-C bound molecular chain by calculations based on different
approximations to the density functional theory to be « ~
250-575 [19]. For bulk crystals, one can show that the Young’s
modulus (~5-300 GPa) times the interatomic equilibrium
distance gives the interatomic spring constant (~1-150 N/m).
We therefore sweep « with logarithmically increasing steps up
to 500.

Nondimensionalization. Solving numerically the equations
by implementing a computer program is more convenient if the
quantities are dimensionless. This also leads to conveniently
express the equations without repeating constant factors. For
example, instead of the lattice constant a, one works with the
dimensionless periodicity of the surface potential, which is 2
when the length unitis a /2. We will use throughout this study
the dimensionless length, potential energy, and force defined

as
2
Xa = <_>Xow 4)
a
472
vy = <K_a2)VN’ (5)

27\ 0L
foz = e
Ka)oX,
vy kg O 2
= — - T - A 9 6
0Xy 2 Oxy (xp = %) ©
where o = s, p, a, i for support, particle, apex, and atomic
coordinates, respectively.

III. RESULTS AND DISCUSSION

The goal of this study is to explain the frictional behavior
of the nanoparticle sliding on the periodic surface. The first
approach is based on exploring the dependence of the effective
surface potential

UN(Xpi X1, . ee s XN)
1 & 1 02
= N 2 |:—ncosx,- + E(x, —xl) i|
Py 2
+ 32 [Givn = x) = (. =) ©)

i=1

on the multiatomic parameters of the apex layer (N and k) and
the misfit and corrugation parameters (m and 7). The internal
degrees of freedom of the particle apex are accumulated in the

field

vy (xp) = Xmin U (Xps X1, .., XN)

Lyeees XN
that gives the potential energy as function of the particle-body
position x, when all atoms of the apex layer are relaxed to
their optimum positions that minimize the potential energy. In
general, the minimization is performed iteratively using a nu-
meric approach. We will first address particular cases that can
be treated analytically and derive compact expressions useful
to shed some light on the problem of friction between extended
contacts and to interpret some numeric results obtained later
on. Subjecting the pointlike assumed particle body to this field,
the interaction with the surface via the multiatomic apex of the
particle is fully described, while one plausibly keeps using the
formalism of the basic single-particle models.

A. Superlubric sizes

If the apex is aregular atomic lattice of lattice constant b, one
sees that xio =x, 4+ [2i — (N + 1)lmm (obtained by dividing
the atomic rest positions given in Sec. Il by the length unita /27
to become dimensionless and recalling that m = b/a). In the
limit of strongly coupled atoms to the particle body, or equiv-
alently weakly interacting atoms with the substrate surface,
i.e., when K >> E/a’, the constraint x; = x; suppresses the
internal degrees of freedom and only the cosine term in Eq. (7)
is nonzero. For such a rigid particle, the particle-substrate
interaction takes the trivial form of sinusoidal potential, namely

. n 0 rigid
lim vy :_N E Cosx; = —1y COSXp,

where the effective corrugation parameter reads'

rigid sin Nmm
W=\ Nsinmr )"
Similarly, for a highly stiff chain ¥ >> 1, a rigid shift of x; —
x? = X, — X, isinduced to every atomic position and the apex-
intermediated potential of the substrate affecting the particle
body reads
. 1oid

Kll)rglo vy = =y cosx, + %(xa —xp)% (8)
The interpretation is interesting, specially to understand why
the simple and basic models that assume the tip apex to be
a single atom (see Sec. IV) have been fairly successful to
explain many experimentally observed nanofriction results for
FFM tips [5,6]. Comparing Egs. (8) and (13), we conclude
that two nanoparticles, one with an extended rigid apex layer
whose centroid position is x, and one with a single-atom
apex at position x, both being subject to the same surface
periodic potential of corrugation 5, are governed by identical
mathematical equations but the effective corrugation appeared

to the nanoparticle with the extended apex is ng\i,gid. First, for

N .
1 —e/Ne sin Nt
1 Jna

Note that E e’ = [—oia =

VASH

N—1
. e’ T where J =
1 sina
-
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m = 1 (i.e., perfect lattice matching a = b) the ratio nx,g]d /n=
sin (Nmm)/(N sinmm ) reaches the bounding values £1, be-
comes N independent, and results in the maximum friction
force. (The ratio equals —1 for an even number of atoms
meaning that the pinning position of the particle body is shifted
by a/2 compared to the case of an apex with one or any odd
number of atoms.) We conclude that if the nanoparticle has a
rigid apex layer with a periodicity equal to the surface potential
periodicity, the apex layer is equivalent to one single atom.

Now we consider the case that the lattice of the rigid apex
misfits the surface potential (m is noninteger), for which one
sees that the effective corrugation amplitude is reduced by
a factor sin (Nmm)/(N sinmm) < 1. The factor vanishes if
sin(Nmm) = 0, i.e., when the layer size satisfies N = p/m
with p being an integer. For example, for acommensurate layer
with m = 5/4 the corrugation vanishes (and superlubricity is
gained) at sizes N =4, 8,12, .... Even for incommensurate
lattices (irrational m), the factor (and thus the corrugation nr;,gld
and the friction force) becomes small depending on how close
to an integer Nm is. For instance, if the mismatch ratio equals
the golden mean m = (/5 + 1)/2, the sizes of relatively
small corrugation are N = 3,5, 8, 13,21, ..., i.e., Fibonacci
numbers. This prediction is supported by our numerical results
(see high-« branches in Fig. 3). For any rational or irrational
mismatch ratio there exist such particular lengths that result
in small effective corrugation amplitude. To get a pinned or a
smoothly sliding state of a tightly bound chain of atoms on a
periodic surface, one should consider these particular numbers
of atoms.

In the opposite limit of noninteracting atoms « ~ 0, a
reduced form of Eq. (7) is obtained as

lim vy = —n{cosx;)y + 3{(x; — x?)z)N,

k—0

where (.)y denotes averaging over N atomic contributions.
If additionally the layer-surface fitting is perfect (m is an
integer) the individual atoms are statistically independent.
Physically, this means that all atoms are replicas of a single
one and no multiatomic feature appears. In particular, at finite
temperatures (.)y denotes averaging over N replicas of a
single atom that differ only in thermal fluctuations, as will
be discussed in more detail in Sec. IV B in connection with the
model introduced by Maier et al. [20]. Collective features show
up once m is not an integer because the atoms are attached to
a common base on the particle body even though they lack a
direct mutual coupling ¥ = 0.

As illustrated in Fig. 1, the interactions of each atom with
the surface and the particle body both are scaled by N in our
model. So, for any value of N, the ratio n characterizes the
competition between the surface corrugation and the apex-
body stiffness and determines whether the atoms remain close
to their unperturbed positions x on the particle body and slide
smoothly on the surface (as a rigid layer that was discussed
above) or fall down into the wells of the substrate potential
energy surface to experience a high frictional sliding. For a
moderate 7, the unbound atoms are expected to move inco-
herently and contribute, by a nonconstructive superposition,
to {cos x;)n to make vy (x,) a rugged function of the particle
position. Over such an irregular energy landscape, there exist
many shallow local minima that might or might not be sticky

enough to trap the particle. The final state depends also on
multiatomic parameters N and «. A quantitative exploration
of this issue and finding the critical corrugation parameter, is
possible in terms of the concavity of potential energy surface
(PES). The concavity is a measure of the local curvature of a
high-dimensional PES and is useful to characterize the stability
nature of the equilibrium points on it. If the PES is concave
at some (equilibrium) configuration, the particle is confined
there. For a given particle position, the PES, given by Eq. (7),
is a function of N coordinates of the contact atoms. The second
partial derivatives of the PES are collectively represented as the
N x N Hessian matrix K;; = 9y,,,vn which reads

(1 +x) —K
—kK (X2 +2c) -«

-k (xn-1+2) —K
—K (xy +x)

For an unbound (x = 0) chain of atoms, the Hessian ma-
trix is diagonal k;; = x; = (ncosx; +1)/N where yx; =
%(n cos x; + 1). Then, neither of the matrix eigenvalues are
negative (meaning that the energy landscape is strictly con-
cave) if n < 1. This results in a superlubric smooth sliding
of the particle. For n > 1, on the other hand, eigenvalues
of the Hessian matrix may take a negative sign, and thus a
stick-slip behavior is expected. Indeed, atom i experiences a
slip event if the eigenvalue y; is zero, which occurs at position
x¢ = arccos(—n ).

If « is finite, the subdiagonal elements (the only nonzero
off-diagonal elements, corresponding to the nearest-neighbors
interactions throughout the chain) modify the eigenvalue spec-
trum. the critical corrugation parameter would also deviate
from one. This complicated case has to be treated numerically,
as done later on.

B. Size and stiffness dependence of friction

The natural outcome of a nanofriction measurement,
namely the instantaneous friction as a function of the support
position, has the theoretical analog F,(X;) = (%) fs(x5).
Plugging Eq. (7) into Eq. (6) with « = s, one gains

fs(x) = Kdr[xp(xs) — xs].

As the support advances, to calculate the friction force one
needs only to determine the particle-body position x,, which
is in turn determined by the potential energy landscape vy (x,)
that is suggested by the substrate surface to the particle body
but also intermediated by the particle-apex layer. Assuming
that the system is in a quasisteady state, the net force on the
particle body and those on the individual atoms in the contact
layer are required to be zero (note that the our model system
has N + 1 degrees of freedom). Nullifying the force on the
particle body given by

fp = Kqr(xs — xp) + (xq — )Cp) 9

makes the particle equilibrated between its contact layer (apex)
and the support so that the friction force may be expressed in
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FIG. 2. Friction force, — f;, as a function of support position for several chain lengths 1 < N < 50 and bonding strength (a) k = 0, (b) 0.5,
and (c) 2, and (d) its maximum value — f as function of chain length for m = W5+1) /2 and n = 5. Bottom row: same as top row but for

n=15.

terms of either of the corresponding elongations as
Ss(xs) =Kdr(xp —X5) = Xg — Xp- (10)

Note that the normal ordering x, < x, < x,; corresponds to
a negative (resistant) f;, while f; > 0 implies that the apex
leaves behind the body centroid (and similarly the body
centroid overtakes the support reference position).

On the other hand, nullifying the net force on each of the
layer atoms

fi=—2(nsinx; +x; —x0) + «d; 1D

implies that the atomic positions satisfy x; — x? = —nsinx; +
Nkd;, where d; denotes the difference between the elongations
of the interatomic springs on the right and left of atom i. If all
natural interatomic spacings are equal to b, one obtains d; =
(xi+1 — 2x; + x;—1) for the interior atoms, while d; = x, —
x; —2mwm and dy = xy_; — xy + 27tm for the chain ends.
Since by definition ZlN d; = 0, the right-hand side of Eq. (10)
is rewritten as

fi(xg) = {xi — x7), = —n(sinx;)y.

So far, we have discussed a number of asymptotic frictional
behaviors of the nanoparticle based on analytically derived
expressions. Trends and further interesting results are ob-
tained by solving numerically the equations of motion of the
model multiatomic system. For an arbitrary set of parameters
(N, k, n, m), one needs to find the roots of f, = f; =0, i.e.,
the equilibrium configurations. Although it should not be so
complicated to do this task on computer, the determination
of the true transition path through the (N + 1)-dimensional
configuration space from the knowledge of the roots positions
is not straightforward. Instead, the dynamics of the system

is usually simulated by integrating the Langevin equation of
motion in time. In this work we employ an efficient alternative
for finding the true path with much less computational labor,
as introduced in Appendix A.

The variation of the friction force versus support position
calculated by Eq. (10) with a maximal incommensuration
[m = (\/5 + 1)/2] for several values of N and n, is shown in
Fig. 2 in three columns corresponding to three values of «; for
the sake of convenience, — f; is plotted versus x,; because the
friction usually opposes the motion direction. The observed
well-known sawtooth pattern is a signature of the stick-slip
motion. The plots are curvy around the maxima due to the
gradual disappearance of the well when the support advances.
More precisely, the slip takes place when the well minimum
and the adjacent barrier maximum converge to a same critical
point x. where the static friction reaches its maximum value
/¢ and the particle sets off the vanished well. The maximum
friction force f{ averaged over 50 stick-slip cycles is plotted
as a function of chain size in the fourth column. The plots
show that the frictional behavior is strongly influenced by
the contact size and interatomic bonding for both investigated
corrugations. The duration of the sticking state and accordingly
f, decrease as either of the multiatomic parameters N and «
increase. At the same time, the curvy feature dominates the
sawtooth pattern so that the stick-slip motion transforms to
smooth sliding. This can be attributed to the broadening of the
adhesion sites (to which the atoms stick) when « increases
at a fixed N, so that the forbidden regions between these
sites become smaller and thus the sticking duration is shorter.
When the number of atoms increases at a given k, indeed
the number of intermediate slips increases. Both of these
effects prevent the formation of high potential barriers. This
intuition is confirmed by the fact that the effect of increasing
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FIG. 3. Mean friction versus the number of atoms in the contact
layer for different values of «, for an incommensurate (left) or
commensurate chain (right) with n = 5 (top row) and n = 15 (bottom
row).

the corrugation parameter n opposes the effect of increasing N
and «, as seen in the bottom row. The surface corrugation tends
to separate out the atoms and rearrange them as independent
atoms in a lattice commensurate with the surface potential,
while enhancing « tends to keep them coupled together and
behave collectively.

To better inspect the N and « dependence of friction, the
variation of the mean, i.e., time-averaged friction force —( f;);
as a function of the chain length is shown in a semilogarithmic
scale in Fig. 3. The time-averaged friction corresponds to
kinetic friction force, which is a relevant physical quantity. It
is calculated as (we drop the subscript ¢ for convenience)

1 T
() = lim ~ / £ ()
=00 T Jy

ni
a
fs (xf) Axf.
2L ;

The summation approximates the work done by the external
force to pull the support in n;, random steps Ax*.> Based on trial
and error tests, we were convinced that aline scan of length L =
() >3k, Axk ~ 50a is long enough to converge to steady-
state values. As seen in all panels of Fig. 3, and discussed above,
the kinetic friction force is essentially reduced when N and/or
k increase. There is an exception, however, in the extreme case
of independent atoms k = 0 (see also the left column of Fig. 2),
for which the friction mean remains, for any value of m and
n, unchanged for all chain lengths. The static friction force

~

2Higher-order approximations to the integral are not helpful when
the step length is chosen randomly.

*, however, decreases slowly with N even in this exceptional
case; see the ¥ = 0 branches in the right column of Fig. 2.

As soon as the intralayer atomic interaction is turned on, the
kinetic friction decreases with N. The behavior is qualitatively
similar for n =5 or 15 (top and bottom rows in Fig. 3) but
weaker corrugation causes smaller friction, in general. This
leads to the conclusion that surface corrugation competes the
multiatomic parameters (size and interatomic binding strength)
that tend to reduce the friction, in consistence with our earlier
intuitive argument based on the incoherent individual slips
throughout the chain. Finally, note that for small «, kinetic
friction force decreases monotonically (exponentially) with
N, but becomes vanishingly small at some particular sizes
for strongly bound atoms. The plots for incommensurate and
commensurate chains, shown on the left and right columns,
seem fairly similar apart from these superlubric sizes. The
presence and values of such superlubric sizes are already
predicted in Sec. IIT A, in terms of the vanished amplitude of the
effective potential vy (or equivalently the effective corrugation

) for rigid chains.

C. Atomic configuration and edge effects

The deviation of the effective potential vy from the naive
sinusoidal potential of a single atomic apex is a result of
local deformations throughout the multiatom contact. Clearly,
plotting the whole local deformations (atomic displacements
8 = x; — x? or bond elongations d; = ;1 — §;) for the sim-
ulation time makes the plots too messy if not unreadable. We
visualize the geometry of the chain by folding it into the unit
interval using the Aubry’s hull function [21]

X |Xx
h(X)=;—{—J, (12)

a

which measures distances relative to the closest lattice node
on the left. One essential feature of this representation is
that a discontinuity (known as analyticity breaking) in h(X)
corresponds to a slip event along the X coordinate and implies
a gap in the excitation spectrum of that component. In contrast,
a continuous diagram corresponds to low frictional smooth
sliding and corresponds to a superlubric state.

First, we compare in the following two representative short
chains of lengths N =3 (recall that the Fibonacci number
3 is a superlubric size when m is set to the golden mean)
and N = 4, which exhibit pronounced «-dependent frictional
behavior, as seen in Fig. 3. We consider in our experiment only
three values of stiffness x = 1, 2, 5 with distinct differences
for both triatomic and quadatomic chains. The profile of the
hull function diagram for the triatomic chain, shown in Fig. 4,
alters significantly upon increasing «: the number of gaps and
their widths reduce and finally a discontinuous-to-continuous
transformation, corresponding to SS-to-SL transition takes
place. In contrast, the quadatomic chain’s hull diagram, shown
in Fig. 5, remains singly gapped and its profile remains
essentially unchanged over the same range of k. The position
of each of the four atoms in the quadatomic chain spans only
almost one half of each lattice spacing while the other half
is always slipped over. This large gap is an indication of
a high-frictional SS motion, in agreement with Fig. 3 (left
column). It is worth noting that the slips of the four atoms are
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FIG. 4. Representation of atomic configuration based on the hull
function, Eq. (12), for a chain of length N = 3. The pronounced (red)
branch corresponds to the chain’s center of mass while the thin ones
to the atoms. The interatomic stiffness x increases from left to right,
m= 5+ 1)/2 and n = 5 [same as in Fig. 3(a)]. Data points are
collected for a line scan of length 50a.

synchronized with each other and thus with the chain’s center
of mass (CM). Note how the broken branches of different atoms
are connected together in the hull diagram; as soon as an atom
leaves an adhesive site on the surface, the atom behind it sits
immediately at that site; As a result, the chain follows the
support by a high-frictional SS motion.

Next, we plot in Fig. 6 the hull diagram for another
incommensurate but longer (N = 10) chain. Compared to
the short chains, superlubricity is gained for much smaller
stiffness «. Moreover, the individual atoms slip in turn and
asynchronously when they are independent (x = 0) or not
tightly bound (xk = 0.2). The resulting hull function of the
CM shows ten, i.e., the same as N, small gaps while the
discontinuities of the atomic hull functions, i.e., the length of
the individual slips, is much longer (~3/4 and ~1/4, forx = 0
and 0.2, respectively), which is also seen in the corresponding
plots in the bottom row where the hull function of individual
atomic positions are plotted separately. By increasing «, the
number of gaps of the CM branch decreases. For« = 0.5, many
atomic slips disappear while some others become synchronized
such that only two gaps are survived on the CM hull function.
The ordering of the branches, needed to identify the atomic
slips that are synchronized, is deduced by comparison with the
panels on the bottom row. The sum of the CM gap widths is
smaller and results in a decreased mean friction, as expected
from Fig. 3. By inspecting the hull function of individual
atoms, shown on the bottom row, we found that the largest
slips belong to the atoms at or close to the chain ends. In other
words, the atoms at the edges of the layer can suppress the
superlubricity by sticking to the sample surface and slipping
over rather long distances. This is in complete agreement with
the previously reported observation for dragging one end of
a single-atom thick molecular layer adsorbed on crystalline
surfaces [14]. The atoms at the free edges are more flexible

1 r=1 K=2 K=5
7 o ! / ,’ -7 /
21 i 7R rays 7
Z 3 /
= // // ‘/ / //
L
0 e / ; / !
0 h(Xs) 1 0 h(Xs) 1 0 h(Xs) 1

FIG. 5. Same as Fig. 4 but for length N = 4.

than the inner atoms and thus have a higher chance to become
pinned to surface confining sites. Studying the same effect at
the position of a defect (a missing atom, for example) to see
whether it induces similarly high-frictional stick-slip motion
merits further experimental investigations. Finally, recall that
friction mean was shown in Fig. 3 to decrease when the number
of atoms and/or their mutual binding strength increases. We
attributed this to the increment of the individual atomic slips
and extension of the adhesion sties. This intuitive argument
is confirmed by looking directly at the atomic configurations
represented in the hull diagrams.

For stiff chains (¢ = 1, 2) the sliding becomes smooth and
frictionless, as all atoms including edge and inner atoms slide
continuously without getting pinned to the surface. The high-«
hull diagrams look fairly symmetric with respect to the central
point, implying the time-reversal property: if the support
motion direction is reversed, the trajectory remains unchanged.
In contrast, low-« plots are asymmetric so that hysteresis loops
would be generated if the support goes backward to the starting
point. Indeed, the symmetry of the hull diagrams is another
signature of the smooth sliding. To conclude, for bound atoms
in the contact layer, apart from the particular superlubric sizes
satisfying N ~ pm, where p is an integer, the friction tends to
decrease as the chain becomes longer and stiffer.

IV. RELATION TO FFM

There are three characteristic types of elastic connection
between the components of our model illustrated in Fig. 1 and
described by Eqgs. (1), (2): The particle-support connection has
a spring constant k4. K , the overall stiffness of the particle-apex
connection is K (which is distributed among N identical
springs of constant K /N), and the flexible apex is a layer with
interatomic springs of constant x K. Replacing one or some of
these elastic connections with rigid bonds simplifies the model,
and probably reduces it to one of the previously proposed
models by other researchers. Our discussion in the following
mainly concerns the question that why and when an elastic
term is really required to be explicitly taken into account.

Traditionally, the basic and simplest framework to describe
the stick-slip motion at an atomic scale has been the Prandtl-
Tomlinson (PT) model [22,23]. This model successfully de-
scribes several aspects of experimentally observed frictional
behavior of sliding FFM tips or nanoparticles on a periodic
surface. This success is somewhat surprising because the tip
asperity is not guaranteed to be a single atom but in most
experiments the frontmost atomic layer that is in immediate
proximity to the substrate surface contains several atoms while
the PT model considers the tip to be a structureless particle.
Modeling the apex as a chain of bound atoms as explained
above, is indeed a first step to take into account the multiatomic
nature in a simple way. The appealing feature of the developed
framework, that can be considered as an extension to the PT
model, is that while the simple formalism of the conventional
PT model is preserved, the tip position-dependent structure
of the particle apex is convolutionally encoded into a single
effective potential vy (x,), Eq. (7). It is instructive to clarify
in more detail how our model is connected to the PT model,
and also to compare it with the extensions to the PT model
developed previously for FFM investigations.
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FIG. 6. Same as Fig. 4 but for length N =
of their index.

A. Point apex and rigid lever

In early studies based on the primitive PT model, the FFM
tip was modeled as a pointlike particle of some effective mass,
which is dragged through a corrugated substrate surface. The
PT particle (FFM tip) is indeed a single-atom apex (N = 1)
attached (via spring K) to the particle body. Analogous to the
configuration vector x in our formalism, the apex position is
always x = x,, so that Eq. (7) is reduced to

V] = —1ncosx + %(x — xp)z. (13)

Note that our effort so far was meant to generalize v to vy
in order to include finite-size and interatomic bonding of a
flexible apex.

The particle body in the PT model is rigidly (kg > 1)
attached to the support (x, = x,). Plugging v; into Eq. (1),
the potential energy reads

Ka?
42
The PT particle tends to relax to an energy minimum to feel
no force F = —dxUpr = —(%)f, where

UPT=v1=< )[—ncosx%(x—xs)z] (14)

f=—(sinx +x — x;) (15)

is the monatomic analog of the force vector f with compo-
nents given by Eq. (11). The number of stationary points
of the energy, i.e., the solutions to equation x + 7 sinx = x;
characterizes the frictional behavior of the PT particle. This
number depends on the surface relative corrugation, Eq. (3).
If the local curvature of the energy surface dxxUpr = K x is
strictly positive then Upr has no corrugation and is confining
everywhere so that the particle slides smoothly on it. Recall
that x = ncosx + 1 is analogous to the diagonal elements
of the Hessian matrix when the apex contains more than one
atom. A positive curvature K x correspondston < 1,i.e., weak
substrate interaction or stiff cantilever. On the other hand, for
n > 1 the energy potential surface becomes corrugated and

|
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10. Bottom row: Hull function of the center of mass, and individual atomic positions as a function

contains successive hills and valleys (where y is negative and
positive, respectively). As the support advances, the particle
resides in a valley minimum, which satisfies n sinx + x = x;.
The instantaneous friction force [see Eq. (6)]

(16)

—fs =xy—x =nsinx

grows almost linearly with x; for a large range because x
increases very slowly with increment of x; so that — f; =~ x;.
In the same time, the x;-dependent parabolic contribution
to Eq. (14) is shifted with respect to the sinusoidal one
such that the Peierls-Nabarro (PN) barrier height (the energy
difference between the hill maximum and the valley minimum)
decreases. Once these two extrema converge to a same point

¢ = arccos(—n~"), which is called a critical point because
x = 0, the particle sees no PN barrier. The critical friction
—f& =nsinx® = /n> — 1 is the maximum (static) friction
force that the particle can exert on the support against its
motion, and beyond which the particle slips to stick to the
next well minimum.

As seen in the N = 1 branches in Fig. 2, near the critical
point f;(x,) becomes curvy because the approximation x; —
X =~ x, is no longer valid. After slipping to the next minimum
x; — x and thus — f; become small or even negative. These all
resemble the SS motion. At zero temperature, the SS-SL transi-
tion occurs critically at n = 1, which distinguishes corrugated
from smooth landscapes. For motion with a sufficiently low
speed, the stored energy in the stick phase is transformed into
kinetic energy upon slipping and then completely damped as
phonons into the substrate (and probe). At finite temperature,
or if the support moves so fast that the slipped particle would
not fully relax before the new PN barrier vanishes, the particle
overcomes hills of finite height. This suggests that increasing
the speed or temperature reduces the friction in agreement with
the experimental observations [2,24].
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B. Point apex and elastic lever

The primitive PT model predicts a sudden jump over PN
barriers. One subtle effect that this simple model fails to
describe is the finite duration of the slip event detected in
experiment [20]. Maier et al. represented the tip apex by
multiple asperities and showed that the slipping phase becomes
smoothened and takes a while (see Figs. 5 and 6 of Ref. [20])
due to incoherent jumps of the individual asperities. Each of the
N asperities is attached elastically by a spring of stiffness K /N
to a common tip body, which is in turn connected elastically
to the support. Our model is indeed inspired by this idea but
we additionally include the interasperity coupling and did not
delimit the mismatch parameter to integers. In contrast, they
set the equilibrium distance between the asperities equal to
(indeed, commensurate with) the substrate periodicity to be
able to observe the substrate periodicity. The asperities in their
model are not directly coupled together and thus it works in
practice as an average of multiple replicas of a PT particle
that are statistically independent and differ merely in thermal
fluctuations. The essential element in their model, without
which one cannot get the slip prolongation, is taking into
account the elasticity of the cantilever.

Explaining the slip prolongation is possible also in terms of
delocalization of the tip apex between potential energy wells,
as proposed by Abel et al. [25]. The CM of the tip is connected
by a stiff spring to the support but also by a loose spring to
the tip apex that interacts with the periodic substrate surface.
The latter spring represents the flexibility and slippery nature
of the contact. For a given support position, a time average of
the apex position (or any quantity) is indeed a weighted one
over all possible apex positions.

The two extensions to the PT model cited above are
essentially identical in the sense that both of them are averaged
double-spring PT models. By double-spring we mean that
both particle-support and particle-apex connections are elastic
(in contrast to the basic PT model where the particle-support
connection is rigid). Including this degree of freedom is critical
in the occasion addressed above. The averaged double-spring
PT modelis gained by taking an average either over the time (as
in Abel’s extension) or over a set of replicas that are identical
unless in thermal randomization (as in Maier’s extension). In
our notation, both of these extensions are simply obtained by
replacing Vyy < (V;) in Eq. (1), namely

Kar K
2

where V| = Ka?/(4m?)v; is given by Eq. (13).

Upry = (X, — X" +(Vi), (17)

C. Extended flexible apex

The Frenkel-Kontrova (FK) model is widely used to de-
scribe the dynamics of a chain of mutually interacting particles
subject to a periodic potential [26] in a rich variety of physics
problems from dislocations and charge density waves in solid
crystals to trapped cold ions in optical lattices [27,28]. A variant
of the FK model, where the foremost atom of the atomic
chain is harmonically connected to a rigid moving support,
successfully explains the SL state observed experimentally for
a graphene nanoribbon over gold surface [9]. It was also used to
show that either pulling or pushing the chain results in an SL

to SS transition at certain chain lengths [15]. The potential
given by Eq. (7) adopts the same idea to be applicable to
nanoparticles thicker than a monolayer by connecting all the
atoms to the particle body. Apart from the finite size of the
chain, and including the body-support elastic connection, our
model is reminiscent of a previously studied model called the
Frenkel-Kontrova-Tomlinson (FKT) model [29,30]. The edges
and the additional spring, both ignored in the FKT model, can
become critically determinant in friction [14,20,25].

V. CONCLUSIONS

The very simple Prandtl-Tomlinson model has been very
successful in explaining many experimental nanofriction ob-
servations in either stick-slip or a smoothly sliding (superlu-
bricity) regime [5,6]. This is surprising because this model
assumes the sliding object to be pointlike (i.e., its lateral ex-
tension is ignored compared to the periodicity of the potential
of the surface) while the apex of a friction force microscope tip
is not guaranteed to carry a single atom at its very end. Inspired
by this fact, we seek to construct a theoretical framework
that enjoys the simplicity of the commonly used and well-
studied single-particle PT model, and at the same time be
applicable to nanocontacts of sizes larger than a single atom.
By conceptually separating the flexible apex layer from the
rest of a nanoparticle, a notable methodological simplification
is obtained: the equation governing the sliding motion of the
nanoparticle is reduced to the simple form of the PT model
at the expense of replacing the sinusoidal particle-surface
interaction with an effective field. The particle body, which
resembles the pointlike particle in the PT model, is subject to
this field that is originated by the sample surface but modulated
by the multiatomic nature of the particle contact layer.

This simplified picture of atomic friction at large contacts
leads to the prediction of a number of superlubric states. The
naive sinusoidal interaction (as felt by a single-atom apex) is
recovered if the layer is rigid, albeit its amplitude is reduced
depending on the layer size and its lattice mismatch with the
surface potential. There exist several superlubric sizes for a
given misfit ratio parameter, which minimize the effective
potential amplitude. To design a nondissipative interface, one
should consider such sizes.

Superlubricity can also be a result of other multiatomic
properties of the apex layer. As a rule of thumb, we found
that the kinetic friction becomes smaller as the atomic layer
becomes longer or stiffer. Based on the inspection of details
of the atomic configurations, we attribute this behavior to an
increase of the number of intermediate short atomic slips when
the chain becomes longer, while if the atoms are bound more
strongly together a collective feature is enhanced: disappearing
some of the independent atomic slips at the cost of synchroniz-
ing some other ones. Both effects suppress the discontinuity
in the sliding motion and decrease the kinetic friction. In other
words, increasing the number of degrees of freedom, and more
collectively exciting them, the results of increasing N and
Kk, respectively, are two origins of friction reduction at the
multiatomic interfaces.

The edge atoms, lacking at least one bonding, are less
coordinated compared to the inner atoms. Therefore, they may
refuse to contribute to the less-frictional collective motion on
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the surface if the intra-layer coupling is weak. This way, the
edge atoms play a critical role in increasing the friction on
average as they get more easily stuck in the surface energy
minima to lock the layer to the surface.
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APPENDIX A: NUMERIC ALGORITHM

The equilibrium configuration of the atomic contact layer
minimizes the effective potential energy, Eq. (7), for a given
x,. In practice, one implements a computer program that
properly alters the atomic positions, collectively denoted by
the vectorx = (x1, X2, ..., xy )1, in the direction of descent of
the energy. Even though nonquadratic terms contribute to vy,
the minimization can be done iteratively taking Newton steps
X < X + o AX, where the positive parameter « < 1 is tuned
dynamically: « is increased (decreased) by, e.g., 5% upon
energy decrement (increment) to speed up the convergence
(prevent overjumping the well minimum). The step vector
Ax solves the system of linear equations kAx = f. At each
iteration, the Hessian matrix k and the force vector f, given
by Eq. (11), are evaluated from the chain configuration x at
the previous iteration. If the iteration starts from an initial
configuration that is not too far from the equilibrium, only
after a few (typically two to five in case of N < 10) Newton
iterations, ||f|| vanishes to within the machine precision, i.e.,
the configuration is relaxed. The reason is that the Hessian
matrix K is positive definite in most points x of the configuration
space. In addition, solving numerically the linear system
of equations benefits highly from the symmetric tridiagonal
structure of the Hessian matrix with a much lower computa-
tional cost. We employed the Thomas algorithm with O(N)
operations [31]. These two factors, give this static approach a
considerable advantage over the dynamic approaches, which
are computationally expensive; see Sec. V.

Figure 7 illustrates how the algorithm works where we
consider a rigid cantilever (kg4 3> 1) so that x,, = x,. Once the
particle takes a random step forward, the position of the well
minimum on the energy landscape (shown by thin curves for
successive support positions) advances, too. The apex catches
the new well minimum in a few steps. It is seen that even
if the well disappears and the apex needs to slip to the next
well, the procedure works very efficiently by taking large steps
in the beginning followed by shorter ones close to the well
minimum. For demonstration purpose, here we assumed that
the apex consists of a single atom (N = 1). For a multiatomic
contact layer, a similar downhill skiing takes place on the N-
dimensional hypersurface vy (x,; X) per each particle position
x,. multiple slips and large jumps over several basins, observed
in experiment [32], may happen if the steps of the support
motion are not limited to very small ones (corresponding to
high-speed support motion).

If the cantilever is elastic (finite xq,), after updating the apex
configuration to achieve f; = 0, the support position is also

Potential Energy [K(a/2n)2]

FIG. 7. Energy landscape of the PT particle, Eq. (14), with n = 3,
and illustration of the energy minimization procedure. Each thin curve
corresponds to one position of the support. The support advances
stepwise by random steps not larger than 0.15a, and the numeric
algorithm suggests to the PT particle the positions shown by x
symbols (and connected by the solid line to help the eye to track its
path) to find iteratively the position with the minimum energy. Note:
in the PT model the cantilever is rigid (the positions of the particle
body and support are identical), so that the PT particle corresponds
to the particle apex in our formalism.

updated to x; = x, + (x, — x,)/«q4 to nullify the net force
on the particle body, Eq. (9). Note that when the suggested
backward correction of the support position exceeds the initial
trail forward step, the apex has experienced a slip and taken
over the particle body, and thus the particle body would
need to jump, too. In this case, instead of correcting the
support position we relax for a second time the particle-body
position according tox, = (x4 + kqrXs)/(1 4 kq.) followed by
rerelaxing the apex layer to nullify f;. Finally by updating
the support position f, is also nullified and the complete
equilibrium is attained. As discussed in Appendix B, one may
exclude completely the updating of the support position at the
absence of thermal fluctuations of the particle or when the
particle is massive.

APPENDIX B: NECESSITY OF INCLUDING
THE LEVER ELASTICITY

As stated above, if the lever elasticity is not taken into
account, the prolongation of the slip step at finite temperatures
could not be explained. Here we show that at zero temperature,
on the other hand, including the elasticity of the cantilever has
no advantage but keeping the formalism unified.

In a numeric algorithm, such as the one addressed in
Sec. III B, the procedure of relaxing the system when advancing
the support consists of the following steps. First, a preliminary
forward displacement is applied to the support (as the final step,
a backward correction will refine this coarse displacement).
Xp is then altered to laterally equilibrate the particle body
between the apex and the support. However, then the apex
atoms need to be brought back to equilibrium between the
new position of the particle body and the sample surface. This
rerelaxation of the apex configuration is done iteratively using
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the multidimensional minimization procedure based on the
Newton steps introduced in Appendix A. Again, the particle
body needs to be equilibrated because its interaction with
the apex has changed. In principle, alternating relaxation of
x, and x has to be done until self-consistency is achieved,
i.e., fp = fi =0 to within the desired accuracy. However,
this expensive alternating relaxations may be avoided. The
trick is that after the first relaxation of the apex and body, a
correcting (backward) motion is applied to the support so that
norerelaxation of the apex is required because the particle body
is not changed. To summarize, a fully equilibrated system is
obtained by taking four steps: (i) support coarse displacement,
(i1) particle body relaxation, (iii) apex layer relaxation, and
(iv) support fine relaxation. It should be mentioned that the
fine correction of the support position is accepted only if it
does not lead to positioning the support behind its position at
the previous step. This happens when the apex slips, which
means that the particle body should also slip. In that case, such
a support backward shift is waived, the second and third steps
are done once more and only then a fine correction is applied
to the support position.

Conceptually, the four-step procedure is equivalent to a two-
step procedure where the support displacement is explicitly
excluded. Starting from an already relaxed state, the particle
body itself takes a step forward to a new position, and the apex
configuration is then relaxed (iteratively). The instantaneous
friction force is given by the second expression in Eq. (10) in
terms of the relaxed particle-apex lateral separation x, — x,.
If the cantilever is rigid, the particle body and the support
coincide. For an elastic cantilever, however, one finds the
corresponding support position as x; = x, + Kd_rl (x, — x4) by
applying the condition f, =0 to Eq. (9). Interestingly, this
leads to another expression for the friction force in terms of
support-apex separation as f; = (1 + /cd_rl )—1(% — X4)-

The latter resembles a single-spring PT model [see Eq. (16)]
and implies that at zero temperature a two-spring model with
spring constants Kiever and Kypex is identical to the basic PT
model with a single-spring connecting the apex to the support
and having a stiffness equivalent to that of the two springs in
series, i.e., 1/(K-! + KL ). The corresponding corrugation

apex lever
parameter reads

which differs from Eq. (3) by a larger-than-unit prefactor. We
emphasize again that if the particle body is thermally activated,
the cantilever comes back into play and plays a critical role
[20,25]. Even at zero temperature, including the cantilever
elasticity helped us to keep the formalism for a multiatomic
apex layer identical to that of the basic PT model but with an
effective potential vy .

APPENDIX C: DYNAMIC VS STATIC SIMULATIONS

To evaluate the friction as a function of support position
fs(xy), first the equilibrium configuration of the particle body
and its apex need to be determined. The solution (x,;X) to
fp» = lIf]l = 0 is not unique and the structure is equilibrated
if trapped in any of the local minima of the potential energy

landscape. Indeed, the system does not necessarily choose
the ground state but its current state depends on its dynamics
history. A reasonable approach to find the same tip trajectory
as in experiment is to perform molecular dynamics (MD)
simulations to integrate the Langevin equations of motion
m;X; = fi — yx; + & (t) for the N atoms, and also an addi-
tional one for the particle body if its effective mass is not too
large. The drift forces —y x; simulate the energy dissipation
while random forces &;(¢) are responsible for pumping in
the energy with a rate proportional to the temperature 7.
To realize this feature, the random forces are picked from
a normal distribution satisfying the fluctuation-dissipation
theorem, (£;(¢)) =0 and (& (¢)&;(t")) = 2ykpT$;;6(t — t').
Because the forces f; depend on positions x, X;, X+, the
N + 1 equations are coupled together and all are solved at each
time step. Starting from an initial (equilibrium or randomized)
configuration, the positions are updated in response to stepwise
motions of the support. At each support position, after a
sufficiently large number of time steps to ensure that the steady
state is achieved, the MD simulation is still continued for
collecting the data (in particular, friction) needed to calculate
the time averages. The principal advantage of MD simulations
is that temperature and support velocity explicitly come into
the play. However, there are a number of drawbacks. For
example, the results depend on the choice of effective mass of
the particle body and atoms, effective damping parameter y,
and several other empirical quantities. In addition, the validity
and robustness of MD simulations depends on the integration
accuracy and the length of the time step. Conventional MD
simulations may become soon computationally expensive for
large systems if not only chain atoms but also sample atoms
are explicitly treated.

An MD simulation is not the only way to determine the
true configuration of the system. The system dynamics may be
extracted also from its static properties (stable configurations
and transition paths). This approach suits the present problem
because the particle and its apex get stuck in basin minima for
a while, while slipping very quickly over the barrier, meaning
that only a small region of the configuration space is practically
accessible by the system and thus relevant to its dynamics.
In other words, the system trajectory in the configuration
space is highly concentrated around only a few extrema of
the N 4 1-dimensional potential energy surface. Our static
method concerns only this region of the configuration space.
We move the support stepwise and essentially similar to an MD
simulation. The particle position and its apex configuration are
then optimized downhill into the minimum of the closet energy
valley, as explained before. This way, the same trajectory
as in a standard MD simulation is followed by the system
and the procedure shares with MD simulation the required
feature of being history aware. One notable advantage of the
proposed procedure of repeated activation-relaxation is that
the steps of the support displacement may be as long as a
fraction of the lattice constant a, namely orders of magnitude
larger than that in a real-time MD simulation. This reduces
considerably the computational cost in particular for long
chains or two-dimensional contacts. In addition, the procedure
is free of MD empirical parameters, e.g., effective damping
constants or mass.
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APPENDIX D: IMPROVING EFFECTIVE POTENTIAL

For a nanoobject with an arbitrary configuration of the
atoms at its apex layer all multiatomic-dependent properties
including contact size, interatomic distances, and arrangement,
bonding strength, etc. as well as thermal fluctuations of the
apex all are encapsulated in the effective potential. Employing
realistic model systems helps to improve the accuracy of
the particle-sample interaction field. For example, density-
functional theory calculations, performed on a number of rep-
resentative particle positions and interpolated for intermediate
positions, can provide a reliable effective potential where all
atomic and electronic degrees of freedom of a few atomic layers
of the sliding abject and the surface are accurately taken into
account.

Note that several parameters affect the frictional behavior.
We divide them into two families: structural properties and
external parameters. The present study focuses on the structural

properties, including the number of atoms (contact size),
coupling strength and particle-substrate lattice mismatch.
Studying the effect of external parameters, e.g., temperature
and support velocity, which are kept practically zero in the
present work, is a subject for future work. Here we give
only an outlook of possible extension to the introduced
procedure. In the simplest scenario, an effective potential,
which is temperature-dependent in an average manner, can be
constructed if the atomic positions are thermally randomized.
Alternatively, the temperature can be applied directly using
stochastic approaches. While the equilibrium configuration as
a function of support position is determined by following the
direction of the gradient of the effective potential (calculated
at zero temperature), thermal noises are introduced via random
displacements into the spatial degrees of freedom. A trail
displacement is accepted either if the energy decreases or
if the energy increment satisfies the condition given by the
Metropolis algorithm.
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