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Ballistic injection in a nanodevice is a complex process where electrons can be either transmitted or reflected,
thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs)
appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which
strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local
partial depletion of the QR close to the edge of the antidot can counterintuitively ease ballistic electron injection.
In contrast, local charge accumulation can focus the semiclassical trajectories on the hard-wall potential and
strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR and simulations of the
conductance of the same device are consistent and agree that the effect is directly proportional to the ratio between
the strength of the perturbation and the Fermi energy. Our observation fits the simple Rutherford formalism in
two dimensions in the classical limit.
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I. INTRODUCTION

Controlling collisions and scattering has always played
an essential role in physics. Thanks to model experiments
ranging from collisions of α particles with gold foil, conducted
more than a century ago [1,2], to high-energy collisions
between hadrons at the Large Hadron Collider [3], a wealth
of detailed information was revealed about the nature of
atoms and elementary particles as well as their interactions.
In this framework, the most fundamental description of the
interaction of a beam of particles and a scatterer is the famous
Rutherford formula, describing the differential-cross-section
dependence on the scattering angle, energy of the incident
beam, and potential shape of the scatterer [4]. Collisions
are also ubiquitous in solid-state physics, in particular when
considering charge transport. Charge carriers indeed scatter
on a large variety of “defects”: lattice vacancies, phonons,
the potential of remote ionized impurities, etc. Due to this
complexity, it is almost impossible to reach the same degree of
control in charge transport scattering experiments as in the case
of collisions involving beams of elementary charged particles
propagating in vacuum.

However, in the ballistic regime of charge transport, the
bulk carrier mean free path becomes larger than the device
size, and transport properties can be tailored by tuning the
device geometry [5,6]. This is, of course, achieved most fa-
vorably in nanodevices, which are probably the most adequate
system to attempt to perform “ideal” scattering experiments
with electrons in solids and their associated quasiparticles.
Nevertheless, even in the ballistic regime, full treatment of
scattering in solid-state devices requires taking into account
complex many-body interactions with the Fermi sea [7,8].
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The archetypal ballistic device is the so-called quantum
point contact (QPC). Thanks to a metallic split gate deposited
on top of a semiconductor heterostructure hosting a high-
mobility two-dimensional electron gas (2DEG), one can create
a constriction whose width can be varied at will with gate
voltage. The smooth resulting potential ensures adiabaticity,
which leads to a quantized conductance of the QPC [9,10].
This canonical realization of ballistic transport allowed us to
go one step further, in particular when combining transport
measurements with a local electrostatic perturbation induced
by a scanning probe. This method led us to explore deviations
from this perfect picture of QPCs, such as the observation
of branched electron flow in the leads and rich many-body
physics [11–15]. In other studies, geometric scatterers with an
asymmetric shape were designed to act as mirrors redirecting
electrons towards a particular lead through specular reflection
[16], leading to a rectifying behavior similar to diode bridges.
Such devices could yield applications at high frequency, given
the short electron transit time in the ballistic regime [17,18].
In addition, the magnetic field is a particularly useful knob
to focus electrons at desired locations through the so-called
magnetic-focusing effect [19,20]. In a surprising way, to our
knowledge, there are many fewer examples where fine tuning
of the electrostatic potential is used for similar lensing purposes
[21].

Here, we study the geometry presented in Fig. 1 where
specular electron reflection on the hard wall facing the entrance
of a quantum ring (QR) is either enhanced or reduced by
tailoring the local electrostatic potential in the vicinity of
the wall. The idea is that a Rutherford-like scattering effect,
induced by an attractive/repulsive potential, should deflect
electron trajectories and hence ease or hinder electron injection
in the QR arms. The injection of electrons has been shown
to be critical in mesoscopic devices [6,22], and our results
provide direct confirmation that even small changes in the
electrostatic potential at a specific location in the device have
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FIG. 1. (a) Illustration of the ringlike geometry (orange, not on
scale), with the superimposed potentials used to tailor the potential
landscape next to the edge of the ring antidot. (b) and (c) Tight-
binding simulations of the current density modulus J associated
with the first electronic mode and isocurrent density lines (black
lines with arrows) for depletion (red potential) and accumulation
(blue potential), respectively. G0 is the total conductance without any
perturbation potential.

strong impacts on ballistic charge transmission and hence
on the device conductance. Experiments fully reproduce the
simulated behavior by applying positive or negative potentials
on a scanning metallic tip positioned over the hard wall.
Counterintuitively, the highest conductance is observed for a
depleting tip potential and vice versa.

II. RESULTS AND DISCUSSION

Quantum transport simulation results were obtained using
the KWANT package [23] for the ringlike geometry depicted
in Fig. 1, where device boundaries are defined by infinitely
sharp hard walls. We focus here on the two T-shaped junctions
located next to its leads, as this is where ballistic trajectories
will be tuned. Note that the central branch connecting the two
circular arms plays no role in this work.

The colored regions in Fig. 1(a) correspond to either raised
(red) or lowered (blue) potential with respect to the otherwise
flat background potential (disorder will be introduced later in
the paper). This color convention will be followed throughout
the paper: red indicating depleting perturbation (raised poten-
tial) and blue indicating accumulating perturbation (lowered
potential). Figures 1(b) and 1(c), corresponding to the sim-
ulated current density distribution (associated with the first
electronic mode) in the potential landscapes of Fig. 1(a),
visually illustrate the impact of reversing the added potential
experienced by electrons impinging on the T junction. In
Fig. 1(b), the current injected through the left contact is
favorably redirected towards the lateral branches of the device.
In contrast, Fig. 1(c) reveals that current lines are focused on
the hard wall, which enhances reflection back to the entrance
lead.

At this point it seems that current redirection might yield a
strong signature in the device conductance G, which may look
counterintuitive at first sight: simulations indeed predict that a
repulsive perturbation should increase G, while an attractive
potential should degrade it. Furthermore, one can wonder how
sensitive this peculiar focusing/defocusing behavior is with
respect to the amplitude, spatial extension, and location of
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FIG. 2. (a) Scanning electron micrograph of the fabricated sam-
ple in an InGaAs/InAlAs heterostructure. (b) Computed real-space
disorder potential ϕd at the level of the 2DEG that will be used in
the forthcoming simulations. The disorder standard deviation Sd is
4.78 meV, calculated taking into account a distribution of Si ionized
dopants located 20 nm above the 2DEG (i.e., the thickness of the
InAlAs spacer). The inset in (b) shows a map of the autocorrelation
as the correlation lag becomes a vector in the x-y plane.

the introduced potential perturbation presented in Fig. 1, as
well as to the disorder in the background potential. The effect
of all these parameters will be simulated in detail later in
the paper where transmission through the device, converted
to conductance, will be computed. In addition, it is tempting
to test these predictions by measuring the conductance of a
real-world device.

We thus carved out a ringlike structure from an In-
GaAs/InAlAs heterostructure hosting a 2DEG. The device
geometry shown in Fig. 2(a) is lithographically very com-
parable to the one simulated above (the layer structure is
similar to the one described in Ref. [24]). The 2DEG density
and mobility can be tuned thanks to an applied electrostatic
back-gate potential VBG. The following data were measured
at the maximal accessible charge carrier density (∼ 1016 m−2)
and mobility (∼ 10 m2/Vs) corresponding to VBG = 4 V. The
Fermi energy is thus EF = 55 meV, and the Fermi wavelength
is λF = 25 nm. The four-contact conductance measurements
were performed at a temperature T = 40 mK using a standard
lock-in technique with a bias that remained comparable to
kBT

e
. The physical characteristics of the host heterostructure

allowed the modeling of the fixed disorder potential rep-
resented in Fig. 2(b) that will be used in the forthcoming
simulations. The disorder potential ϕd models the influence
of randomly positioned singly ionized silicon dopants located
in a plane 20 nm away from the InGaAs 2DEG. Screening
of the dopant potential by the 2DEG is taken into account
via the Thomas-Fermi model (where we consider Lindhard’s
dielectric function). The amplitude of disorder is estimated in
the plane where the wave function for the ground state along
the confinement direction (z axis) takes its average value. This
wave function is solved within the Fang-Howard variational
approach (which was found to differ only marginally from
a three-dimensional (3D) self-consistent Poisson-Schrödinger
simulation).
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FIG. 3. (a) Illustration of the potential used for the simulations.
It is composed of a disorder potential ϕd and a Lorentzian-shaped
perturbation potential ϕp caused by a biased conductive AFM tip
located above the 2DEG. (b) Simulated conductance profiles as ϕp

is swept along the dashed line in (a). Simulation parameters are as
follows (same conditions as in Fig. 1, except for disorder): the red
profile corresponds to ϕmax

p = 0.9EF (depletion) and Rp = 150 nm;
the blue profile corresponds to a reversed perturbation potential
(accumulation; ϕmax

p = −0.9EF ). These profiles are extracted from
the conductance mapping obtained when ϕp is swept in the (x, y )
plane. They are presented in (c) (ϕp > 0) and (d) (ϕp < 0). The
vertical dashed lines correspond to the locations of the hard walls
along the scanned line in (a).

Experimentally, a convenient way to generate the kind of
perturbation potential used in the simulations presented above
is by approaching an electrically biased nanoscale tip Vtip at a
distance dtip above the patterned quantum ring [as illustrated
in Fig. 3(a)]. The tip can then be scanned along the transport
direction, i.e., along the dashed lines in Figs. 2(a) and 3(a). In
order to achieve a large effect, we brought the tip to a distance
dtip = 60 nm above the sample surface and biased the tip with
large positive and negative voltages up to |Vtip| = 14 V.

The presence of the biased conductive Atomic Force Micro-
scope (AFM) tip is numerically modeled using a Lorentzian-
shaped perturbation potential ϕp(x, y) [illustrated in Fig. 1(a)]
parametrized by the position of its center (xtip, ytip), height
ϕp

max, and width Rp, which is half the potential FWHM. The
superposition of ϕp(x, y) on the modeled disordered potential
ϕd , together with the hard-wall boundaries that mark the edges
of the nanodevice, defines the potential landscape used in the
simulations.

In Fig. 3(b), the conductance is computed as ϕp moves along
the axis joining the entrance and the exit contacts [dashed
lines in Figs. 2(a) and 3(a)]. Remarkably, when the tip position
stands near the location of the hard wall (vertical dashed lines),
the conductance significantly deviates from that in the absence

of perturbation (∼ 11 × 2e2

h
), e.g., when the tip stands at the

center of the device. Beyond fluctuations originating from
the presence of the random disorder, the effect is symmetric
because positioning the tip near both T junctions gives the
same result. More importantly, this behavior is somewhat
counterintuitive: while a repulsive potential close to both T
junctions actually helps electrons crossing the overall structure
(enhanced conductance), an attractive perturbation reduces
their ability to pass through the device.

Looking further in the simulation results, we observe that
reversing the sign of ϕp essentially reverses the change in
conductance. Surprisingly, the backscattering to the leads, due
to current focusing on the hard-wall potential of the antidot
[described in Figs. 1(a) and 1(c)], is similar in amplitude to the
enhanced transmission due to defocusing [Figs. 1(a) and 1(b)].
On the other hand, we observe that the symmetric behavior
observed when changing the sign of ϕp naturally breaks when
the tip locates above the leads. In that case, while depleting the
lead strongly reduces the conductance, accumulating electrons
naturally has a much weaker effect. Finally, when moving the
perturbation from the T junction area towards the center of
the device, the effect on G naturally vanishes over a distance
corresponding roughly to Rp [Fig. 3(b)].

Besides moving the tip along the device axis, one can also
wonder how sensitive G variations are to the perturbation
position in the (x, y) plane. This aspect is examined in the
G maps plotted in Figs. 3(c) and 3(d) obtained for locally
raised and lowered moving potentials, respectively. The main
contrast is observed over the T junctions as well as over the
device leads for a depleting potential. In both the x and y

directions, this contrast fades away over distances comparable
to Rp. When positioning the perturbation potential over the
device arms and their vicinities, the G map is decorated
with short, characteristic length-scale fluctuations which are
similar to those reported in previous works [25–27]. This
weaker amplitude contrast was attributed to the perturbation
of resonant states in the local density of states (LDOS) by
the moving potential [25,26], as well as to the electrostatic
Aharonov-Bohm effect [27]. Note that here the mapping
conditions are not suitable for imaging the LDOS because the
moving potential is in the strong perturbation and not in the
linear regime discussed in Ref. [25]. In this framework we are
not using the scanning gate with microscopy purposes in mind.

It is now time to compare these predictions with experimen-
tal results obtained for the sample described above. Figure 4
summarizes the data in a way to ease the comparison with
the simulations. We first scanned the biased tip along a line
linking the device leads for two opposite-sign voltage biases.
Figure 4(a) shows, like the simulations in Fig. 3(b), that a
depleting (red) potential, near the border of the inner quantum
dot, eases electron injection, while an accumulating potential
(blue) located at the same place tends to reduce electron
transmission through the device.

For a strongly depleting potential [Vtip = −14 V; red curve
in Fig. 4(a)], corresponding roughly to ϕmax

p ∼ 0.4EF (see
Fig. S2 in the Supplemental Material [28]), G exhibits lo-
cal maxima when the tip is located above the limit of the
etched area in front of the entrance and exit leads [dashed
lines in Fig. 4(a)]. As expected, the conductance is reduced
further as the tip decreases the 2DEG density over the leads.
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FIG. 4. (a) Experimental conductance profile as a voltage-biased
tip is scanned along the dashed line presented in Fig. 2(a). The tip is
scanned at a distance of 60 nm from the sample surface with Vtip =
−14 V (red curve) or +8 V (blue curve). A qualitative scenario is
also illustrated for the peculiar electron forward scattering (red) and
backscattering (blue). (b) Conductance map as the biased tip (Vtip =
−14 V, depletion) is scanned in a plane at the same constant distance
from the sample surface. (c) Same map as the one presented in (b),
but with Vtip = +8 V (accumulation).

But, counterintuitively, a strongly accumulating potential
(Vtip = 8 V) brings G to a minimum. Moreover, the effect
is essentially symmetric when the tip moves from one T
branch to the other. The qualitative match with the curves
presented in Fig. 3(b) (obtained for ϕmax

p = ±0.9EF ) is very
good [29], and the experimental conductance maps presented
in Figs. 4(b) and 4(c) (the same data as in Fig. 4(c) are presented
in the Supplemental Material with an enhanced contrast [30])
compare well with the simulations presented in Figs. 3(c) and
3(d). We observe a remarkable coincidence of simulated and
experimental positions and lateral extensions of the peaks and
dips located around the hard walls in the T junctions. Note
also that, in addition to the main dips and peaks discussed
above, some fluctuations are visible in the experimental data
in Fig. 4(a), in particular when moving the tip towards
the center of the device. Such fluctuations are reproducible
and associated with universal conductance fluctuations [31]
(UCFs), stemming from tip-induced changes in the potential
causing phase and momentum changes for charge carriers at
the local scale, thereby affecting charge carrier interferences.
The amplitude of similar fluctuations is larger in the simulation
results shown in Fig. 3(b), as temperature in the simulations is
0 K, so thermal smearing and decoherence are not taken into
account.

Resonant features along the ring circumference are also
observed in all cases, but the smallest ones that are visible
in simulated G maps in Figs. 3(c) and 3(d), in particular those
with a concentric shape observed mostly outside the device
area, are absent in the experimental data. This is most likely
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FIG. 5. Simulated conductance profiles as the potential pertur-
bation is swept along the black dashed line in Fig. 3(a) for several
values of (a) ϕmax

p with Rp = 150 nm and disorder strength Sd =
4.78 meV, (b) Rp with ϕmax

p = −0.9EF and Sd = 4.78 meV, and (c)
Rp with ϕmax

p = 0.9EF and Sd = 4.78 meV. The vertical dashed lines
correspond to the locations of the hard walls along the scanned line.

related to thermal averaging, which is not taken into account
in the simulations.

At this stage, we can conclude that the experiments confirm,
at least qualitatively, that a focusing/defocusing can be induced
by a Lorentzian perturbation combined to a hard-wall potential
in a ballistic device. While defocusing [Fig. 4(a), red] is
clearly reminiscent of the Rutherford scattering, here in two
dimensions, focusing on the hard wall induces a peculiar
backscattering mechanism as the lensing is combined with the
specular reflection illustrated in Fig. 4(a) (blue).

At first sight, the weaker absolute value of the voltage
applied on the tip in accumulation [blue in Fig. 4(a)] could
explain why the effect on the conductance is weaker than in
depletion [red in Fig. 4(a)]. However, we need to dig deeper in
the simulations to test the quantitative correspondence between
experiments and predictions.

Figure 5 shows the evolution of the conductance when ϕp

travels along the axis of the quantum ring and when either
ϕmax

p or Rp is varied, with the other parameters remaining
constant (a similar map with a varying disorder amplitude Sd

is shown in the Supplemental Material [32]). We obviously
focus our attention on the two regions near the edge of the inner
QR, i.e., x ∼ ± 800 nm [dashed lines in Figs. 5(a) and 5(b)].
We first observe no obvious threshold when |ϕmax

p | increases
[Fig. 5(a)]. G undergoes a smooth evolution at least up to 2EF .
However, on the depletion side (ϕp > 0), the positions of the
local G maxima are gradually shifting towards the center of
the device as ϕmax

p is made more positive. This reflects the
fact that roughly identical potential perturbation conditions
are found in the T junctions for both a weakly perturbing
potential (ϕmax

p < EF ) centered close to the hard wall and
a strongly perturbing potential (ϕmax

p > EF ) centered farther
away from the hard wall. On the accumulation side (ϕp < 0),
the position of the dips’ centers remains essentially unaffected:
charge accumulation in the T junctions does not modify their
geometry.
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respect to that at x = 0 for
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p |
EF

fixed at 0.9 for all EF in the presented
range. (a) is a map realized for a depleting tip-induced potential, and
(b) is for an accumulating tip. (c) Relative conductance variation,
averaged over the range 11 meV < EF < 110 meV, at x = −800 nm
(red and blue show depletion and accumulation, respectively). These
curves are obtained for different disorder configurations (keeping
the same disorder standard deviation). The dark red and blue curves
correspond to the disorder configuration that was used to generate all
the simulated data presented, above and the light red and blue curves
correspond to different disorder configurations. The two experimental
data points are indicated in (c) in the form of two vertical bars.

Varying Rp has an interesting effect on the conductance
peaks and dips. Beyond a few tens of nanometers and up to
200 nm, where the arms themselves start to become narrowed,
varying Rp has essentially no effect on the amplitude of
conductance extrema for either negative [Fig. 5(b)] or positive
[Fig. 5(c)] perturbation potentials. Indeed, the amplitude of
conductance peaks and dips saturates for Rp � λF = 25 nm,
i.e., in the classical regime (see the Supplemental Material
[33]).

On the other hand, the evolution of the width of conductance
extrema [Figs. 5(b) and 5(c)] is smoother and gives us the
possibility to determine the value of R

exp
p that characterizes

our experimental configuration. Based on the FWHM of the
strongest (red) conductance peaks in Fig. 4(a), we obtain that
R

exp
p ∼ 135 nm. This value is well within the range investigated

in the simulations and is indeed consistent with data discussed
in the Supplemental Material.

Finally, our results show that increasing the disorder damp-
ens the effect, but no qualitative change is observed even when
multiplying the initial disorder [Fig. 2(b)] by a factor of 4 (
see Fig. S1 in the Supplemental Material). This robustness is a
clear signature that distinguishes the present effect from UCFs.
Indeed, in constrast with the smooth and continuous evolution
observed in Fig. S1 in the Supplemental Material, the random
nature of UCFs should lead to large (on the scale of 2e2/h)
and uncorrelated variations of conductance when an external
parameter, such as Sd , is varied.

To go beyond the good qualitative correspondence between
Figs. 3 and 4, we now need to question the experimental
data more quantitatively. This is the purpose of Fig. 6, which
addresses the effect of the density, or Fermi energy, and finally
provides a quantitative comparison between experiments and
simulations.

The simulated variation of the conductance with EF , while
keeping constant the absolute value of the ratio

ϕmax
p

EF
= 0.9,

is presented in Fig. 6(a) for depleting tip-induced potential
and in Fig. 6(b) for accumulating tip-induced potential. Since
G increases with EF , it makes sense to examine the relative
change in conductance �G/G0 = (G − G0)/G0, where G0 is
the conductance of the device when the tip is above the device
center (x = 0). It is immediately apparent that the simulated
�G/G0 is insensitive to EF provided that the ratio ϕmax

p /EF

is kept constant at 0.9. In other words, the efficiencies of both
focusing and defocusing are not sensitive to EF alone but,

as Fig. 6(c) clearly reveals, to the ratio
ϕmax

p

EF
. More precisely,

Fig. 6(c) shows a linear dependence of �G/G0 as a function

of
ϕmax

p

EF
up to

ϕmax
p

EF
� 1 in the depletion regime. It is noteworthy

that the linear behavior is only weakly sensitive to disorder

in this regime. For
ϕmax

p

EF
� 1, defocusing by a depleting tip

becomes less efficient as the arms’ width starts to shrink, and
the overall behavior is much more sensitive to the precise
disorder configuration. No such deviation from linearity is
observed in the case of accumulation [blue lines in Fig. 6(c)].
The counterintuitive entry/exit symmetry persists in the whole

range investigated, and the linearity with respect to
ϕmax

p

EF
is

preserved.
How can we understand this linear dependence, at least

in the depletion regime? The defocusing of ballistic elec-
trons facing a Lorentzian-shaped repulsive potential is clearly
reminiscent of Rutherford scattering. The original Rutherford
formalism provides an expression for the differential cross
section in three dimensions for a scattering potential C

r
, where

C is the amplitude and r is the distance from the scattering
center, as a function of the energy of incident particles E and
of the scattering angle θ . Since the arms of the quantum ring
capture electrons in a finite angle range from the leads, one
can consider the differential cross section at a given angle to
be related to the conductance of our ballistic device. Coinci-
dentally, in the 3D case, the Rutherford formula is independent
of whether you treat particles classically or quantumly [4].
In two dimensions, this elegant result is no longer valid in
general. In the 2D quantum regime, one has to find an analytical
expression of the differential cross section dλ

dθ
by solving the

2D version of the Lippmann-Schwinger equation [34] with a
Lorentzian-shaped potential distribution, which is far beyond
the scope of the present work. In the 2D classical regime,
however, an equivalent formula was derived [4,35]. For the
same C

r
potential,

dλ

dθ
= |C|

4Esin2(θ/2)
. (1)

One readily finds from Eq. (1) that, for a given angle θ , the
scattering amplitude is fully determined by the ratio between
the amplitude C of the perturbative potential and the energy
of the particles. In the case of our device, this ratio would

correspond to
ϕmax

p

EF
. The linear response of the simulated

�G/G0 with respect to changes in
ϕmax

p

EF
revealed in Fig. 6(c) is

thus reminiscent of the 2D Rutherford scattering in the classical
regime. Note that Eq. (1) is also valid in the accumulation
regime, but in our QR geometry, specular reflection on the
hard wall must also be taken into account. Beyond Eq. (1),
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which is probably not strictly applicable to our Lorentzian-
shaped potential, the Rutherford analogy helps us visualize
the observed ballistic defocusing.

We finally turn to what is probably the most important
information presented in Fig. 6(c): the quantitative comparison
between experiments and simulations. To reach that point, we
first need to evaluate the amplitude of the perturbation potential
induced by the tip. A direct view of the shape of the tip-
induced potential experienced by electrons inside the device
is obtained by mapping the conductance of a narrow channel
in a similar device (whose width is comparable to the leads
of the device) close to pinch-off as a function of the electron
density, with the tip scanning along a line perpendicular to
the channel axis (see Supplemental Material, Fig. S2; this
second device is located on the same sample). Following this
procedure, we determined that ϕmax

p = 3.9 meV for Vtip = −4
V and dtip = 80 nm and scaled this value while taking into
account the parameters used in Fig. 3(a). Knowing the values
of ϕmax

p for both the depletion and accumulation potential data
in Fig. 4(a), we were able to plot the experimental �G/G0 vs
ϕmax

p

EF
in Fig. 6(c) for two different values of ϕmax

p /EF . The good
agreement between experiments and simulations reveals the
global consistency of our study and that it is indeed possible to
strongly enhance or reduce the injection of ballistic electrons
in a ballistic device by tuning the shape of the potential faced
by electrons. It also means that the simple tight-binding model
used here captures the essential physics of the phenomena. In
the experiment, a conductance change of up to ∼ 10% relative
to the unperturbed device conductance is observed, which is
relatively important, compared to, e.g., coherent effects at this
temperature (40 mK). The phenomenon seems also particularly
robust with respect to disorder. This may seem surprising at
first sight if its origin is a “ballistic redirecting effect” induced
by the tip potential. However, high-contrast magnetic focusing
effects were observed in semiconductor heterostructures with
comparable or lower mobilities [36]. This common robustness
in both cases further reinforces the idea that ballistic focusing
is at the heart of the observed phenomenon.

III. CONCLUSION

In conclusion, we have evidenced surprising ballistic elec-
tron focusing and defocusing behaviors governed by a local
electrostatic potential. The phenomenology is similar to the 2D
Rutherford scattering assuming classical electron dynamics.
The applicability of this relatively simple classical formalism
in the case of a 2DEG-based device was not expected. Indeed,
the scattering amplitude for the interaction between charged
particles and a sharp electrostatic potential should, in principle,

be governed by complex interactions related to the presence of
the many-particle background of the Fermi sea [8]. Another
unexpected result of this work resides in the unexpected
symmetry revealed between the amplitude of the Rutherford
defocusing effect (when a depleting potential is applied)
and reflective focusing, as experienced by electrons scattered
by an accumulating potential in front of a hard wall. All
these puzzling fundamental questions will require additional
scrutiny and will probably foster further experimental and
theoretical work.

In a broader context, our observations help in the under-
standing of charge carrier injection in ballistic devices, as they
show that fine tuning of the potential in the vicinity of the
entrance and exit leads can have huge effects on transmission
through the whole device. In turn, this work provides useful
tools in the perspective of building “electron optics” devices,
where a local modulation of the electrostatic potential inside
a device redirects the electron flow in a way similar to how
an optical lens curves light rays [37]. In this framework,
scanning gate microscopy can play an important role, as
pointed out in various theoretical proposals where scattering
was investigated by tuning the electrostatic potential at the
local scale using a charged metallic tip [8,38,39]. Although
the description of scattering in two spatial dimensions was
considered a curiosity up to the early 1980s [35], nowadays
high-mobility two-dimensional charge systems give this fun-
damental question complete relevance, and the possibility of
testing this description, even with relativistic Dirac particles
[40–43], also opens new directions of research.
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