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Transport studies in three-terminal microwave graphs with orthogonal, unitary,
and symplectic symmetry
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The Landauer-Büttiker formalism establishes an equivalence between the electrical conduction through a
device, e.g., a quantum dot, and the transmission. Guided by this analogy we perform transmission measurements
through three-port microwave graphs with orthogonal, unitary, and symplectic symmetry, thus mimicking three-
terminal voltage drop devices. One of the ports is placed as input and a second one as output, while a third port is
used as a probe. Analytical predictions show good agreement with the measurements in the presence of orthogonal
and unitary symmetries, provided that the absorption and the influence of the coupling port are taken into account.
The symplectic symmetry is realized in specifically designed graphs mimicking spin-1/2 systems. Again a good
agreement between experiment and theory is found. For the symplectic case the results are marginally sensitive
to absorption and coupling strength of the port, in contrast to the orthogonal and unitary case.
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Wave transport and wave scattering phenomena have been
of great interest in the last decades, both from experimental
and theoretical points of view (see for instance Ref. [1]).
Apart from the intrinsic importance in the complex scattering
in a particular medium, the interest also comes from the
equivalence between physical systems belonging to com-
pletely different areas, in which the dimensions of the systems
may differ by several orders of magnitude [2]. One of these
equivalences occurs in mesoscopic quantum systems, where
the electrical conduction reduces to a scattering problem
through the Landauer-Büttiker formalism [3–5]. Following
this line, classical analogies of quantum systems have been
used as auxiliary tools to understand the properties of the
conductance of electronic devices in two-terminal configura-
tions [6–10]. A plethora of chaotic scattering experiments in
the presence of time reversal invariance (TRI) and no spin-1/2
have been performed [7,8,10–16], while very few experimental
studies regarding absence of TRI are reported [7,8,17,18].
Furthermore, due to its intrinsic complexity, there are no
scattering experiments up to now for systems with TRI and
spin-1/2, where the signatures of the symplectic ensemble are
expected, though there is one study of the spectral statistics
in Au nanoparticles obeying this symmetry [19]. Moreover,
very recently the appearance of a microwave experiment
showing the signatures of the symplectic symmetry [20,21]
for eigenvalue statistics has opened the possibility to study
transport in the presence of this symmetry.

Multiterminal devices are good candidates to provide exper-
imental realizations for the three symmetry classes: orthogo-
nal, unitary, and symplectic. Alternatively to the most used
two-terminal configuration, three-terminal systems provide
information of nonlocal effects of transport observables. In
the present paper we make theoretical predictions for coherent
transport in a three-terminal quantum device. In the spirit of

the mentioned classical analogy, we propose experimental real-
izations with microwave graphs, which represent experiments
of transport in three-terminal systems for the three mentioned
symmetry classes.

The electrical current Ii on the terminal i of an electronic
device, as given by Büttiker’s formula, can be written as [22]

Ii =
∑

j

Gij (Vi − Vj ), with Gij = e2

h
Tij , (1)

where Vi is the voltage at terminal i, and Gij and Tij are the
conductance and transmission coefficient, respectively, from
terminal j to terminal i. In a three-terminal configuration, one
of the ports, let us say terminal 3, can be used as a probe
by tuning its voltage to zero current. This voltage V3 is a
weighted average of the voltages in the other terminals, the
weight being determined by the conductance coefficients from
the other terminals to the probe [22]. It can be written as [4]

V3 = 1
2 (V1 + V2) + 1

2 (V1 − V2) f, (2)

where

f = T31 − T32

T31 + T32
, (3)

see Fig. 1. This equation shows that V3 varies around the
average of the voltages producing the bias V1 and V2. Hence,
the quantity f takes values in the interval [−1, 1] and contains
all the information about the system. For instance, a three-
terminal setting was considered in Refs. [23,24] to study the
voltage drop along a disordered quantum wire.

Here we perform measurements of the quantity f through
microwave graphs connected to three single channel ports: an
input port, an output port, and a probe port. We focus here on
the particular situation where the probe port is on one side

2469-9950/2018/98(7)/075311(5) 075311-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.075311&domain=pdf&date_stamp=2018-08-24
https://doi.org/10.1103/PhysRevB.98.075311


A. M. MARTÍNEZ-ARGÜELLO et al. PHYSICAL REVIEW B 98, 075311 (2018)

DeviceTerminal 1 Terminal 2

Terminal 3

Junction

FIG. 1. Sketch of a three-terminal setting that allows the mea-
surement of the voltage along a device. The device carries a current
while the vertical wire measures the voltage drop. Thin lines represent
perfect conductors connected to sources of voltages V1, V2, and V3.

of the microwave graph, see Fig. 1. We study graphs with
chaotic dynamics characterized by the orthogonal, unitary, and
symplectic symmetries; labeled by β = 1, 2, and 4 in Dyson’s
scheme [25], respectively. The β = 4 case is realized in a
network with specific properties that mimics a spin-1/2 system
[20,21]. The fluctuations of f that arise when the frequency is
varied are analyzed by means of random matrix theory (RMT)
calculations. Analytical expressions for the distribution of f

that describe the experiments for the three symmetry classes
are verified by the measurements.

The experimental setup for β = 2 (with a small modifica-
tion also for β = 1) is shown in Fig. 2. A chaotic microwave
graph is formed by coaxial semirigid cables (Huber & Suhner
EZ-141) with SMA connectors, coupled by T junctions at the
nodes. An additional T junction at the exit port forms the
three-terminal setting. For β = 1 all bonds were connected
by T junctions, for β = 2 one of the T junctions was replaced
by a circulator to break TRI. In both cases the found spectral
level spacing distributions were in perfect agreement with the
Wigner distributions for the Gaussian orthogonal ensemble
(GOE) β = 1, and the Gaussian unitary ensemble (GUE)
β = 2, respectively, see, e.g., Chap. 4.4 of Ref. [26]. The
measurements were restricted to the operating range of the
circulators (Aerotek I70-1FFF) from 6 to 12 GHz. To realize
graphs showing the signatures of the Gaussian symplectic
ensemble (GSE) β = 4, two copies of the graph shown in
Fig. 2 are needed, where the implemented circulators lead to

FIG. 2. Photograph of a three-port microwave graph with broken
time reversal symmetry (GUE). The circulator in the graph adds di-
rectionality, breaking TRI, and yields to a GUE spectra. By replacing
the circulator by an ordinary T junction, a graph with GOE spectra is
obtained.
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FIG. 3. Sketch of the three-terminal microwave GSE graph com-
posed of two GUE subgraphs. The circulators in the graphs add
directionality in the system, breaking TRI and yielding GUE spectra
in each subgraph. Transmissions from ports 1 to 3, 1 to 3̄, 1̄ to 3,
and from 1̄ to 3̄ are measured to obtain T31. In a similar way, T32 is
obtained.

an opposite sense of rotation. They are coupled by two bonds
in an inversion symmetric geometry, with a phase shift of π

in one of the bonds but not the other one, see Fig. 3. The
whole graph obeys an antiunitary symmetry T , squaring to
−1, thus mimicking a spin-1/2, see Ref. [20]. Transmission
measurements were performed with an Agilent 8720ES vector
network analyzer (VNA).

With respect to the quantity f , its fluctuations can be
described by the scattering approach of RMT. Appealing to an
ergodic hypothesis, fluctuations on the frequency are replaced
by fluctuations on an ensemble of chaotic graphs, represented
by an ensemble of scattering matrices. In the two-channel
situation, the scattering matrix of the graph has the structure

Sg =
(

rg t ′g
tg r ′

g

)
, (4)

where rg (r ′
g) and tg (t ′g) are the reflection and transmission

amplitudes, for incidence from the left (right). Depending
on the symmetry class, Sg belongs to one of the circular
ensembles: orthogonal (COE) for β = 1, unitary (CUE) for
β = 2, and symplectic (CSE) for β = 4. The Sg matrix can be
written in the polar representation as [27]

Sg =
[
−√

1 − τ e2iφ′
a−1√τ ei(φ+φ′ )

a
√

τ ei(φ+φ′ ) √
1 − τ e2iφ

]
, (5)

where 0 � τ � 1, 0 � φ, φ′ � π , and a is a real, complex,
or real quaternion number of modulus 1 for β = 1, 2, or 4,
respectively. The probability density distribution of Sg is given
by [27]

dPβ (Sg) = β

2
τ−1+β/2 dτ

dφ

π

dφ′

π
da. (6)

The scattering matrix associated to the three-terminal setup
of Fig. 1, where the probe is at the right of the graph, is given
by [28]

S = SPP + SPQS0
1

13 − SQQS0
SQP, (7)
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where S0 is the scattering matrix for the junction (see Fig. 1),
13 stands for the unit matrix of dimension 3, and

SPP =

⎛⎜⎝rg 0 0

0 0 0

0 0 0

⎞⎟⎠, SPQ =

⎛⎜⎝t ′g 0 0

0 1 0

0 0 1

⎞⎟⎠, (8)

SQP =

⎛⎜⎝tg 0 0

0 1 0

0 0 1

⎞⎟⎠, SQQ =

⎛⎜⎝r ′
g 0 0

0 0 0

0 0 0

⎞⎟⎠. (9)

Equation (7) is a general combination rule for scattering
matrices which appears in several scattering problems. The
first term SPP represents reflections on the terminals (only
terminal 1 presents reflection for the present case). The second
term comes from multiple scattering in the system. Reading
from right to left, SQP represents the transmissions to the
inside region, passing through the graph and the junction
(13 − SQQS0)−1 contains the multiple reflections between the
junction and the graph, and SPQ gives the transmissions from
the internal region to the terminals.

Because it is expected that the T junction couples the
terminals symmetrically, S0 can be assumed to be symmetric.
According to some measurements [29], it can be proposed as

S0 = 1

3

⎛⎜⎝−1 2 2

2 −1 2

2 2 −1

⎞⎟⎠. (10)

The general structure of S is of the form

S =

⎛⎜⎝q11 q12 q13

q21 q22 q23

q31 q32 q33

⎞⎟⎠, (11)

where q
ij

= Sij for β = 1 and 2, while for β = 4

q
ij

=
(

Sij Sij̄

Sīj Sī j̄

)
, (12)

where the “bar” in the subscripts denotes the corresponding
terminal in the second GUE subgraph needed for the construc-
tion of the GSE graph (see Fig. 3). Therefore, the transmission
coefficient from terminal j to terminal i is given by Tij = |Sij |2
for β = 1 and 2, and Tij = 1

2 tr(q
ij
q†

ij
) for β = 4.

Since q
ij

is a quaternion real number, q
ij
q†

ij
is proportional to

the 2 × 2 unit matrix. However, in the experiment this cannot
be achieved with arbitrary accuracy due to power losses. For
the transmission measurements relevant to our study, they
were realized within a 10% and 1% of error for q31 and q32,
respectively.

By substituting the parametrization given in Eq. (5) into
Eqs. (7) to (9), and extracting the transmission coefficients T31

and T32 from Eq. (11), Eq. (3) yields

f = τ − |1 + √
1 − τ e2iφ|2

τ + |1 + √
1 − τ e2iφ|2 , (13)

where a and φ′ drop out.
Using the probability density distribution of Eq. (6) the

distribution of f is obtained once the integration over all
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FIG. 4. Transmissions T31 and T32 as a function of frequency

are shown in the upper and middle panels, and their corresponding
distribution in thin black lines (thick blue lines) in the lower ones, for
β = 1 (left), 2 (middle), and 4 (right), respectively.

parameters is done; the result is

p
β
(f ) = (β − 1)!!

β [�(β/2)]2

(1 − f )β/2

(1 + f )1−β/2
. (14)

This distribution dominates for negative f values in agreement
with the physical intuition since the probe at the right of the
graph is closer to port 2 (see Fig. 1), making the transmission
T32 predominantly larger than the transmission T31. The width
of the distribution is a signature of the nonlocal effects in the
measurement of the probe port.

Equation (14) represents our main result which is valid
in an ideal situation: It applies to quantum systems in the
absence of any inelastic process and to classical wave systems
in the absence of dissipation and imperfect coupling to the
device. In Fig. 4 we show the transmissions T31(= |S31|2) and
T32(= |S31|2) as a function of the frequency, obtained from the
measurements of the elements of the scattering matrix S31 and
S32; for β = 1, 2, and 4. We observe that they do not reach
the value of 1 due to the losses of power. Their corresponding
distribution are also shown.

The actual measurements for f [see Eq. (3)] are shown in
Fig. 5 for experiments for the three symmetry classes: β = 1
(left panels), β = 2 (middle panels), and β = 4 (right panels).
In the upper panels we show the fluctuations of f as a function
of the frequency for the three-terminal microwave setup of
Fig. 1. For β = 1, the spectrum was measured in the frequency
range from 1 to 17 GHz, while for β = 2 and 4 the interval from
6 to 12 GHz was considered due to the range of operation of the
circulators. In the lower panels the experimental distribution
of f is shown as histograms. The solid lines correspond to the
theoretical expectation, see Eq. (14).
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FIG. 5. f as a function of the frequency is shown in the upper
panels, and its corresponding distribution in the lower ones, for β = 1
(left), 2 (middle), and 4 (right). In the lower panels the continuous
lines represent the analytical result for the ideal case, Eq. (14), while
the dashed lines correspond to RMT simulations with power losses
and imperfect coupling of the T junctions to the graph, where all
parameters were fixed before hand using the autocorrelation functions
(see Fig. 6). In the insets the difference between the numerical
and the experimental distribution δpβ (f ) = pβ (f )num − pβ (f )expt

are presented for comparison purposes. For the statistical analysis
we used an ensemble of 5 × 104 realizations.

The deviations between experiment and theory observed for
the cases β = 1 and 2 can be explained by the power losses
and the imperfect coupling between the graph and the ports.
The effect of the absorption can be quantified by assuming
that the scattering matrix of the graph does not conserve flux;
while imperfect coupling can be modeled by adding identical
barriers, with transmission intensity Ta , between the graph and
port 1, between the graph and the T junction, and between the
T junction and port 2, respectively. Following Ref. [6], such
scattering matrix, which we denote by S̃g, can be written as

S̃g(E) = 1 − 2π iW̃ † 1

E − H̃ + iπW̃W̃ † W̃ , (15)

where E is the energy and W̃ accounts for the coupling
between the resonant modes of the graph and the scattering
channels. Here H̃mn = Hmn + i(γ�/4π )δmn, with H being
the Hamiltonian that describes the closed microwave graph
with mean level spacing � and it is taken from the Gaussian
ensembles corresponding to the symmetry present in the graph.
The imaginary part of H̃ mimics the absorption quantified by
the parameter γ . It can be extracted from the experimental
data through the autocorrelation function C

(β )
ab (t ) between

the elements of the scattering matrix Sab. The corresponding
expression for the GOE is given in Ref. [30], while for all β in
Ref. [31]. After some mathematics, they can be written for the
element S11 as

C
(β )
11 (t )

T 2
1

=

⎧⎪⎪⎨⎪⎪⎩
[

3
(1+2T1t )3 − b1,2(t )

(1+T1t )4

]
e−γ t for β = 1,[

2
(1+T1t )4 − 26 b2,2(t )

(2+T1t )6

]
e−γ t for β = 2,[

6
(1+T1t )6 − 212 b4,2(t )

(2+T1t )10

]
e−2γ t for β = 4,

(16)
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FIG. 6. Fitting of the autocorrelation function Eq. (16) to the

experimental data. The parameters are T1 = 0.98 and γ = 1.9 for
β = 1, T1 = 0.96 and γ = 0.5 for β = 2, and T1 = 0.97 and γ = 0.2
for β = 4.

where bβ,2(t ) is the two-level form factor [32] and T1 is the
coupling strength, which is also extracted from the experiment
via T1 = 1 − |〈S11〉|2 with the average 〈S11〉 taken over the
frequency.

In Fig. 6 we show the autocorrelation function C
(β )
11 (t ) of the

experimental data. The best fit yields T1 = 0.98 and γ = 1.9
for β = 1, T1 = 0.96 and γ = 0.5 for β = 2, and T1 = 0.97
and γ = 0.2 for β = 4, and they are plotted as dashed lines. As
expected the coupling parameters are almost the same for the
three symmetries but the absorption parameter is significantly
different from one symmetry to another. In particular, we notice
that the value of γ for β = 2 is almost twice the value for
β = 4. This may be due to the interplay between reflection
and absorption [33], i.e., the higher the reflection the smaller
the absorption, and also due to the fact that γ is given in units of
� which is not the same for all graphs. This is the situation of
the β = 4 case which presents twice the reflection than that of
the β = 2 case (two subgraphs). Also, the circulators introduce
more reflections for β = 2 and 4 in comparison with the β = 1
case with no circulators. The parameters T1 and γ are used in
Eq. (15), from which we obtainT31 andT32, and finally compute
f . The results are shown in Fig. 5 (lower panels) as dashed
lines. A good agreement with the experimental distribution
is observed. For the symplectic case the agreement between
experiment and theory is good even without the correction
due to absorption and imperfect coupling; since γ is relatively
small, p4(f ) depends only weakly on the port couplings which
are almost perfect.

To conclude, we used three-terminal chaotic microwave
graphs to measure the different transmissions to extract the
quantity f that accounts for the voltage drop in an equivalent
quantum device and exhibits its nonlocal effects. We success-
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fully described the experimentally obtained distribution p(f )
providing analytical expressions for the ideal case, for the
three symmetry classes. Deviations from the ideal case for
the orthogonal and unitary symmetries are due to the presence
of dissipation and imperfect coupling between the graph and
the junctions. Surprisingly, the dissipation and the coupling
strength do not erase the fingerprints of the symplectic sym-
metry. We expect that our results motivate further studies for a
successful explanation of robustness of symplectic symmetry
for imperfect couplings and higher dissipation.
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