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This paper is a corrected version of Phys. Rev. B 95, 165404 (2017), which we have retracted because it contained
a trivial but fatal sign error that lead to incorrect conclusions. We extend a recently developed Fermi liquid (FL)
theory for the asymmetric single-impurity Anderson model [C. Mora et al., Phys. Rev. B 92,075120 (2015)] to the
case of an arbitrary local magnetic field. To describe the system’s low-lying quasiparticle excitations for arbitrary
values of the bare Hamiltonian’s model parameters, we construct an effective low-energy FL. Hamiltonian whose
FL parameters are expressed in terms of the local level’s spin-dependent ground-state occupations and their
derivatives with respect to level energy and local magnetic field. These quantities are calculable with excellent
accuracy from the Bethe ansatz solution of the Anderson model. Applying this effective model to a quantum dot
in a nonequilibrium setting, we obtain exact results for the curvature of the spectral function, c,, describing its
leading ~¢? term, and the transport coefficients cy and cr, describing the leading ~V? and ~T? terms in the
nonlinear differential conductance. A sign change in ¢4 or cy is indicative of a change from a local maximum
to a local minimum in the spectral function or nonlinear conductance, respectively, as is expected to occur
when an increasing magnetic field causes the Kondo resonance to split into two subpeaks. We find that the
fields B4, By, and By at which ¢4, cr, and cy change sign, respectively, are all of order Tk, as expected, with

B, = By = By = 0.75073Tk in the Kondo limit.
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I. INTRODUCTION

The Kondo effect, arising from the exchange interaction
between a localized spin and delocalized conduction band, is
characterized by a crossover between a fully screened singlet
ground state and a free local spin at energies well above the
Kondo temperature scale Tk . One of the most striking signa-
tures of the Kondo effect is the occurrence of a sharp resonance
near zero energy in the zero-temperature local spectral function
A(e), which splits apart into two subresonances when a local
magnetic field B is applied. Consequences of this Kondo peak
and its field-induced splitting have been directly observed in
numerous experimental studies of quantum dots tuned into the
Kondo regime, where it causes a zero-bias peak in the nonlinear
differential conductance G (V'), which splits into two subpeaks
with increasing field. Indeed, the observation of a field-split
zero-bias peak has come to be regarded as one of the hallmarks
of the Kondo effect in the context of transport through quantum
dots [1-7].

A minimal model for describing such experiments [§—11] is
the two-lead, nonequibrium, single-impurity Anderson model,
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describing a “dot” level with local interactions that hybridizes
with two leads at different chemical potentials. Within the
framework of this model (and its Kondo limit), numerous
numerical and approximate analytical studies have explored
the field-induced splitting of the Kondo peak in A(¢) and of the
zero-bias peak in G (V') [12-28]. However, no exact, quantita-
tive description exists for how these splittings come about [29].
For example, it is natural to expect that the emergence of split
peaks is accompanied by a change of the curvatures 3> A(&)|¢—o
and 8‘2, G (V)|y=o from negative to positive [30]. A quantitative
theory should yield exact results for the values of the “splitting
fields,” say B4 and By, respectively, at which these curvatures
change sign. This information would be useful, for example,
as benchmarks against which future numerical work on the
nonequilibrium Anderson model could be tested.

In the present paper, we use Fermi liquid (FL) theory
to compute these quantities exactly within the context of
the two-lead, single-impurity Anderson model, for arbitrary
particle-hole asymmetry. We develop an exact FL. description
of the low-energy regime where both the temperature 7 and
the source-drain voltage V' are much smaller than a crossover

©2018 American Physical Society
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scale E,, while the magnetic field B and the local level energy
&4 can be arbitrary. (In the local-moment regime at zero field,
E, corresponds to the Kondo temperature Tx.) Though our
theory does not capture the full shape of A(e) for arbitrary
e or G(V) for arbitrary V, it does describe their curvatures at
zero energy and voltage, respectively, for arbitrary values of B
and gg4.

FL theories for quantum impurity systems have been orig-
inally introduced by Nozieres [31] with phenomenological
quasiparticles, and by Yamada and Yosida on a diagrammatic
basis [32]. Later, these theories were extended to orbital degen-
erate Anderson models [33-38], or extended in a renormalized
perturbation theory [30,39-43]. They have also been extended
to higher order terms in the low-energy perturbative expansion
[44.,45]. The FL approach used here to obtain the above results
builds on a recent formulation by some of the present authors
of a Fermi liquid theory for the single-impurity Anderson
model [46], similar in spirit to the celebrated FL theory of
Nozieres for the Kondo model [31]. One useful feature of
FL approaches [31,46-56] is that they provide exact results
for the nonlinear conductance in out-of-equilibrium settings,
albeit only in the limit that temperature and voltage are small
compared to a characteristic FL energy scale E,. For example,
in Ref. [46], we obtained exact results for the differential
conductance and the noise of the Anderson model for arbitrary
particle-hole asymmetry [46], but zero magnetic field. The FL
parameters of this effective theory were written in terms of
ground state properties which are computable semianalytically
using Bethe ansatz, or numerically via numerical renormal-
ization group (NRG) calculations [57-59]. We here extend
this FL approach to arbitrary magnetic fields. This enables
us to obtain exact results for the low-energy behavior of the
spectral function and the nonlinear conductance for any B and
&4, and to explore the crossovers from the strong-coupling
(screened-singlet) fixed point to the weak-coupling (free-spin)
fixed point of the Anderson model as functions of both these
parameters.

Our work is based on the fact that the Kondo ground state
remains a Fermi liquid at finite magnetic field, as has been
demonstrated by NRG in Ref. [60]. There, the Korringa-Shiba
relation on the spin susceptibility was shown to hold at arbitrary
field, indicating that the low-energy excitations above the
ground state are particle-hole pairs, as predicted by FL theory.
Indeed, for both the Kondo model and the Anderson model,
there is a fundamental difference between a nonvanishing local
magnetic field and other perturbations such as temperature or
voltage. Electrons conserve their spin after scattering and are
thus not sensitive to the chemical potential of the opposite
spin species. At zero temperature and bias voltage, there is
no room for inelastic processes, regardless of the value of
the magnetic field, hence scattering remains purely elastic
even when the Kondo singlet is destroyed due to the applied
field. In contrast, increasing temperature or voltage open
inelastic channels by deforming the Fermi surfaces of itinerant
electrons.

The rest of the paper is organized as follows. Section II
develops our FL theory for the asymmetric Anderson model at
arbitrary local magnetic field and shows how the FL parameters
can be expressed in terms of local spin and charge suscepti-
bilities. In Sec. III, we exploit the effective FL Hamiltonian

to compute two FL coefficients. ¢4 and c4, characterizing
the zero-energy height and curvature of the spectral function,
respectively, and two FL transport coefficients, ¢y and cy,
characterizing the curvatures of the conductance as function of
temperature 7 and bias voltage V. From these we extract the
splitting fields B4, Br, and By at which cy4, cr, and ¢y change
sign, respectively. This is done first at particle-hole symmetry,
then for general particle-hole asymmetry. Section IV presents
a summary and conlusions.

Our main physical result is that throughout the local-
moment regime the three splitting fields are all of order of
the Kondo temperature Tk, as expected. In the Kondo limit in
which the Anderson model maps onto the Kondo model, we
find By = By = By = 0.75073Tk, where Tk is defined from
the zero-field spin susceptibility.

In a previous version of this paper [61], we had erroneously
reached a different conclusion for By. We had summarized
our main physical conclusions as follows in the abstract:
“Surprisingly, we find that the fields B4 and By at which ¢4 and
cy change sign are parametrically different, with B, of order
Tk but By much larger. In fact, in the Kondo limit, ¢y never
vanishes, implying that the conductance retains a (very weak)
zero-bias maximum even for strong magnetic field and that
the two pronounced finite-bias conductance side peaks caused
by the Zeeman splitting of the local level do not emerge from
zero-bias voltage.” These conclusion are simply incorrect—
they arose from a trivial but fatal sign error in Eq. (25) during
the computation of the conductance. When correcting this sign
error and all its consequences, one finds that By, just as By
and By, is of order Tk throughout the local moment regime, as
stated above. We have therefore retracted Ref. [61]; the present
paper constitutes a corrected version thereof. We would like to
emphasize, though, that the FL theory presented in Sec. II of
Ref. [61] remains unchanged—the sign error arose only during
the application of our FL to the computation of the conductance
in Sec. III. Indeed, the validity of our FL theory has been
confirmed in a very recent series of three papers by Oguri and
Hewson [62], who presented a microscopic derivation of our
FL relations using Ward identities. Their analysis pinpointed
a likely source of error in our computation of the conductance
in Ref. [61], which indeed lead us to discover our sign error.
Our corrected results for ¢y and cy fully agree with theirs (see
Appendix C). In Ref. [61], we had made an attempt to back up
our FL predictions by using NRG to compute the equilibrium
spectral function A(w), in order to extract c4 and ¢4 from its
the low-frequency behavior.

In retrospect, that analysis had been unreliable—in the
regime of current interest, where c4, and &, change sign
and hence are very small, it is very challenging to extract
them accurately, and we had not exercised sufficient care
in doing so. We have now made another attempt, using a
different NRG code that exploits all available symmetries,
allowing us to increase the number of states kept during
NRG truncation by a factor 7, leading to significantly more
accurate numerical results. Moreover, we have modified our
strategy for determining curvature coefficients from discrete
spectral data to directly extract C7 and Cy (rather than cy4
and ¢4). Our new NRG results, presented in Appendix D, are
consistent with our corrected FL predictions for Cr, Cy, Br,
and By.
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II. FERMI LIQUID THEORY
A. Anderson model

The single-impurity Anderson model is a prototype model
for magnetic impurities in bulk metals or for quantum dot
nanodevices, and more generally for studying strong correla-
tions in those systems. It describes an interacting spinful single
level tunnel-coupled to a Fermi sea of itinerant electrons. Its
Hamiltonian takes the form

i N
H = E EkChryCho + E Edo Nyo
o,k o

+Ulariay +1 Y (chyds +dics). (D)
k,o

Here,d ; creates an electron with spin o in alocalized level with
occupation number iy, = dd,,spin-dependent energy &, =

&4 — o0 B/2, local magnetic field B, and Coulomb penalty

U for double occupancy. c,tg creates an electron with spin

o and energy ¢&; in a conduction band with linear spectrum
and constant density of states vy per spin species. The local
level and conduction band hybridize, yielding an escape rate
2A = 2w vor?.

We will denote the ground-state chemical potential for
electrons of spin o by o, . Although o, and o are usually
taken equal, they formally are independent parameters that can
be chosen to differ, because the model contains no spin-flip
terms, hence spin-up and -down chemical potentials have no
way to equilibrate. In this paper, we will consider only the
limit of infinite bandwidth [63]. Then Koy and g ' constitute
the only meaningful points of reference for the model’s single-
particle energy levels. Thus ground-state properties can depend
on &4, and o, only in the combination €4, — oy, implying
that they are invariant under shifts of the form

Edo = €do T 8/"“0» Moo — Moo + 8/1“0 . (2)

In Ref. [46], this invariance was exploited for spin-independent
shifts (6,4, = §u) when devising a FL theory around the point
B = 0. Here, we will exploit the fact that the invariance holds
also for spin-dependent shifts to generalize the FL theory to
arbitrary B. Having made this point, we henceforth take 1o, =
to, = 0 (but for clarity nevertheless display 1o, explicitly in
some formulas). The model’s zero-temperature, equilibrium
properties are then fully characterized by U, A, ¢4, and B.

B. General strategy of FL theory a la Noziéres

Despite exhibiting strong correlations by itself, the ground
state of the Anderson model (1) is a Fermi liquid for all
values of U, ¢4, A, and B. A corresponding FL theory a
la Nozieres was developed in Ref. [46] for small fields. We
now briefly outline the general strategy used there, suitably
adapted to accommodate arbitrary values of B. Details follow
in subsequent sections.

The low-energy behavior of a quantum impurity model
with a FL ground state can be understood in terms of weakly
interacting quasiparticles, characterized by their energy ¢, spin
o, distribution function n, (¢), and the phase shift §, (g, ny)
experienced upon scattering off the screened impurity. At
zero temperature, the quasiparticle distribution reduces to a

step function, ”200 (¢) = 0(os — €), and the phase shift at

the chemical potential, denoted by 8o = 85 (oo » ng%, ), is
a characteristic property of the ground state. It is related to
the impurity occupation function, n;, = (74,), via Friedel’s
sum rule, 8o, = mny,. Likewise, derivates of 6y, with respect
to (wrt.) &; and B are related to the ground-state values
of the local charge and spin susceptibilities. The ground-
state dependence of local observables such as n,, and their
derivatives on the model’s bare parameters U, A, g4, and B is
assumed to be known, e.g., from Bethe ansatz or numerics.

The goal of a FL theory is to use such ground-state
information to predict the system’s behavior at nonzero but low
excitation energies. The weak residual interactions between
low-energy quasiparticles can be treated perturbatively using
aphenomenological effective Hamiltonian, Hgp , whose form s
fixed by general symmetry arguments. The coupling constants
in Hpp, together with &, , are the “FL parameters” of the theory.
The challenge is to express these in terms of ground-state
properties, while ensuring that the theory remains invariant
under the shifts of Eq. (2). To this end, Hp, is constructed in
a way that is independent of [, : it is expressed in terms of
excitations relative to a reference ground state with distribution
ngm and spin-dependent chemical potentials ¢p, chosen at
some arbitrary values close to but not necessarily equal to g, -
The FL parameters are then functions of U, A and the energy
differences €4, — €go. Importantly, and in keeping with their
status of depending only on ground-state properties, they do
not depend on the actual quasiparticle distribution functions
ns, which are the only entities in the FL theory that depend on
the actual chemical potential and temperature.

Hpyy isusedto calculate §, (¢, n,) for a general quasiparticle
distribution n,, to lowest nontrivial order in the interactions.
The result amounts to an expansion of the phase shift in powers
of ¢ —eyy and Sny, = ny, — ngoa, which are assumed small.
Since the reference energies g(, are dummy variables on which
no physical observables should depend, this expansion must be
independent of g, . This requirement leads to a set of so-called
“Fermi liquid relations” between the FL parameters, which can
be used to express them all in terms of various local ground-
state observables, thereby completing the specification of Hpy .
Finally, Hpp is used to calculate transport properties at low
temperature and voltage.

C. Low-energy effective model

The phenomenological FL Hamiltonian has the form

Hi= Y [ bl b+ Hot Hy .o Ga)
o &€
H, = Z/ [a]a(e + & — 26805)
a — el 2 Oo
~ Jey 2 2w
+ 251+ 82 = 2600)* bl b (3b)
o1 O
H, :/ |:—+—(81+82—280)
¢ eroea LT 4 T
2 2 b beabl bey . (3
+E(€3+84_ €0y) | 2 b pbesrby, beyy o (3€)
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It is a perturbative low-energy expansion involving excitations
with respect to a reference ground state with chemical poten-
tials &g, and distribution function nO (e) = 0(g00 — &) The
dummy reference energies &g, should "be chosen close to oo
for this expansion to make sense. Here, bla creates a quasi-
particle in a scattering state with spin o and excitation energy
& — &g, relative to the reference state; it already incorporates

the zero-temperature phase shift §y,. Moreover, : : denotes
normal ordering w.r.t. the reference state, with
:bl,beo i = bl bey — 12 (e). )

H, and Hy describe elastic and inelastic scattering processes,
respectively. Their formal structure can be justified using
conformal field theory and symmetry arguments [44,64,65],
summarized in Supplementary section S-IV of Ref. [46]. They
contain the leading and subleading terms in a classification
of all possible perturbations according to their scaling dimen-
sions, which characterize their importance at low excitation
energies with respect to the reference state. The coupling
constants in Hgp, together with the zero-energy phase shifts
80s, are the model’s nine FL parameters, which we will
generically denote by y € {8p5, ®15, @20, O1, P20 }-

In the wide-band limit considered here, all FL. parameters
depend on the model parameters only in the form

Yy = V(Ua Aa Edo — 80(7) ) (5)

because the chemical potential gy, of our reference ground
state is the only possible point of reference for the local
energies &;4,. Writing &y, = &9 — 0 By/2, we thus note that
all FL parameters satisfy the relations

=05y =g,V , —Op,y =0BY. (6)

The form of Hgy, in Eq. (3) is similar to that used in Ref. [46],
but with two changes, both due to considering B # 0. First,
because the magnetic field breaks spin symmetry, some FL
coefficients are now spin-dependent, namely those that occur
in conjunction with excitation energies of the form (& — &g, ).
Second, since the FL theory of Ref. [46] was developed around
the point B = 0, the FL parameters there were taken to be
independent of field, and the system’s response to a small field
was studied by explicitly including a small Zeeman term in
Hpy. In contrast, in the present formulation, the FL parameters
are functions of B that explicitly incorporate the full magnetic-
field dependence of all ground-state properties, hence our Hp,
does not need an explicit Zeeman term.

To conclude this subsection, we note that the form of Hpg,
presented above can be derived by an explicit calculation in
a particular limiting case: the Kondo limit of the Anderson
Hamiltonian where it can be mapped onto the Kondo Hamil-
tonian, studied in the limit of very large magnetic field. By
doing perturbation theory in the spin-flip terms of the Kondo
Hamiltonian, one arrives at effective interaction terms that have
precisely the form of H, and Hy above. This calculation,
presented in detail in Appendix A, is highly instructive,
because it elucidates very clearly how the reference energies
&0, enter the analysis and how the relations (5) and (6) come
about.

D. Relating FL parameters to local observables

Having presented the general form of Hpr, the next step
is to express the FL parameters in terms of ground-state
observables. The corresponding relations are conveniently
derived by examining the elastic phase shift of a single
quasiparticle excitation [53]. We suppose that the system is
in an arbitrary state, not too far from the ground state, charac-
terized by the spin-dependent number distribution (b!_b,,) =
ne(e)8(e — ¢’), with arbitrary n, (¢). The elastic phase shift
of a quasiparticle with energy ¢ and spin o scattered off
this state is obtained from the elastic part H,, in addition
to the Hartree diagrams inherited from Hy, thus 8, (¢, nor) =
800 — wI(Hy + Hg) /0y, (¢)- One finds the expansion

86 (87 na’)

= 300 + (110(8 - 80(7) + a2¢7(8 - 80(7)2
1 1
- / [¢1 + §¢2a(8 — &00) t+ §¢2&(8/ - 506)]5716(8,)-
@)

Due to the normal ordering prescription for Hy, all terms
stemming from the latter involve the difference between the
actual and reference distribution functions, éns; = ns no
where & denotes the spin opposite to o . Now, though expanswn
(7) depends on &g, both explicitly and via the FL parameters
y (U, A, e40 — €00 ), these dependencies have to conspire in
such a way that the phase shift is actually independent of &g, .
Thus the following conditions must be satisfied:

880817(87 na'/) = 07 aBU(SU(‘g? an/) =0. (8)

Inserting Eq. (7), setting the coefficients of the various terms
in the expansion (const., ~(& — &o5), X f8n;,) to zero and
exploiting Eq. (6), we obtain a set of linear relations among
the FL parameters, to be called “Fermi liquid relations™:

P _ g Bor 7 () + o) (9a)
= — o = — o) a

deg 1T W g T T

8051(: 1 80(1(, o 1

— = =@ — 2 oy - = | P20 2 o | 9b

96, 2¢2 Q) 3B 2(2¢2 + 2, ) (9b)

09y

1 1

e, = 3Bt eN) T =@n -0 00
They are important for three reasons. First, for fixed values
of the model parameters, they ensure by construction that
85(&,ny) is invariant under spin-dependent shifts of the
dummy reference energies &g,. Second, for fixed values of
€00, they ensure that for any distribution n, with well-defined
chemical potentials u,, the function 8, (&, n,) is invariant, up
to a shift in &, under simultaneous spin-dependent shifts [cf.
Eq. (2)] of the physical model parameters ¢,4, and w,', say by
S = S — %O'/hl

3o (& + 8“07 na’)|€(m'+5,u(,r,/4,,r+8u(,/ =5, (e, n(T')'é‘d{,f./l.,,f . (10)

Conversely, an alternative way to derive Eq. (9) is to impose
Eq. (10) as a condition on the expansion (7). [Verifying this is
particularly simple at zero temperature, e.g., using n,, = n?mo ]
In the parlance of Nozieres [31], Eq. (10) is the “strong univer-
sality” version of his “floating Kondo resonance” argument,

applied to the Anderson model. Pictorially speaking, for each
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spin species, the phase shift function “floats” on the Fermi sea
of the corresponding spin: if the Fermi surface w, and local
level g4, for spin o are both shifted by ., the phase shift
function §, (¢, n,) shifts along without changing its shape.

Third, the Fermi liquid relations, in conjunction with
Friedel’s sum rule, can be used to link the FL parameters
to ground-state values of local observables. To this end, we
henceforth set €y, = uo, and focus on the case of zero
temperature with ground-state distribution ”200 . Then only the
first term in Eq. (7) survives when writing down Friedel’s sum
rule for the phase shift at the chemical potential:

o (M()O'a nﬁoﬂ,) = 805 = TN4q - (1)

Let ng =), ngs and my = % >, ong denote the average
local charge and magnetization, respectively, and let us intro-
duce corresponding even and odd linear combinations of the
spin-dependent FL. parameters, to be denoted without or with
overbars, e.g., ] = % >,z anda; = % >, 0. Then we
have ng = 28y/m and my = 8y/m. By differentiating these
relations with respect to ¢; and B, we obtain various local
susceptibilities, which can be expressed, via the derivatives
occurring in Eq. (9), as linear combinations of FL parameters:

and 2
Xe=—7—=—(a1 — ¢1), (12a)
ey T
_ a1 e (12b)
Xs = 9B 2 (23] 1),
8md 8nd &1
m = T T = T = 12
X 9e, 9B 7 (12¢)
X 3%ny 4 3
_ A P ) 12d
dey de4? 7 |:oe2 4¢2i| (12d)
aXs 82md 1 [_ 3
_ _1 °5 | 12
9B 0B 2| T ? (12¢)
0 Xm 82md and 2 52
_— = = = = ——| o) — —= s 12
de, e, 9Bae,  n | (12D
Axm  0°ng 3°my 1 (03
W T Hd__TMd 2 22 12
0B _ 9B 9s0B  x|™ T3 (12¢)

Equation (12c) reproduces a standard thermodynamic identity,
and implies similar identities for higher derivates, 9 x,,,/0es =
—dx./0B and 9y, /0B = —0dx,/de,. By inverting the above
relations, we obtain the FL parameters in terms of local ground-
state susceptibilities:

o 1 o 30Xm 1 dx.

— — As “Kes T = T3 T 7 5 13
x T T T 160, (Y
1 1 (03} Oxm . 19X

— = Xs ~Xev T = T - s (13b)
T 4 T 0B 4 9¢y

o o 10x; 3 0xm

Ay, B 20 (13¢)
b4 T 2 0B 8 dey

¢ Axs  13xm

P2 _ 0% | 10K (13d)
T 0B 2 dgy

implying that ¢, = —d,,¢ and ¢, = 2d¢;. These equations
are a central technical result of this paper. Those for the even

FL parameters o » and ¢, , are equivalent to the ones obtained,
for zero field, in Ref. [46]. The expressions for «; and ¢; have
been shown [46] to be equivalent to the relation

45 6im
X 5 T Xe = J;zp
(gus) m2ky

(physical units have been reinstated in this equation) between
the spin/charge susceptibilities and the impurity specific heat
coefficient y;mp [41]. This relation in fact derives from Ward
identities [32,33] associated with the U (1) symmetry of the
model. We expect that the other expressions in Eq. (13)
also originate from Ward identities involving higher-order
derivatives.

Equations (13) can be checked independently in two limits:
for a noninteracting impurity, and at large magnetic field in the
Kondo model, see Appendix A for the latter. The former case,
U = 0, reduces to a resonant level model in which spin and
charge susceptibilities are easily obtained. We have verified
that they give ¢ = ¢, = 0, so that the interaction Hy =0
in Eq. (3) vanishes, and that the phase shift expansion (7)
reproduces that expected for the resonant level model.

All of the susceptibilities introduced above are calculable
exactly by Bethe ansatz, and hence the same is true for all
the FL parameters. In the particle-hole symmetric case, &5 =
—U/2, semianalytical expressions for the local charge and
magnetization have been derived with the help of the Wiener-
Hopf method. A comprehensive review on this approach can be
found in Ref. [65] and we summarize the resulting analytical
expressions in the [66]. They have been used to produce Figs. 1
to 4 below with excellent accuracy.

Away from particle-hole symmetry, where the Wiener-Hopf
method is not applicable, the Bethe ansatz coupled integral
equations (see Eq. (S3a) and (S3b) in Ref. [29]) have to be
solved numerically. This direct method is used in Figs. 6 and 7.
In Fig. 4, we have verified that at particle-hole symmetry it
agrees nicely with the accurate Wiener-Hopf solution.

To conclude this section, we briefly discuss some special
cases, for future reference. (i) Zero magnetic field: Eqs. (13)
for the odd FL parameters yield zero for B = 0,

A =dr=¢,=0, (15)

(14)

since m is an antisymmetric function of B.
(ii) Particle-hole symmetry. At ey, = —U /2 we have

na=1, 8 =n(3+omy), T1=0=¢=0, (16)

for any B. The three FL parameters vanish since n; — 1 is an
antisymmetric function of ¢; — U/2, implying the same for
Xm and 0 x./d&4, so that both vanish at e, = —U /2.

(iii) Kondo limit. If the limit U /A — oo is taken at particle-
hole symmetry while maintaining a finite Kondo temperature,
local charge fluctuations are frozen out completely and the An-
derson model maps onto the Kondo model. All susceptibilities
involving derivatives of n; with respect to &; vanish, namely,
Xe = Xm = 0e,Xc = 0, Xs = 0 Xc = 0, so that equations (16)
are supplemented by

aw_o_ A _d %
r n ™ m  wm T4B’

a7

Since x, and 9 x;/d B are strictly positive and negative, respec-
tively, the same is true for o, ¢ and o, ¢,.
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(iv) Kondo limit at large fields. In the limit B > Tk
of the Kondo model, its Bethe ansatz solution yields the
following results for the leading asymptotic behavior of the
magnetization and its derivates, with 8, = %(B [Tk )

1 1
~ B(npg)

my = (18a)

9 Xs 1
LS S — (18b)
0B B? (In B,)?
Thus all the FL parameters in Eq. (17) vanish asymptotically
in the large-field limit.

E. Characteristic FL energy scale

As mentioned repeatedly above, the FL approach only holds
for excitation energies sufficiently small, say | — oo | < E,
that all terms in expansion (7) for §, (¢, n,) — 8o, are small. In
the local moment regime of the Anderson model, the FL scale
E, can be associated with the Kondo temperature Tk, but in
the present context we need a definition applicable in the full
parameter space of the Anderson model. Following Ref. [46],
we define E, in terms of the FL coefficient of the leading term
in expansion (7),

b4 1
f= =, 19)
4o Axs + Xe
and Tk in terms of the zero-field spin susceptibility,
1
Tx (20)

Ay B0

While both definitions involve some arbitrariness, they are
mutually consistent, in that the zero-field value of E, equals
Tk in the Kondo limit U/A — oo, where we have

EP<0 =Ty, EP*'* = 1B(ng 7. 21)

More generally, EE= and Ty are roughly equal throughout
the local-moment regime where x. >~ 0, i.e., for U > A and
—U 4+ A < g4 < —A.Inthis regime, Tk is well described by
the analytic formula (af) [46,67,68]

7= SR e, (22)

where x = (g4 + U/2)s/7n/(2AU) measures the distance to
the particle-hole symmetric point. At the latter, T,gaf) |x=0 can be
derived analytically from the Bethe ansatz equations for y5=°
[65]. The factor e"z, familiar from Haldane’s RG treatment
of the Anderson model [67], phenomenologically includes
the effect of particle-hole asymmetry. Throughout the local
moment regime, Eq. (22) yields excellent agreement with a
direct numerical evaluation of Eq. (20) via the Bethe ansatz
equations for x 5=° (see Fig. 6 below).

III. SPECTRAL FUNCTION AND NONLINEAR
CONDUCTANCE

A. General results

For the remainder of this paper we consider a single-level
quantum dot with symmetric tunnel couplings to left and right

leads with chemical potentials eV /2, described by the two-
lead, single-level Anderson model. The nonlinear conductance
of this system can be expressed by the Meir-Wingreen formula
as [69]

GWV.T)= 3V%/[fL(8) — fr(&)]A(e). (23)

Here, f1/r(e) = [e®F¢V/2/T +1]7! are the distribution func-
tions of the left and right leads, A(e) =), As(e) is
the local spectral function with spin components A, (e) =
—mvo Im7T, (¢),and T, (¢) is the T matrix for spin o conduction
electrons scattering off the local level. A FL calculation of
the low-energy behavior of A,(¢) and G(V,T) has been
performed in detail at zero magnetic field in Ref. [46], fol-
lowing similar studies in Refs. [37,52,54,55]. The strategy of
the calculation is rather straightforward. First, one introduces
even and odd linear combinations of operators from the two
leads. The odd ones decouple, resulting in an effective one-lead
Anderson model for a dot coupled to the even lead, whose
low-energy behavior is described by the Hamiltonian Hpp
introduced above. Then, in the spirit of the standard Landauer-
Biittiker formalism [70], the current operator is expanded
over a convenient single-particle basis of scattering states
accounting for both the lead-dot geometry and the FL elastic
phase shifts. Interactions between electrons stemming from
Hy are included perturbatively when calculating the average
current in the Keldysh formalism [71].

The calculation described above trivially generalizes to
the case of nonzero field, since the two spin components
give separate contributions to the current. The results from
Ref. [46] for the low-energy expansion of the conductance
can thus be directly taken over, modified merely by supplying
FL parameters with spin indices. A corresponding low-energy
expansion for the spectral function can then be deduced
via Eq. (23). We now present the results obtained in this
manner, starting with the 7 matrix and spectral function, since
these form the basis for understanding the resulting physical
behavior.

For the T matrix, written as the sum of elastic and inelastic
contributions, the results of Ref. [46] (Supplementary section
S-V) imply

T3 (e) = —5—(1 =), (24a)
0

l'eZiSog

7;1nel(8) — _ ¢12 [82 + (T + Z(ev)Z] (24b)

27 v
Here, 7:’1(8) is determined by the phase shift 8, (&) obtained
from Eq. (7) using n,(¢) = %[fL (e) + fr(e)] as a quasiparti-
cle distribution function for the even lead:

1 3
85(8) = 8oo + 1,8 +0258% — Em[(nnhz(mz} (25)

(In Ref. [61] this equation contained an error, which leads to
incorrect physical conclusions, see Ref. [72].) Note that the
inelastic 7 matrix has the same dependence on temperature
and bias, which occur only in the combination (7 7)*+ 3 (e V)
[73]. This is significant, since it implies that knowing the
spectral function’s leading temperature dependence in equi-
librium suffices to deduce its leading bias dependence in
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nonequilibrium. The spectral function, expanded to second
orderin ¢, T, and eV, can thus be written as [74]

A(e) = Ao + Are — CA[(T TP +4(eV )] — Cas®,  (26)

with expansion coefficients

Ag = sin*(8p). A1 =Y e sin(28,), (27a)

~

3 1
Chi=—) [?p% cos(280,) — 625 sin(zaon)}, (27b)

1
Cy = — Z |:<O[%g + §¢12> c0s(2805 ) + 25 SIN(2804 )]

(27¢)

These results hold for all values of U, A, g4, and B.
Inserting Eq. (26) into (23) and using the relations

2 1 » 1 2
dy /[fL—fR]8 =€[§(7TT) +Z(€V) :|7

1 2, 1 2 1 2,3 2
v [l = fRl| (T + (V)" | = e 2(xT)" +—(eV)"|,
e 3 4 3 4
(28)
one obtains an expansion for the conductance of the form
G(V,T)=G — 2/ WICrT? + Cy(eV)].  (29)

Here, G = %AOGO is the zero-temperature, linear conduc-

tance, Gy = 26‘2/ h is the conductance quantum, and the
expansion coefficients of the quadratic terms are

CT = éﬂ2(5A+CA)’ CV = %(5A+%CA) (30)

Equations (30) and (27) are consistent with expressions for
Cr and Cy recently derived by Oguri and Hewson [62] (see
Appendix C).

The four C coefficients introduced above all have dimen-
sions of (energy) 2. If we express them as

~ CA Cx
CA=E—$, CXZE_f’ X=A, V,andT, (31
where E, is the FL scale of Eq. (19), the resulting four ¢
coefficients are dimensionless, with ¢y and cy corresponding
to the coefficients calculated in Ref. [46]. For asymmetric
couplings to the leads [75-77], not considered here, the
conductance also contains a term linear in V, as also discussed
in Ref. [54], where the same formalism has been applied.
Equations (27) instructively reveal which role the various
FL parameters play in determining the shape of the local
spectral function A(e) at the chemical potential, characterized
by its “height” A(0), slope A, and curvature C4. The ground-
state phase shifts dg, fix the height at zero temperature and
bias, Ag. The elastic couplings «j, and «y, of H, affect
only the slope and curvature, but not the height. The inelastic
couplings ¢ and ¢, of Hy determine the leading effect of
temperature and bias on the height via 5A, while ¢, also
contributes to the curvature C4. Moreover, via the sine and
cosine factors, the relative contributions of all terms depend
sensitively on the ground-state phase shifts &y,, and hence

can change significantly when these are tuned via changing
parameters such as B or &,.

B. Spectral function at particle-hole symmetry

When the single-level, two-lead Anderson model is tuned
into the local moment regime, the local spectral function
exhibits a Kondo peak that splits with magnetic field. Cor-
respondingly, the nonlinear conductance exhibits a zero-bias
peak that likewise splits with increasing field. Our goal is to
use FL theory to study the peak splittings of both the spectral
function and the nonlinear conductance in quantitative detail.
For this purpose, we will focus on the particle-hole symmetric
point in this subsection and the next, leaving particle-hole
asymmetry to Sec. IIID.

We begin with a qualitative discussion, based on the results
of numerous previous studies of the local moment regime
[12,48,78-83]. At zero field, the two components of the local
spectral function, A4 and A, both exhibit a Kondo peak at
zero energy. An increasing field weakens these peaks and shifts
them in opposite directions. When their splitting exceeds their
width, which happens for B of order Tk, then A = A; + A,
develops a local minimum at zero energy, implying that Cy
changes from positive to negative. We will denote the “splitting
field” where C4 = 0 by By4. (For B > Tk the subpeaks in
Ay, are located at € ~ £B, modulo corrections of order
FB/In(B/Tk) [12,81,83].)

For small fields, where the Kondo peak is well developed, an
increasing temperature or bias tends to weaken it, thus reducing
the zero-energy spectral height A(0). We thus expect C4 tobe a
decreasing but positive function of B for small fields. However,
this trend can be expected to be reversed for fields of order Tk or
larger, where Kondo cgrrelations are weak or absent, in which
case we may_expect Cy to become negative. We will denote
this field by B4.

To study this behavior quantitatively, we specialize the
results of the previous subsection to the case of particle-hole
symmetry using Eq. (16), obtaining

Ag = 2cos*(mmy), (32a)
Ca = 3¢} cos2rmy) + 1, sin(2wmy) (32b)
Ca = (20] + ¢7) cos(2mmy) + 2e sinRmmy) . (32¢)

Figure 1 shows the B dependence of ¢4 = Eza; and cy =
E2C, for several values of U/A. (We multiply by the B-
dependent scale E f [cf. Eq. (31)], since this better reveals the
large-field behavior, for reasons explained below.)

The main finding of Fig. 1 is that with increasing field,
both c4 and ¢4 decrease and change sign, as expected from
our qualitative discussion. The sign change for c4 implies
that our FL approach reproduces the field-induced splitting
of the Kondo peak in the spectral function. Moreover, we find
[Fig. 1(c)] that the scale for the fields B4 and B4 is universal,in
the usual sense familiar from many aspects of Kondo physics
in the Anderson model: the ratios B4/ Tx and B,/ Tk are of
order unity and depend only weakly on U/A, tending to a
constant value in the Kondo limit U/A — oo. Their limiting
value, namely, By = B4 = 0.75073 Tk, agrees with previous
numerical estimates [78,79].
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FIG. 1. Low-energy properties of the spectral function at particle-
hole symmetry. (a) The normalized height coefficient &,/¢X and
(b) curvature coefficient c,/cX of the local spectral function at
particle-hole symmetry, plotted as functions of magnetic field [in units
of Tk, as defined in Eq. (20)], for three values of the interaction
parameter U/A, including the Kondo limit U/A = oo [given by
Eq. (35)]. The sign change for C, signals the splitting of the Kondo
resonance into two resonances due to the breaking of the Kondo singlet
by the magnetic field. (c) The characteristic fields B4 and B, where
Cy and C vanish, respectively, plotted in units of Tk as functions
of U/A. In the Kondo limit, U/A — oo, they approach the same
limiting value, By = B, = 0.75073T.

Another observation from Fig. 1 is that ¢4 and ¢4 show
a very similar field dependence for B/ Tx < 1. In the large-
field regime, their field dependence differs somewhat for

weak interactions, U/A < 5, but becomes increasingly similar
with increasing U/A. To understand their behavior in the
Kondo limit U/ A — o0, we first consider that of C4 and Cj.
Equations (32) and (17) show that they are equal in this limit,
given by

Ca = Cy = 302 cosQumy) + 2@, sinQRumyg),  (33)

with zero-field values (indicated by a superscript K for “fully
developed Kondo effect”) of

5{:0{:3—”2—2 (B=0), (34a)
16 T
and asymptotic large-field behavior [obtained via (18)]
~ ]'[2
Cr=Cy = —Wlnﬂr (B> Tk). (34b)

This confirms that 5A and C4 both become negative at
large fields. Their magnitude changes in scale from ~1/7T2
for small fields to becoming negligibly small, ~1/[ B?(In 8, )],
for large fields. We now also see why it is useful to study the
C coefficients in the normalized form ¢ = E2C of Eq. (31),
as done in Fig. 1: E? increases with B and in the large-field
limit [see (21)] compensates the small prefactor in Eq. (34b).
Correspondingly normalized, Eqgs. (33) and (34) yield

C OB Xs .
A cos@amg) + 25 sin@amg),  (35)
€a  Ca As

with zero-field values and large-field behavior given by

3 2
B =ck =T (B=0), (362)
EA CA 1
G _ g (B> Tx). 36b
= o =3B (B> To) (36b)

The —1In B, term in Eq. (36b) explains the behavior of the
Kondo limit curves (thick solid) in Figs. 1(a) and 1(b).

As a consistengy check, we note that inserting the Kondo-
limit coefficients CX and CX of Eq. (34a) into Eq. (26) for A(e)
yields the low-energy expansion of the spectral function of the
spin-% Kondo model at B = 0. Indeed, the result so obtained,

AF (o) =2 — 372 [+ 1(xT) + 1(eV )]
16 T}

. (37D

is consistent with previous studies of the Kondo model for
V =0 [31,38,48,65] [see for example Eq. (4) of Ref. [38],
where the coefficients of this expansion, called ¢, and ¢’ there,
were checked numerically using NRG].

For completeness, we mention that the opposite limit of

weak interactions yields, for e, = U =0,
2 A2 2
- A*—3B7/4
¢y =0, = — 38
“ AT A + B4 %)

C. Conductance at particle-hole symmetry

We now turn our attention to transport properties, and again
begin with a qualitative discussion. The behavior of the local
spectral function discussed in the preceding subsection fully
determines, via the Meir-Wingreen formula (23), that of the
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FIG. 2. FL transport properties at particle-hole symmetry and
U/A =5, plotted as functions of B/Tk. Left axis: normalized FL
transport coefficients cy/c¥ (thick solid line) and cr/cf (thick
dashed line). The fields By and By where ¢ and ¢y change sign
are essentially equal and of order Tk. Right axis: normalized zero-
temperature linear conductance G /Gy = cos®(rmy) [from Eq.(32a)]
(thin solid line).

nonlinear differential conductance. At zero field G(V, T),
studied as a function of V, exhibits a peak around zero
bias which weakens with temperature, and which splits with
increasing field.

The details of these changes are quantified by Eq. (30): as
¢4 and c4 decrease with increasing field and eventually turn
negative, the same will happen for ¢y and cy. We will denote
the “splitting fields” at which cr or cy equal zero by By or
By, respectively. Since in Eq. (30) the relative weight of ¢4 to
c4 1is three times larger in cy than in c7, the behavior of these

0.8 -

Brv Tk

0.6 Ed/U:-1/2

U/A

FIG. 3. Interaction dependence of splitting field properties at
particle-hole symmetry, plotted as functions of U/A. Splitting fields
By and By at which ¢y and cy vanish (left axis, thick line),
shown in units of Tx. In the absence of interaction U = 0, the
Kondo temperature extracted from Eq. (20) is Tx = w A/2, hence
By = By = \/»TK >~ (0.735Tk . Inthe Kondo limit U /A — oo, both
curves approach the limiting value By = By = 0.75073T. The data
also agree with NRG to within the NRG’s error bars (see Fig. 9 in
Appendix D).

£4/U=-1/2

T 2F
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FIG. 4. Evolution of ¢y during the crossover to the Kondo limit.
The normalized FL transport coefficient cy /c¥ is plotted as a function
of B/Tx for several values of U/A, including the Kondo limit
(thick solid line). The direct integration of the coupled Bethe ansatz
equations, Egs. (S3a) and (S4b) [29], performed here for U/A = 20
(BAE, open dots), is in very good agreement with the corresponding
Wiener-Hopf solution (dashed line). All curves with large U/A
(210) initially collapse onto a universal scaling curve as function
of increasing B/ Tk, but for large B/ Tk they eventually bend upward
towards zero at a field scale that increases with U/A and tends to
infinity in the Kondo limit.

two coefficients, and that of the corresponding splitting fields
By and Br, can thus differ quantitatively.

In the noninteracting limit, where ¢4 = 0, c¢7, cy, and c4
are proportional to each other for all fields, cy = %CT =
ch, implying splitting fields of By = By = (2/«/_)A [see
Eq. (38)]. At this field value, the magnetlzatlon equals and
the zero-temperature linear conductance is G = —e2 /h,ie.,
of the unitary value Gy = 2¢2/ h.

With increasing U/A, the behavior of ¢y and cy are
strikingly similar for small fields and begin to differ only
for fields well above Tx. This is already evident in Fig. 2,
which shows the B dependence of G, ¢ and ¢y for U/A = 5.
With increasing field, G is smoothly suppressed on a field
scale set by Tk, while ¢y and cy both decrease and change
sign, at essentially the same scales: By and By are both of
order Tk, a property that they directly inherit from B, and
B 4. However, the large-field values reached by c¢7 and cy for
B > Tx are different. For U/ A not too large (<5, as in Fig. 2),
they correspond to the empty-orbital asymptotic forms found
in Ref. [46],

74 372
P =——, c“’/"z—6—4. (39)

A systematic study of the splitting fields By and By as
functions of U/A yields the results shown in Fig. 3. They
show qualitatively similar behavior, remaining of order Tk for
all values of U/A. This implies that By and By are universal
in the same sense as Bj4.

In the Kondo limit, Egs. (30), (33), and (34) yield

OBXs .
= = cos@rma) + 28 sin@rmy),  (40)
cr Cy TTXs
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with zero-field values and large-field behavior given by

4 2
kK 7 x 37
= —, = — B :O N 41
T =T V=35 ( ) (41a)
cr Cy 1
— =—=—=InB, (B> Ty). 41b
oK T K 3 Br ( k) (41b)

To conclude this section, we remark that it is instructive
to compare the predictions of our FL theory with those of
Hewson, Bauer, and Oguri [30], who computed By for the case
of particle-hole symmetry using renormalized perturbation
theory (RPT) [see the discussion after their Eqs. (19) and
(27)]. For example, for U/ A = 4, they find %BV ~ (0.584Tg
[after their Eq. (27)]. This is comparable in magnitude, but
not equal, to our result By =~ 0.7506 Tx (see our Fig. 3) for
the same value of U/A. However, we note that in Ref. [30] the
coefficients playing the roles of our ap,, and ¢, were computed
perturbatively in terms of the renormalized parameters of RPT
(the same three parameters are also used at zero magnetic field
[40]), and are therefore approximate. As noted in the conclud-
ing section of Ref. [46], it is not clear whether this RPT ap-
proach contains enough parameters to accurately evaluate By .

In an attempt to track down the difference, we have ex-
pressed our FL parameters in terms of the RPT parameters
needed in general to characterize the local impurity Green’s
function (see Appendix B). This can be done by simply
expanding the RPT spectral function to second order in ¢,
T, and eV and equating the result to our Egs. (26) and (27).
The resulting equations (B8) provide a RPT-FL dictionary
that relates the RPT parameters to our FL. parameters. Since
the latter are computable exactly via the Bethe ansatz, this
dictionary provides a number of exact constraints on the RPT
parameters. We were not able to ascertain that the expressions
provided in Ref. [30] for their RPT parameters satisfy these
constraints. We suspect that at finite magnetic field or out of
particle-hole symmetry, the second-order RPT (perturbative
in the renormalized interaction U) becomes approximate for
the calculation of the coefficients o, and ¢, [84]. However,
we would like to suggest a converse strategy: one could set
up a RPT whose input parameters are computed exactly by
Bethe ansatz via the RPT-FL dictionary in Appendix B. Doing
so would be an interesting goal for future work, since RPT
offers the welcome prospect of smoothly linking the exact
FL description of the impurity’s low-energy behavior to a
description, albeit approximate, that is also useful at higher
energies.

Very recently, Oguri and Hewson have taken a decisive step
forward which completes the RPT program and puts it on a
fully rigorous footing [62]: they used Ward identities together
with the analytic and antisymmetry properties of the vertex
function of the Anderson impurity model to fully determine
all parameters needed in RPT. In doing so, they also presented
a microscopic derivation of the FL relations arising from a
low-energy expansion of the self-energy and the vertex. Their
results are in full agreement with the FL theory presented in
Sec. II of this work. Indeed, we show in Appendix C that our
analytical expressions for Cr and Cy coincide, for general
values of &4, with those obtained by them. For the case of
particle-hole symmetry, they combined their FL analysis with
NRG computations of the FL parameters. Their prediction

for the splitting field for the zero-bias conductance peak
is By /2 =hy ~0.4Tg for U/A = 4x, implying By /Tx ~
0.8. This is in fairly good agreement with our prediction at
U/A = 4m,namely By / Tx = 0.7506. The difference is likely
due to different methods for numerically determining the FL.
parameters—NRG in their work, Bethe ansatz in ours.

As another consistency check for our FL analysis, we have
used NRG to compute the equilibrium spectral function A(e)
and extracted Cy and Cy from its leading dependence on T
and €. The results of this analysis, presented in Appendix D,
are consistent with the FL results for Cy and Cy of Fig. 2, and
Br and BV of Flg 3.

D. ¢y away from particle-hole symmetry

Finally, let us examine the behavior of the transport co-
efficient ¢y away from particle-hole symmetry. We consider
only g4/U > —% (from which the opposite case follows by
particle-hole symmetry). The quantum dot is in a strongly
correlated Kondo singlet state as long as the dot is in the
local-moment regime (—U/2 < &5 < —A). As g4 crosses
over through the mixed-valence regime (|¢;| < A) into the
empty-orbital regime (¢4 2 A), Kondo correlations die out
completely. In the previous section, we showed that cy changes
sign at particle-hole symmetry for splitting fields By of the
order of Tx [see Fig. 3(b)]. Our aim here is to study the
evolution of By as &4/ U is tuned through the transition from
the local-moment regime to the empty-orbital regime. The
numerical results reported below were obtained by numerically
solving the Bethe ansatz equations for the Anderson model [85]
in the form reported in Ref. [29].

Figure 6(a) shows a color-scale plot of ¢y for a large, fixed
interaction of U/A = 20, plotted as a function of field B and
level energy ¢,. Figure 6(b) shows the same data as function of
B along several fixed values of ¢,. We find that throughout the
local-moment regime, an increasing field yields a sign change
for cy as a function of B around field values that distinctly fol-
low the ¢, dependence of the Kondo temperature Tk of Eq. (20)
(grey triangles). The latter is well approximated by the analytic
formula Tl(ff) of Eq. (22) (black solid line) and coincides with
the FL scale E, of Eq. (19) at B = 0 (grey squares), with
deviations only in the empty orbital regime (g, = A).

The behavior of cy is strongly modified as soon as the
renormalized level increases past the Fermi surface (¢4 = A)
and the charge on the dot changes from 1 to 0, so that Kondo
correlations are completely absent. For low magnetic fields,
cy is negative and with increasing field evolves through a
double sign change with a positive-valued peak in between,
see Figs. 6 and 7. This behavior can be understood as follows.
At zero magnetic magnetic field, the dot is empty and in a
cotunneling regime [86], so that its conductance increases
when the bias increases from zero. This explains why cy is
found to be negative for small fields in Fig. 6. With increasing
field, the local level is Zeeman split. When the empty and
singly-occupied states come into resonance, the conductance
develops a well-pronounced zero-bias peak with a negative
curvature, explaining why cy goes through a positive-valued
maximum. The resonance condition at which this happens is
that the spin-up Zeeman energy B/2 matches the renormalized
level position &, which differs from e, due to virtual processes
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FIG. 5. The coefficient Cy = cy /Ef, plotted as a function of
B/ Tx for different interaction strengths U/A, in units of CX =
c®/TZ, with c¥ defined in Eq. (41a). In contrast to ¢y from Fig. 4, Cy
is strongly suppressed in the regime B > Tk (even for U/A > 1),
because for large fields the spin susceptibility becomes very small and
hence E, very large [cf. Eq. (21)]. (Inset) The normalization factor C§,
plotted as function of U/ A in units of 1/A? (black points indicate the
U/ A values from the main plot). C shows an exponential increase
with U/ Tk, caused by an exponential decrease in Tx. The growth in
C¥ is counteracted by the fact that the voltage window in which our
FL analysis applies decreases exponentially, since the FL expansion
(29) of the conductance requires V < Tk.

involving doubly occupied intermediate dot states. A pertur-
bative calculation following Haldane [67] yields [87]:
A g+ U

g&s=¢;+—1In s 42)
b4 [0 2]

where « is a constant of order one. For the choice o >~ 1.62
the resonance field values B = 2&,, indicated by vertical solid
lines in Fig. 7, indeed match the observed peak positions for
cy rather well.

Fore; > A, the full dependence of ¢y on the magnetic field
can be well captured analytically by second-order perturbation
theory in the dot-lead hybridization [88], using the spin-down
state of the dot as virtual intermediate state. Appendix E
presents corresponding results for n4, as function of the bare
level position ¢; and Zeeman field B, from which cy can be
obtained using the formulas of Sec. II. Using the substitution
&4 — &4 in the final results, one obtains the solid curves for
cy shown in Fig. 7, which agree nicely with our numerical
results (symbols). In the limit ¢; > A, where the spin-down
state can be totally neglected, the shape of the cy peak can
be computed by considering a single noninteracting resonant
level. The result is

cv  1A2=3(1B—z)’

&K T3 a2y (1B gy

(43)

which is peaked symmetrically around the resonance field
B = 28,1.

In the mixed-valence and empty-orbital regimes, the non-
trivial B dependence exhibited by cy is equally well visible in
Cy =cy/E 2 see Fig. 7(b) (in contrast to the Kondo regime,
where Cy rapidly approaches zero for B > Tk, cf. Fig. 5).
The reason is that in the mixed-valence and empty-orbital

K
cy /G
) v )
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1
1
0
0.1 -1
<
~ -2
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B/EB:U

FIG. 6. (a) Transition from the local-moment regime to the
empty-orbital regime for the transport coefficient cy /cX , shown using
acolor scale, as a function of the magnetic field B and the level energy
€4, at U/A = 20, a convenient value to highlight features related to
Kondo physics. The solid line shows the prediction for the Kondo scale
of the analytic formula (22) for T, the grey triangles the numerical
evaluation of T as defined in Eq. (20) and the grey squares the
numerical evaluation of E, in Eq. (19) for B = 0. All these quantities
show a nice agreement as long as &; < 0. The blue points signal
when ¢y = 0 and changes sign. The light-colored regions correspond
to positive values of cy. (b) Same quantity cy /c"f as in (a), now
shown along the cuts marked in (a) by grey dashed lines, and plotted
as a function of B/E2=" on a logarithmic scale. The numbers above
the data points give the corresponding values of ¢,/ U (increasing
as colors turn from light to dark). The solid line corresponds to
the analytical result for ¢y at particle-hole symmetry derived from
the Wiener-Hopf solution [29] (see also Fig. 4). Throughout the
local-moment regime in which Kondo correlations occur (¢4 < —A),
cy changes sign around fields of order Tx. For ¢, 2 0, ¢y develops
a double sign change with a peak in between, which reflects a
field-induced resonance between the empty- and singly-occupied dot
states (see Fig. 7).

regimes the FL scale E, does not become very large with
increasing B, because both the spin and charge susceptibilities
Xs and x. are sizable, ensuring that E, remains small [cf.
Eq. (19)]. In fact, both susceptibilities become maximal, and
E, minimal, in the regime near near B ~ 2&; where the
empty and singly occupied dot states are in resonance. This
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FIG. 7. Magnetic-field dependence of (a) ¢y in units of c‘é and
(b) Cy = cy/E? in units of 1/A, in the mixed-valence and empty-
orbital regimes. Both are plotted as functions of B/A on alinear scale,
for several values of ¢,/ A (given by numbers above the data points,
increasing as colors turn from light to dark). Black solid curves display
analytical predictions derived in perturbation theory, showing good
agreement with the numerical results (symbols). The peaks in ¢y and
Cy reflect the field-induced resonance between the empty and singly
occupied dot states. Vertical solid lines indicate the predicted values of
the resonance field, B = 2&,, where the renormalized level position &,
is given by Eq. (42) (and « ~ 1.62 therein); for comparison, vertical
dashed lines indicate the bare values, B = 2¢,. Note that the nontrivial
B-dependence exhibited by Cy in (b) is as pronounced as that of cy
in (a). The reason is that near the resonance field B ~ 2&,, both the
spin and charge susceptibilities are large, ensuring that E, remains
small.

can be checked analytically in the ¢; > A limit, where the
perturbative approach presented in Appendix E yields

E, = ——[(eq — B/2P + A%, (44)
2A

which is minimal at the bare resonance field B = 2¢,. The fact
that Cy is large in the mixed-valence and empty-orbital regimes
suggests that these regimes would be particularly suitable for
the purposes of benchmarking numerical methods for solving
the nonequilibrium Anderson model against the exact results
obtained by our FL approach.

IV. SUMMARY AND CONCLUSIONS

We extended the FL framework of Ref. [46] to the single-
impurity Anderson model at finite magnetic field where
low-energy properties can be calculated in the whole phase
diagram. Using a generalization of the “floating Kondo res-
onance” argument of Nozieres, we expressed all parameters
of the low-energy effective FL. Hamiltonian in terms of the
zero-temperature local occupation functions n,, and their
derivatives with respect to level energy and magnetic field.
Our results are in full agreement with a recent analysis of
Oguri and Hewson [62]. We evaluated our expressions for
the FL parameters using precise Bethe ansatz calculations.
Focussing on strong interaction, zero temperature and particle-
hole symmetry where the Kondo singlet forms, we obtained
exact results for the magnetic-field dependence of ¢4 and c4,
two parameters that characterize the zero-energy height and
curvature of the equilibrium spectral function, respectively.
We also computed the splitting field B4 at which ¢4 changes
sign, signaling the onset of a field-induced splitting of the
equilibrium Kondo peak, and find that B, is of order Tk
throughout the local-moment regime, as expected.

We next performed exact calculations of the FL transport
coefficients ¢y and cy at particle-hole symmetry but for arbi-
trary magnetic fields. In the local-moment regime, we find that
both ¢y and cy change sign at a field of order Tk, as expected.
Finally, we also calculated the magnetic-field dependence of cy
throughout the crossover from the local-moment through the
mixed-valence into the empty-orbital regime. Throughout the
former, the behavior of cy is qualitatively similar to that found
at particle-hole symmetry. However, it changes dramatically
upon entering the empty orbital regime: there, cy is negative
at zero magnetic field, but with increasing field traverses a
positive-valued peak at twice the renormalized level energy,
B ~ 28, arising from a spin-polarized resonance between the
empty and singly-occupied dot states.

It would be an interesting challenge for experimental studies
of nonequilibrium transport through quantum dots to check
our peak-splitting predictions by detailed measurements of
the nonlinear conductance as a function of bias voltage and
field. Since the specifics of our peak-splitting predictions are
model dependent, it would be important to strive for a faithful
implementation of the single-level Anderson model, requiring
a small dot with a very large level spacing, and to make the
ratio U/ A as large as possible.

To conclude, we have used exact tools to address the
question posed in the title of our paper, finding By = By =
0.75073Tk in the Kondo limit. On a quantitative level, our
work establishes exact benchmark results against which any
future numerical work on the nonequilibrium properties of the
Anderson model can be tested.
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APPENDIX A: KONDO MODEL AT LARGE
MAGNETIC FIELD

In this Appendix, we perform a consistency check of the FLL
theory of the main text by considering the Kondo model in the
large-field limit B >> Tk . To this end, we derive an effective FL
Hamiltonian from the Kondo Hamiltonian by doing second-
order perturbation theory in spin-flip scattering. This yields
explicit expressions, in terms of the bare parameters of the
Kondo model, for the FL parameters 8o, ¢, and ¢;,, and
hence, via the FL relations (13), also for my, x;, and dx,/0B.
Satisfyingly, the latter expressions turn out to fully agree with
the corresponding Bethe ansatz results in the large-field limit.

A standard mapping exists between the Anderson
model, Eq. (1), and the Kondo model Hx = —B S, +

Zm X ekciﬂckg + H. with the spin-exchange interaction

Hy =JS-s, (A1)

Too!

where s = 00 c}:a 2o denotes the local spin of con-
duction electrons and 7., is a vector composed of the Pauli
matrices. The mapping holds at particle-hole symmetry, where
voJ = 8A/(wU), and for energies well below the charging
energy U. The impurity then hosts exactly one electron with
spin S.

The FL Hamiltonian of Eq. (3) can be derived perturbatively
at large magnetic fields B >> Tk. A strong magnetic field po-
larizes the impurity and a perturbation expansion with respect
to the impurity in the spin up state |1) can be formulated. The
result is a perturbative Hamiltonian Hye = Hy + Hy + ...
written as a series with increasing powers of J, and in which
the impurity spin has disappeared. The leading order H; is
simply obtained by averaging the exchange Kondo term over
the spin up state,

J .
Hi = (MHel 1) = 5 D o¢fycuo,
o,k.k'

(A2)

corresponding to a spin-selective potential scattering term in-
ducing the phase shifts 8oy = 7 — wvgJ /4 and 8o, = v J /4.
The next order, H,, arises from virtual impurity spin-flip
processes in which an electron-hole pair (with opposite spins)
is excited. It is obtained by using the standard Schrieffer-Wolff
technique, with the outcome

J? 1 t t
=g L e g e PR (AD

In order to compare this result with the FL form of Eq. (3),
we normal order the two equal-spin pairs of operators in
Eq. (A3) with respect to a reference ground state with spin-
dependent chemical potentials gy, = —%a By closeto o, =0
(in the Kondo limit, where ¢, = —o0, there is no need to

use &g # 0):
CkZTCITch =— :czﬂcm: +oi.1,0(82 — €01),  (Ada)
Cli]ickw = ICZNC](N : ~|—8k1,k40(80¢ —&1). (A4b)

Inserting these expressions into Eq. (A3) yields, up to a
constant term, H, = H, + Hy, with

J? D
H, = il Z U]n[ i|c}: o Chror
8 ot B—By+o(e; —&p0) ] ™
+H.c., (AS)
J? el Chat €l Cha
H¢ = — 3 ! +H.C.,
8 0 B — By + (g3 — €0p) — (84 — &0y)
(A6)

where D is the high-energy cutoff of the Kondo model. H,
describes elastic potential scattering. It can be expanded by
assuming (&1 — €0, ) < B — By. The zeroth order gives the
first logarithmic correction to the zero-energy phase shifts,

Sor| _ |7 wved  mw(eJ)? D
{80¢}_{0}¢ » T4 ™o))@

Changing from wave vector to energy summations, the first
and second orders obtained from Eq. (A5) reproduce precisely
[90] H, in Eq. (3), with @ = 0, &, = 0, and

o (voJ)? %) _ (voJ)? (A8)

T XB—-By,) 1w  8B—By?

Next, expand Hy to first order in (€34 — €95 )/(B — By). The
result coincides with Hy in Eq. (3), with ¢, = 0,

¢ () ¢ ()

7 4B-By) w  2(B-— By?

Equations (A7) to (A9) are the main results of this Appendix.
They explicitly give all the FL parameters in terms of the
bare parameters of the Kondo model and the dummy reference
energies &y, = —%UBO, illustrating explicitly that the latter
occur only in the combination B — By [cf. Eq. (5)]. Itis easy to
verify explicitly that Eqs. (A7) to (A9) satisfy the FL relations
(9) (in the latter, all derivatives w.r.t. &; vanish in the Kondo
limit). Moreover, the above derivation clarifies the underlying
reason for why the FL parameters necessarily must be mutually
interrelated: they arise as expansion coefficients of the actual
physical Hamiltonian in the large-field Kondo limit, namely
H, of Eq. (A3), whose functional form fully fixes all terms in
the expansion Hy = Hy, + Hy + ...

Equations (A7) to (A9) can also be used to test our
predictions (17) for how the FL parameters are related to
susceptibilities. To this end, we remove the dependence on
the dummy reference energy by setting it to 9, = (o, = O [as
donein Eq. (11)]. Then, we directly compute the magnetization
and spin susceptibility at large magnetic field. The Bethe ansatz
solution provides a universal expression for the magnetization
of the Kondo model,

b1 foodr—sm(m)(ﬁ"t)tr<1+r), (A10)
0 t 2

2 2732

(A9)

myg =
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where the ratio 8, = %(B / Tk 2> i is written in terms of
the Kondo temperature Tk extracted from the zero-field spin
susceptibility [Eq. (20)]. At large magnetic fields, Eq. (A10)
can be expanded in powers of 1/ In B,. Noting that (we use that
Tx ~ D efl/vnf)
2 U()J
~ ~ 1)0] +...,
Ing, 1+ vyJIn(B/D)
we also find an expansion for vgJ < 1. At large magnetic
fields, one obtains
1 V()J
Mmag=z—=—=2 Xs

2 4

(Al1)

_(wJ)y dxs . (wJ)
T 4B’ 3B 4B’
(A12)

Inserting these susceptibilities into Eqs. (17) for the FL
parameters, we recover Eqgs. (AS8), (A9), which serves as
a nice consistency check for Eqs. (17). [Eq. (A12) for my
does not strictly approach % in the limit B — oo, because
the calculation is perturbative in voJ.] In summary, in this
Appendix, we explicitly derived the FL. Hamiltonian at large
magnetic field and checked the FL relations advertised in this

paper.

APPENDIX B: RPT-FL DICTIONARY

It is instructive to relate the FL parameters introduced in
this work to the parameters that are used in renormalized
perturbation theory (RPT) [30,39-41,43] to parametrize the
low-energy behavior of the retarded local Green’s function of
the impurity, G4, (w) = 1/[w — s (w)]. Ifw, T, and eV are so
small that the impurity self-energy may be expanded to second
order in these variables, this correlator can be expressed in the
form

Zo

®— 8y +iAy + Ry +il,"
All parameters carrying tildes are understood to be functions
of magnetic field. Z, = [1 — 9, X/, (0)]_1 is the quasiparticle
weight, €50 = [€40 + £ (0)]Z, the renormalized position of
the local level with spin o, and A, = Z, A its renormalized
width. R, and I, are the real and imaginary parts of —X?z,,,
coming from the second-order term in the self-energy, which
we parametrize as

Gaio(w) = (BI)

Ry = Ruo®® + Ry, [3(xT)* + (V)]

Iy = Lo [0 + 3T + 1(eV )],

(B2a)
(B2b)

where R,,, Ry, and I, are constants independent of w, T,
and eV. The imaginary part of the second-order self-energy
can only depend on the combination of energy, temperature,
and bias stated in Eq. (B2b), because it is governed by the
second-order term of the inelastic 7 matrix, which we know
to depend only on this combination [Eq. (24b)]. The corre-
sponding real part, however, requires two separate coefficients
for its energy dependence and its temperature and voltage
dependence [Eq. (B2a)], because the former also receives a
contribution from the elastic 7 matrix, but the latter does not.

The spin-resolved version of the FL spectral function
discussed in the main text is normalized such that A, (0) = 1
for the symmetric Anderson model at T =V = B =0. It is

related to the imaginary part of the local Green’s function by

As(w) = —(nA)%ImGU (w), hence [from Eq. (B1)]
As(As + 1)

(w - gda + Ra)z + (Ao’ + ia)2 .

When this expression is expanded in the form of the spin-

resolved versions of Eq. (26),

A (@) = Age + Atew — Cag[ (T T +1(eV ] = Cao0?,

As(@) = (B3)

(B4)
and the expansion coefficients are expressed in terms of
5 G0 (0) Ao /m (B5)
e = ——1MGUy, = = s
Po =75 Md A2y 2
. Azr édzr
$in(S0r) = —me,  €08(305) = ——ai,  (B6)
VA2 48 A2 +82
one readily obtains
Ago = sin*(0,) , (B7a)
Al = 7 Ps Sin(2500 )s (B7b)
Cas = =T Po Ry $in(2805) + Tug c08(280,)],  (BTc)
Cas = —T P05 [Ra)a sin(238¢0 ) + %ia)a 005(2300 )]
+ (70 B )[4 5in” (805) — 31. (B7d)

By comparing Eq. (B7) to the expressions (27) of the main
text, we can express all the FL. parameters in terms of RPT
parameters. Equations (B7b) and (B7c) imply

5 12 - o~
Ul =TT Pg » ¢1 = gﬂpclwav ¢26 :_47TpaRVa-

(B8a)
Inserting these into Eq. (27¢) and solving for o, , we find

2y = (7 Py )* €0t (805 ) + T Py R - (B8b)

Equations (B8) constitute a useful dictionary that relates the
RPT parameters, which characterize the impurity dynamics,
to the FL parameters, which characterize the quasiparticle
dynamics.

In conjunction with Eq. (13), the RPT-FL dictionary can be
used to express the RPT parameters in terms of local ground-
state susceptibilities; they can thus be computed exactly via the
Bethe ansatz. Moreover, if alternative strategies (e.g., NRG) are
used to compute the RPT parameters, then the relations (15) to
(18) between various FL parameters that hold for certain spe-
cial cases (zero field, or particle-hole symmetry, or the Kondo
limit), suitably transcribed using the RPT-FL dictionary, pro-
vide useful consistency checks on the RPT parameters.

APPENDIX C: AGREEMENT OF THE TRANSPORT
COEFFICIENTS Cr AND Cy WITH THOSE
OF OGURI AND HEWSON

In this Appendix, we verify that our expressions for the
transport coefficients C7 an Cy, given by Egs. (30) and (27),
are consistent with those recently derived by Oguri and Hewson
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[62]. Their definition of the transport coefficients occurring in
our conductance expansion (29) reads

2¢? _ _
G(V.T) = == Y [sin (o) = Cr.oT? = Cu o)1,

(CD)
with
_ 7T4 ) 2
Cro = —| = c05(2800)(Xo0 +27,)
sin(2805 ) (0 Xoo dxry
i (asd T )|
. w2 N )
Cvo = §[— c08(2800 ) (X0 +5x7,)
sin(2800) (9Xoo | X1y Xty
2 )
T (88d+88d+08h
(C2)

inwhich2h = B and x,, = —0ng4, /904, . Notice that x,o =
Xo'os a8 Ng (€4, h) = ng _s(gq, —h). In this notation, after
making the substitutions

d 0 a 0 a 0

— —=——+— (C3
+ 38d¢ oh 88d¢ + 88d¢ ( )

38d - aEdT
our susceptibilities (12) read

XM T X XX —2xn
Xm = T’ As = 4 5

Xe = Xt+ + X0 +2x1y- (€4

Comparing Eqgs. (C2) with our Egs. (27) and (30) for Cr
and Cy, one finds that they are consistent provided that the
following relations hold:

7 (Xo +2x7,) = @i, + 247, (C5)
72 (x2, +5x3,) = o, + 507, (C6)
ys aX(r(r 8XT¢ 1
Y . | = 7P — o C7
2< 9e; T on 4P — €D
7T (Xoo 8X1\L 8X1\L 3
= 2 = 2y — s . (C8
2( ves | 0eq T om 100 — o (CB)

This is indeed the case. Equalities (C5) and (C6) readily follow
from the substitution

b1 =—T X1y, Qo =0T Yoo (C9)

Equation (C7) is shown by writing its right-hand side in
the form ¢5 /4 — aze = 7(9e,, Xoo + 3¢, _, X11)/2, then by
applying the substitution (C3) on the left-hand side of Eq. (C7),
and using 0g, X—0,—0c = 0s,_, Xo,—o- The equality (C8) is
shown in a similar fashion: applying Eq. (C4) on the right-hand
side, the equality is derived provided that 9,, x56 + 09 x4, —
(0, — ) (X124 + x14)/2 = 0, which is readily shown after
substitution (C3).

APPENDIX D: NRG COMPUTATION OF Cr AND Cy

In this Appendix, we describe a consistency check for our
FL theory. We consider the case of particle-hole symmetry
(¢4 = —U/2), and use the numerical renormalization group
(NRG) [57,58] to compute the equilibrium impurity spectral
function, A(€), as afunction of temperature and magnetic field.
Although this is an equilibrium quantity, it contains sufficient
information to determine not only Cr but also Cy—the point
is that both these transport coefficients are fully determined by
the expansion coefficients C4 and Cy [see Eq. (26)], which can
be extracted from the low-energy behavior of the equilibrium
spectral function A(e). As shown below, the NRG results for
the magnetic-field dependence Cr and Cy are consistent with
the FL predictions obtained in the main text.

1. Method, definitions, and conventions

We employ the full-density-matrix NRG approach (fdm-
NRG) [59,91], based on a complete basis sets [25]. We also
fully exploit non-Abelian symmetries [92] where applicable.
Here, this is SU(2) spin when there is no magnetic field
(B =0), and SU(2) particle-hole symmetry. During NRG
iterative diagonalization, we keep track of symmetry multiplets
rather than individual states, and Nlj‘epl specifies the reduced,
i.e., effective dimensionality in terms of number of kept
multiplets. The discrete spectral data is z-averaged [93,94]
by averaging over n, equally spaced z shifts, with z € (0, 1],
for the logarithmically discretized conduction band energies,
A~"7%, with the discretization parameter A 2 2 and n being
integers.

At particle-hole symmetry and in equilibrium, Eq. (26)
for the low-energy behavior of the impurity spectral function
simplifies to

Ae) = ZA,,(e) = Ay — éaA(nT)z —Ce®. (D))

The output of an NRG computation of A(e) yields a represen-
tation of this function as a weighted sum over discrete delta
functions. Usually, these are broadened individually to obtain
a smooth, continuous curve [58,91,95]. The coefficients in
Eq. (D1) may then be obtained by fits to such broadened curves.
However, a much better way to extract these coefficients is
from integrals of the discrete data itself—this avoids the need
for broadening and hence yields significantly lower error bars
on the Fermi liquid coefficients [38,91]. A convenient way of
extracting C4 and C4 from the discrete NRG data is to consider
the integral

_dfa (6)
Pt (D2)

1
8«(T) = 5 / deA(e) ]
where %A is the spin-averaged spectral function, and f,(w) =
[1 + ¢®/@D]~! 3 Fermi function with temperature scaled by a
factor «. For « = 1, Eq. (D2) corresponds to the dimensionless
version of the linear conductance of Eq. (29), g(T) = g1(T) =
G(0, T)/Gy. Inserting Eq. (D1) into Eq. (D2), we obtain

1 ) w? ~ 2
ga(T) = EAO — CaT , with Ca = ?(CA + o CA)
(D3)
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The coefficient C,, can be extracted from the curvature of g, (T)
in the limit 7/ Tx < 1, and C7 or Cy are found, via Eq. (30),
by doing this for @ = 1 or a = 1/+/3:

1 ~
Cr = gnZ(CA +Cy) = Cy, (D4a)

3/~ 1 3\?
Cv=2(Cit3C)=(5-) Cys- D)

In the Kondo limit U/A — oo, the zero-field values of these
coefficients follow from Eq. (34),

4 2
K b1 xk 3

ck=ck=-_—_ ck-—_|
! T 7aery TV 321k

(D5)
with Ty = 1/4 =0 defined from the zero-field impurity spin
susceptibility.

2. Numerical results

Our NRG calculations were performed for the single-
impurity Anderson model with a box-shaped density of states
with half-bandwidth D = 1, which thus sets the unit of energy
unless specified otherwise. For the results shown in Fig. 8,
we used a hybridization strength A = 1073, U/A =5, ¢; =
—U/2, resulting in a Kondo temperature of Tx = 2.990 x
10~*. Since both U and I are much smaller than the bandwidth,
and the local dynamics is cut off by the energy scale U, the
parameter regime analyzed essentially is equivalent [38] to an
infinite bandwidth scenario as considered in the main text.

Our NRG results for the temperature-dependent linear
conductance, g(T) = go—1(T), are shown in Fig. 8(a), for
a fine-grained set of B values uniformly distributed around
Tx on a logarithmic grid. To determine the Fermi liquid
coefficient C; = Cy,—; for a given field, the curvature of the
corresponding curve must be extracted in the regime ¢ =
T/Tk < 1.0On the other hand, t must be sufficiently large that
the temperature-dependent variation in g(7") exceeds the NRG
resolution (typically, 8g > 1073). In practice, we constrain
the fitting interval to ¢ € [0.01, 0.05] x max(Tk, B) [vertical
dashed lines in Figs. 8(b)-8(d)]. Since we use a fine-grained
logarithmic grid for ¢, cutting out ¢ < 0.01 is also required to
avoid a bias of the fit towards a dense set of data points at ¢ = 0.
We perform a symmetrized (p = 4)-th order polynomial fit, by
also including the mirror image 1 — —¢ of the data. This way,
only even polynomial coefficients are nonzero.

Two exemplary fits are shown in Figs. 8(c) and 8(d). In
panel (c), Cr = 0, indicating that the field is close to the
value By where the curvature C7 changes sign. In contrast,
Fig. 8(d) analyzes the conductance data for the magnetic field
where the upward curvature in the conductance is maximal
[this corresponds to the minimum of c7 in Fig. 8(e)]. Both
panels (c) and (d) show that g(7) deviates significantly from
the quadratic regime already for # >~ 0.1. Hence smaller ¢ is
required for the fit (here we use ¢t < 0.05) while already also
allowing for quartic corrections. Moreover, note that g, (7)
varies by <0.5% over the fitting interval, illustrating that an
accurate determination of the curvature requires g,(7) to be
known with an accuracy of order <0.1%.

Figure 8(e) shows the curvatures Cr and (27 /3)*Cy ex-
tracted from all the curves in panel (a), normalized by CX and
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FIG. 8. NRG analysis of the transport coefficients Cr and Cy.
(a) The linear conductance, g(7T) = g,—1(T'), plotted as a function
of t =T/Tk, for a uniform logarithmic grid of magnetic fields
around Tk [cf. data points in (e)—(f)]. The red vertical dashed lines
indicate the fitting range used to extract curvatures. (b) Zoom into
the low-temperature regime of (a). The thick red line shows the FL.
prediction at zero field, 1 — C¥ T2. [(c) and (d)] Tlustration of the
fit quality for two curves from (a) for magnetic fields around Cr ~ 0
and around the largest negative value of Cr, respectively. (e) C; = Cr
(blue) and Cy, 5 = 27/ 3)2Cy (red), normalized by C X and plotted
vs B/ Tk . The agreement with the corresponding FL predictions (solid
lines in matching color) from the main text is excellent. (Inset) The
ratio Cr/CX over Cyy/C¥, showing that both have the same limits
for B/ Tx < and > 1. (f) C,/CX for several values of «, plotted on
a logarithmic scale as a function of B/Tk. The data for « = 1 and
1//3 replicate those from (e) for Cy and Cy . For comparison, solid
lines show Bethe ansatz data. NRG parameters: A = 2, z-averaged
at n, = 8; truncation by number of multipets, with Ny, = 1060
(corresponding to 6944 states).

plotted as dots, as functions of B/Tx. The NRG results are
in very good agreement with the FL predictions (Bethe ansatz
data, solid lines, replotted from Fig. 3 of main text). For the
specific value U/A =5 used in this plot, the field at which
Cr vanishes, as obtained by interpolation from the discrete set
of NRG data points, is By / Tx = 0.767. This agrees to within
about 1% with the FL prediction. Panel (f) replots the data
from (e) on a log-x scale, showing good agreement down to
the smallest magnetic fields.

We have repeated the above analysis for a range of interac-
tion strengths to extract By and By as functions of U/A. The
results are shown in Fig. 9. The NRG results are consistent with
the FL predictions within the indicated simple error estimates.
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FIG. 9. Comparison of results from NRG and FL theory for By
and By, corresponding to Fig. 3 of the main text. The color-matched
shaded regions are estimates for the error margins, simply based on
matlab polyfit confidence intervals. NRG parameters: A = 0.001,
A =2, with Ng, < 1244 multiplets (8176 states), z-averaged at
n, =4.

Note that the error estimates increase with decreasing U/A,
because this causes the Kondo peak to become broader, making
it more difficult to accurately extract curvature coefficients.
The fact that the error estimates are quite sizable, varying
between 3% and 12%, reflects the challenge of extracting
curvatures from an energy window that necessarily has to be
very small to satisfy the requirement ¢, T < Tk.

We conclude this subsection with a technical remark.
Since C4 = %Co and C4 = %(Cl — Cy), one may attempt to
compute these coefficients via C and Cy. Note, though, that
Co can not be extracted by simply using o — 0T, because
the discrete NRG data looses spectral support at energies
below ~ T /10(see Fig. 2(b) of Ref. [91]). Therefore, when
the peaked function —df,, (¢)/de becomes too narrow as « is
decreased, the numerically determined g,(7") first becomes
a noisy function of T, and eventually drops to zero for very
small «. Indeed, Fig. 8(f), which displays curves of C,/CX
versus B/ Tk for several values o € [0, 1], shows that these
curves become more “noisy” as « is decreased. The increase
in noise in spectral resolution seen at « = 1/4 becomes large
very quickly for o < 0.25.

Cy can nevertheless be determined to fairly good accuracy
by noting that the overall shape of the curves in Fig. 8(f)
essentially stops changing for « < 0.25. Hence Cy,s5 may
be viewed as an approximation for Cy. Indeed, its low-field
limit, Cgo5 =~ C{f /2, is consistent with the value expected

for C§ = C¥ /2. For comparison, Fig. 8(f) also shows the
Bethe ansatz data for Cy = C; — 7%ZCA =Cr— %ZCA. The
agreement with the NRG data is within the increased level
of spectral noise of the NRG data.

3. Remarks on our previous NRG results

We conclude this Appendix with a brief discussion of why,
in retrospect, the NRG results presented in a previous version
of this paper [61], were unreliable. There are two main reasons:
first, they were obtained using only 1024 states (here we use
6944), and no z-averaging (here we use n, = 8). Hence they
did not achieve the O(0.1%) accuracy needed for g,(7T') to
allow an accurate determination of its curvature. Second, we
had attempted to extract the curvature coefficients C4 and Cy
by following the strategy described in Sec. IV. D of Ref. [38].
However, that strategy had been devised only to determine Cy4
atT = 0. Inretrospect, our attempt to generalize it to determine
both C4 and C, at nonzero T had been flawed, which is why
we now instead use C; and C, /3 1o determine Cr and Cy, as
described above.

APPENDIX E: PERTURBATION RESULTS
IN THE ¢; > A LIMIT

The FL coefficients needed to derive the spectral coef-
ficients ¢4, c4 and transport coefficients cy, cr, depend on
the zero-temperature dot occupation functions n4, and their
derivatives with respect to the level energy e, and magnetic
field B. Deep in the empty-orbital regime, where ¢, > A, the
leading corrections to the noninteracting occupations,

1 1 1
ngT: — — —arctan| [ e; — =B Al, (ED)
2 r 2

can be computed perturbatively in the dot-lead hybridization,
using the spin-down state of the dot as intermediate state (see
also Ref. [88]), with the result

A Ung, (1 — ngy)

0

Ngr =Ny, — — , E2a

TN T (U 4 ea+ 1B) (ea + 1B) (E22)
Af1=0n° n°

ng, = — f” + at 1 . (EZb)
m\ea+1iB e, +U+ 1B

All FL parameters can be straightforwardly computed from
these expressions using Eqs. (12) and (13). To compare with the
numerical results in Fig. 7, we substitute ¢, — &, [cf. Eq. (42)]
in the final result for cy .
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