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The spin polarization induced by a temperature gradient (heat current) in a magnetized two-dimensional
electron gas (2DEG) with a Rashba spin-orbit interaction is considered theoretically within the linear response
theory. Using the Matsubara Green’s function formalism, we calculate the temperature dependence of the spin
polarization for arbitrary orientation of the exchange field. The limit of a nonmagnetic 2DEG (zero exchange field)
is also considered. Role of vertex corrections is investigated, and physical mechanisms of the spin polarization
emergence are discussed. For a magnetic system, we identify a term in the spin polarization that stems from the
Berry curvature of the corresponding electronic bands.
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I. INTRODUCTION

The spin-orbit interaction couples the orbital motion of an
electron to its spin orientation. In conducting materials, this
coupling leads to various transport phenomena like anomalous
Hall and Nernst effects as well as their spin counterparts, i.e.,
spin Hall and spin Nernst effects. These phenomena enable
pure electrical or pure thermal control of spin (magnetic)
moments [1,2]. Indeed, the spin current induced by the spin
Hall effect is widely functionalized as a spin torque (so called
spin-Hall torque) exerted on a magnetic moment triggering a
magnetic dynamics and/or magnetic switching when the spin
current exceeds a certain critical value.

One of the other consequences of the spin-orbit interaction
is the current-induced nonequilibrium spin polarization (CISP)
of conduction electrons. This means effectively that the system
can be magnetically polarized by an electric field, similarly as
in the case of multiferroic (magnetoelectric) systems (albeit
the former case involves a nonequilibrium magnetization). The
phenomenon of CISP was predicted theoretically in the ’70s
[3,4] and later it was studied theoretically [5–13] and also
experimentally [14–22] in various materials. The phenomenon
of CISP can occur in nonmagnetic as well as in magnetic
systems, provided they exhibit spin-orbit coupling. If the
system is already magnetic in the equilibrium, the induced
nonequilibrium spin polarization may couple to the local
magnetization via the exchange interaction, leading to a spin
torque exerted on the local magnetization [23–27].

Recently, it has been shown that not only external electric
field but also a temperature gradient may lead to a spin-orbit
driven spin polarization [12,28,29]. These results initiated
an interesting discussion on the thermally induced spin-orbit
torque and also on possibly new ways of magnetization
switching as an alternative to switching by electrically induced
spin transfer torque [30–32]. The physical mechanisms of the
thermally induced spin polarization of conduction electrons

are different from that for electrically induced spin polariza-
tion, although there are some similarities. In the case of an
electric field, the field drives electrons and their wave vectors
experience a net change �k along the driving force. The
electron spins precess to fit the new orientations of the Rashba
field creating different distributions of electrons with positive
and negative wave-vector components along the electric field.
Taking into account the spin precession and equilibrium spin
orientations in the two electronic subbands, one finds a nonzero
net component of the spin polarization along the in-plane
axis normal to the electric field. In the case of a temperature
gradient, there is no electrical (mechanical) force, but instead
we have a statistical force. In the absence of a temperature
gradient, the average spin is zero. For a finite temperature
gradient, the local distributions of electrons with positive and
negative wave-vector components are different. This is because
colder electrons arrive at a given point from one side and hotter
electrons from the other side. Due to different densities of states
in the two Rashba subbands, a nonzero spin polarization along
the axis y (in-plane and normal to the gradient) appears.

Although the spin-orbit torques induced by an electric
current and a temperature gradient are attracting a great deal of
attention experimentally, for a consistent theoretical descrip-
tion of the spin polarization some work is still needed. In this
paper, we consider the heat-current-induced spin polarization
of a magnetic two-dimensional electron gas (2DEG) with
Rashba spin-orbit interaction. Such a model is fundamental for
many devices based on magnetic semiconductor heterostruc-
tures. We also briefly reconsider the nonmagnetic limit. To
find the spin polarization, we employ the Matsubara-Green’s
function formalism. Detailed numerical calculations show that
the spin polarizability has a maximum in the range of chemical
potentials where the modification of the electronic subbands,
due to Rashba spin-orbit coupling, is large, i.e., in the vicinity
of the band edge of the lower subband.
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The paper is organized as follows. In Sec. II, we describe
the model and formalism used to obtain some general formulas
that allow us to calculate the spin polarization induced by a
thermal gradient. In Sec. III, we present and discuss the results
on the spin polarization in the absence of exchange field. Then,
in Sec. IV, we include the exchange field and present detailed
results for exchange field perpendicular to the plane of 2DEG
as well as for its arbitrary orientation. In Sec. V, we comment
on relations between electrically and thermally induced spin
polarization and show that y components of spin polarizability
may satisfy the Mott-like relation. Finally, in Sec. VI, we
summarize our results and also present general conclusions.

II. MODEL AND METHOD

The 2DEG with spin-orbit interaction of the Rashba type
and an arbitrarily oriented exchange field is captured by the
Hamiltonian

H = εkσ0 + HR + Hex, (1)

where εk = h̄2k2

2m
and HR is the Rashba term,

HR = α(kyσx − kxσy ), (2)

with α being the Rashba parameter, while Hex describes the
exchange interaction

Hex = H · σ , (3)

where H is the effective exchange field (measured here in
energy units). In the equations above, the matrices σ0 and
σ = {σx, σy, σz} are the unit and Pauli matrices, respectively,

defined in the spin space. In turn, kx and ky are the in-plane
wave-vector components.

We consider the nonequilibrium spin polarization in the
system driven by a statistical force, i.e., by the temperature
gradient (heat current). We also assume the temperature gra-
dient ∇T is small and uniform across the whole system, so
that the average temperature T is basically constant on the
scale of the carrier wavelengths. The study is also restricted
to cases away from any thermal phase transitions in the
considered temperature range. With these assumptions, we
can employ a finite-temperature theory for the linear response
of the system to a temperature gradient, meaning that the
sample is already at some mean temperature and we seek
its linear response when exposed to a small temperature
gradient. Technically, we will resort to similar concepts such
as those introduced by Luttinger [33] and Strinati et al. [34] by
defining an auxiliary time-dependent vector field of frequency
ω/h̄, A(t ) = A(ω) exp(−iωt/h̄), which is associated with the
heat current density operator, ĵh = 1

2 [Ĥ − μσ0, v̂]+ (here μ

denotes the chemical potential), so the perturbation term has
the form

Ĥ∇T
A (t ) = −ĵh · A(t ). (4)

The vector field is related to the temperature gradient via
A(ω) = h̄

iω
(−∇T

T
) [12,35–39]. For a temperature gradient

along the axis x the perturbation Ĥ∇T
A (t ) has the form

Ĥ∇T
A (t ) = −ĵ h

x Ax (t ).
Within the conditions stated above, the nonequilibrium spin

polarization, viewed as a first-order response to the tempera-

ture gradient can be calculated within the Matsubara-Green’s
function formalism as

Sα (iωm) = 1

β

∑
k,n

Tr
{
ŝαGk(iεn + iωm)Ĥ∇T

A (iωm)Gk(iεn)
}
,

(5)

where β = 1/kBT , ŝα is the αth component of the spin
operator and Ĥ∇T

A (iωm) = −ĵ h
x Ax (iωm) with the amplitude of

the vector potential: Ax (iωm) = h̄
i(iωm ) (−∇xT

T
). Furthermore,

εn = (2n + 1)π/β and ωm = 2mπ/β are the Matsubara ener-
gies, while Gk(iεn) are the Matsubara-Green’s functions.

To sum over the Matsubara energies, we need to assume
kBT > � = h̄/2τ , where � is the imaginary part of the
self-energy, while τ is the corresponding relaxation time.
Then, upon performing the summation over the Matsubara
energies [40,41], one finds the spin polarization induced by
the temperature gradient in the following form:

Sα (ω) = h̄

ω

∇xT

T
Tr

∑
k

∫
dε

2π
f (ε)ŝα

× (
GR

k (ε + ω)ĵ h
x

[
GR

k (ε) − GA
k (ε)

]
+ [

GR
k (ε) − GA

k (ε)
]
ĵ h
x GA

k (ε − ω)
)
. (6)

The key steps of the derivation of the above formula are
described elsewhere[38,42]. Equation (6) is our starting ex-
pression for further considerations.

Before calculating the spin polarization, we comment on the
applicability range of the formalism used in this paper. At a
finite T , the spin polarization is calculated as a linear response
to ∇xT /T . Accordingly, we may write

Sy (ω) = χy (ω)(∇xT /T ), (7)

where χy is the response function (in the following, it will
be also referred to as the spin polarizability). In the present
formalism, the response function can be calculated from the
formula

χy (ω) = h̄

ω
Tr

∑
k

∫
dε

2π
f (ε)ŝα

(
GR

k (ε + ω)ĵ h
x

× [
GR

k (ε) − GA
k (ε)

]
+ [

GR
k (ε) − GA

k (ε)
]
ĵ h
x GA

k (ε − ω)
)
. (8)

The limit T → 0 needs a careful inspection. Our linear
response approach requires that the statistical driving force
∇xT /T is small. Moreover, the statistical force should dis-
appear in the limit T → 0. Thus, when T → 0, ∇xT /T

should also tend to zero, ∇xT /T → 0 for T → 0. This
results in zero spin polarization for the zero temperature limit,
Sy (T = 0) → 0 when T → 0.

From the above discussion, it follows that the most conve-
nient way to present the numerical results is simply to show the
response function as χy = Sy/(∇xT /T ). Note, that even if the
thermal spin polarizability χy is nonzero in the limit T → 0,
the corresponding spin polarization vanishes due to vanishing
driving statistical force.

This can be also supported by the fact that the nonequi-
librium spin polarization is not associated with the entropy
generation, while the coefficients determining the polarization
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are not related to the kinetic coefficients. From an experimental
point of view, it is of course more relevant to operate at finite
temperatures and moderate temperature gradients that can be
realized on the nanoscale. This is the range where our theory
is useful.

In Appendix B, we present the explicit formulas for the
kinetic coefficients, the entropy production, and the Onsager
relations for the case of 2D systems with Rashba spin-orbit
coupling in the magnetization field M. Analyzing these re-
lations in connection with the obtained results, we come to
the conclusion that the calculated thermally induced bulk
polarization (i) does not contradict the Onsager relations, (ii)
it does not lead to any unphysical divergences at T → 0 (as
explained above), and (iii) it is not related to the production
of entropy. This makes it different from the known problem
of orbital magnetization, where the surface currents should
be accounted for to restore the Onsager relations, avoiding
unphysical divergences at T → 0 and obeying the third law of
thermodynamics.

III. SPIN POLARIZATION IN A NONMAGNETIC 2DEG

Let us consider at first the case with zero exchange field,
i.e., when the 2DEG is nonmagnetic. The Hamiltonian Eq. (1)
reduces to the form

H = εkσ0 + α(kyσx − kxσy ), (9)

while the corresponding impurity-averaged retarded/advanced
(R/A) Green’s functions can be written as

G
R/A

k (ε) = G
R/A

k 0 (ε)σ0 + G
R/A

k x (ε)σx + G
R/A

k y (ε)σy, (10)

where

G
R/A

k 0 (ε) = 1

2
[G+(ε) + G−(ε)], (11a)

G
R/A

k x (ε) = αky

2λk

[G+(ε) − G−(ε)], (11b)

G
R/A

k y (ε) = −αkx

2λk

[G+(ε) − G−(ε)], (11c)

with GR
±(ε)=[ε+μ−E±+i�]−1, GA

±(ε)=[ε+μ−E±−i�]−1

and E± = εk ± λk (with λk = αk). Note, the relaxation rate
(taken at the Fermi level) � in a nonmagnetic electron gas
with Rashba interaction (assuming relaxation due to scattering
on short-range impurities only) has the following explicit
form: � = niv

2
0

m

2h̄2 = �0 for μ > 0 and � = �0
n∗
n

for μ <

0. Here n∗ and n stand for particle density for μ = 0 and
μ < 0, respectively (for more details see, e.g., Ref. [38]).
Treating � as a small fixed parameter, as done in this work,
means that for each value of the chemical potential, the spin
polarizability corresponds to a different impurity potential or
different concentration of impurities. In the nonmagnetic case,
this assumption is relevant for the negative chemical potentials;
that is, for 0 < μ < Emin (where Emin means the minimum of
the lower energy branch).

A. Bare bubble approximation

The heat current operator corresponding to the Hamiltonian
Eq. (9) has the explicit form

ĵ h
x =

(
(εk − μ)

h̄kz

m
+ α2

h̄
kx

)
σ0 + α

h̄

m
kxkyσx

−
(

α

h̄
(εk − μ) + α

h̄

m
k2
x

)
σy. (12)

Inserting Eqs. (10) to (12) into Eq. (6), we find that only the
y component of the spin polarization is nonzero, namely

ST
y (ω) = h̄

ω

∇xT

T

∫
dk

(2π )2

(
−π

2
[2εk (εk − μ) + α2k2]SA

+α
π

2
k[(εk − μ)SB + (3εk − μ)SC]

)
, (13)

where

SA = IRA
−− (ω) − IRR

−− (ω) + IRR
++ (ω) − IRA

++ (ω) + IAA
−− (−ω)

− IAA
++ (−ω) − IRA

−− (−ω) + IRA
++ (−ω), (14)

SB = IRA
−+ (ω) − IRR

−+ (ω) + IRA
+− (ω) − IRR

+− (ω) + IAA
−+ (−ω)

+ IAA
+− (−ω) − IRA

−+ (−ω) − IRA
+− (−ω), (15)

SC = IRA
−− (ω) − IRR

−− (ω) + IRA
++ (ω) − IRR

++ (ω) + IAA
−− (−ω)

+ IAA
++ (−ω) − IRA

−− (−ω) − IRA
++ (−ω). (16)

Here we use the notation IXY
mn (ω) = ∫

dε
2π

GX
m(ε + ω)GY

n (ε)
and IXY

mn (−ω) = ∫
dε
2π

GX
m(ε)GY

n (ε − ω) with m, n = {+,−}
and X, Y = {R,A}.

Upon integrating over ε and taking the limit ω → 0, we find
the thermally induced spin polarization

Sy = − h̄

2�

∇xT

T

∫
dk

4π

(
εk (εk − μ) + 1

2
α2k2

)
× [f ′(E+) − f ′(E−)]

− h̄

2�

∇xT

T

α

2

∫
dk

4π
k(3εk − μ)[f ′(E+) + f ′(E−)]

−αh̄�
∇xT

T

∫
dk

4π
k(εk − μ)

f ′(E+) + f ′(E−)

(E+ − E−)2 + (2�)2
.

(17)

The first two terms in Eq. (17) are proportional to h̄/2� = τ ,
while the third term is proportional to � (or 1/τ ). Thus, one
may expect that the first two terms are dominant in general,
while the third term is small. This, however, does not hold
true in the low-temperature regime, where the first two terms
cancel each other so that the dominant contribution (though
very small) may stem from the third term, as shown below. The
formula Eq. (17) is our general result for the spin polarization
in the bare bubble approximation. Note, � is here a parameter
which is constant (independent of energy/wave vector).

In the low-temperature regime, one can replace the deriva-
tives of the Fermi distribution functions by appropriate Dirac
delta-functions, and then the above expression can be in-
tegrated analytically. As already mentioned above, the first
two terms in Eq. (17) then cancel each other, so the only
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contribution originates from the third term. Assuming μ > 0
and taking into account the fact that the Dirac delta-functions
for μ > 0 can be expressed as

δ(E± − μ) = m δ(k − k±)√
2mμh̄2 + m2α2

, (18)

we find the thermal spin polarizability,

χy = 1

2�

αh̄3

16π
√

2mμh̄2 + α2m2

×
[

k3
+ − 2mμ

h̄2 k+
1 + (αk+/�)2

+ k3
− − 2mμ

h̄2 k−
1 + (αk−/�)2

]
. (19)

Note, that � < kBT in the above formula. Moreover, the
formalism assumes well-defined quasiparticles, so � � αk±,
where k± = ∓mα

h̄2 + 1
h̄2

√
m2α2 + 2mμh̄2 are the Fermi wave

vectors in the two subbands. As a result, one finds

χy = h̄3

16π
√

2mμh̄2 + α2m2

×�

2

[
k+ + k− − 2mμ

h̄2

(
1

k+
+ 1

k−

)]
= 0, (20)

i.e., the spin polarizability vanishes in the low temperature
regime.

When only one subband is occupied, μ < 0, the Dirac
Delta-functions for the E− band read

δ(E− − μ) = m[δ(k − k+
− ) + δ(k − k−

− )]√
2mμh̄2 + m2α2

, (21)

where now k±
− = mα

h̄2 ±
√

2mμh̄2 + m2α2. The spin polariz-
ability is then given by the formula

χy = 1

2�

αh̄3

16π
√

2mμh̄2 + α2m2

×
[

(k+
− )3 − 2mμ

h̄2 k+
−

1 + (αk+
−/�)2

+ (k−
− )3 − 2mμ

h̄2 k−
−

1 + (αk−
−/�)2

]
, (22)

and now may generally remain small but nonzero in the low-
temperature regime for � < kBT and � � αk±

− .

B. Vertex correction

It is known that the impurity vertex corrections can have
a significant impact on various physical quantities, like, for
instance, on the spin Hall conductivity of a 2DEG with Rashba
interaction. Therefore, we consider now the vertex corrections
to the spin polarization.

The equation for the renormalized spin vertex reads

S̄y = h̄

2
σy + niv

2
0

∫
d2k

(2π )2
GA

k (ε)S̄yG
R
k (ε + ω). (23)

We look for a solution of Eq. (23) in the following form:
S̄y = aσ0 + bσx + cσy + dσz. Then, from Eq. (23), we find
that a = b = d = 0, while c is given by the following formula:

c = h̄

2

[
1 − 1

2
πniV

2(IRA
−− + IRA

++ + IRA
+− + IRA

−+
)]−1

. (24)

Taking the above expression at the Fermi level (ε = 0) and
assuming the limit of ω → 0, one finds

S̄y = h̄

2

1

1 − 1
2πniv

2
0 (I1 + I2)

σy, (25)

where the integrals I1,2 are defined as

I1 =
∫

dkk

(2π )2

[
1

(μ − E+)2 + �2
+ 1

(μ − E−)2 + �2

]
, (26)

I2 = �
∫

dkk

(2π )2

E− − E+ − 2i�

(E− − E+)2 + (2�)2

×
[

μ − E− + i�

(μ − E−)2 + �2
− μ − E+ − i�

(μ − E+)2 + �2

]

+
∫

dkk

(2π )2

E+ − E− − 2i�

(E+ − E−)2 + (2�)2

×
[

μ − E+ + i�

(μ − E+)2 + �2
− μ − E− − i�

(μ − E−)2 + �2

]
. (27)

It is convenient to introduce the parameter β by the follow-
ing equality:

1

2
πniv

2
0 (I1 + I2) ≡ 1

2
+ β. (28)

This parameter can be determined from Eqs. (26) and (27).
Accordingly, we may write the renormalized vertex function
in the following form:

S̄y = ŝy

2

1 − 2β
, (29)

or, alternatively,

S̄y = ŝy + δŝy ≡ ŝy + γ
h̄

2
σy, (30)

where γ = 1+2β

1−2β
. Thus, the spin polarization with the vertex

correction included can be written as

S tot
y = Sy + �Sy, (31)

where Sy is given by Eq. (17) while �Sy is given by the formula

�Sy = − h̄

ω

∇xT

T
Tr

∫
d2k

(2π )2

∫
dε

2π
f (ε)δŝy

×(
GR

k (ε + ω)ĵ h
x GA

k (ε) − GR
k (ε)ĵ h

x GA
k (ε − ω)

)
. (32)

Upon integration over ε in Eq. (32), the final formula for the
total spin polarization (including vertex correction) reads

Sy = − h̄

2�

∇xT

T
(1 + γ )

×
{∫

dk

4π

(
εk (εk − μ) + 1

2
α2k2

)
[f ′(E+) − f ′(E−)]

+ α

2

∫
dk

4π
k(3εk − μ)[f ′(E+) + f ′(E−)]

+ 2α�2
∫

dk

4π
k(εk − μ)

f ′(E+) + f ′(E−)

(E+ − E−)2 + (2�)2

}
. (33)
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The vertex renormalization leads in effect to a multiplication of
the spin polarization obtained in the bare bubble approximation
[given by Eq. (17)] by a factor 1 + γ = 2/(1 − 2β ), which can
be found from Eqs. (26) to (28). This renormalization factor is
equal to that found in the case of the spin polarization induced
by an external electric field [42].

Some analytical results for β (and thus also for γ ) can be
derived for small �, when the integrals Eqs. (26) and (27) take
on the form

I1
∼= 1

2�

∫
dkk

2π
[δ(E+ − μ) + δ(E− − μ)], (34)

I2
∼=

∫
dkk

2π

2�

(2αk)2 + (2�)2
[δ(E+ − μ) + δ(E− − μ)]. (35)

The parameter β is then given by the formula

β = h̄2

4
√

2mμh̄2 + m2α2

[
k+

1 + (
αk+
�

)2 + k−
1 + (

αk−
�

)2

]
(36)

for μ > 0, and

β = h̄2

4
√

2mμh̄2 + m2α2

[
k+
−

1 + ( αk+
−

�

)2
+ k−

−
1 + ( αk−

−
�

)2

]
(37)

for μ < 0. Having found β, we have also the parameter γ .

C. Numerical results

The numerical results presented here are for the low impu-
rity case where the parameter � is very small. The parameter
γ is then roughly equal to 1, so the results including the vertex
correction can be obtained from those derived in the single loop
approximation upon multiplying the latter by a factor roughly
equal to 2.

In Fig. 1, we show the total (with vertex corrections
included) thermal response function due to a temperature gra-
dient in a nonmagnetic system. The only nonzero component
of spin polarization in the absence of the exchange field is the
in-plane component perpendicular to ∇xT , i.e., the component
Sy . Figures 1(a) and 1(b) show the spin polarizability as a
function of chemical potential for different Rashba coupling
constants and temperatures, respectively. Note, the parameter
� assumed in Fig. 1 is 0.005 meV, thus the minimal temperature
for which our formalism works properly is approximately
0.06 K. When T increases, the spin polarization also increases
and has a maximum for the Fermi level around the bottom of
the lower electronic band. The spin polarizability as a function
of the chemical potential has then the form of a narrow and
asymmetric peak. When T increases further, the maximum
value of the spin polarization saturates, while the peaks become
broader. The spin polarizability is plotted also as a function
of temperature from Tmin = 0.06 K up to 250 K for fixed
chemical potential, μ, [Fig. 1(c)] and a fixed Rashba parameter,
α [Fig. 1(d)]. Evidentl,y χy is diminished when the temperature
tends to zero, and for higher values of T it behaves as a linear
function of T . This is consistent with the physical mechanism
of the thermally induced spin polarization. Three ingredients
of this mechanism are important: (i) the spin orientation in

FIG. 1. The y component of the thermally induced spin polar-
izability in a nonmagnetic electron gas shown as a function of the
chemical potential for the indicated Rashba coupling constant and
temperatures (a), (b); as a function of temperature for the indicated
chemical potentials and the Rashba parameters (c), (d). Other param-
eters as indicated, whereas m = 0.07m0, and � = 5 · 10−3 meV.

the two electronic subbands is determined by the Rashba
coupling and the total spin in the equalibrium vanishes in
each subband, (ii) Rashba splitting of the electronic bands
introduces some asymmetry in the density of states of the
two subbands, and (iii), due to the temperature gradient, there
is an imbalance in the spin flowing into a certain region
from the colder and hotter sides. All this leads to a net spin
polarization. Moreover, this also explains why the maximum
of the spin polarization appears close to the bottom of the lower
band. The latter takes place because the modifications in the
electronic structure by the Rashba coupling are most significant
there. In turn, the broadening of the peaks with increasing
temperature is a consequence of the broadening of the Fermi
distribution function. The almost symmetrical shape is due to
the assumption of a constant chemical potential. In other words,
our system is assumed to be attached to two (left and right)
electronic reservoirs where the electrons are described by the
chemical potential μ. Thus, even if the chemical potential is
below the band edge in 2DEG, the electrons can be injected
into the system from the reservoirs when the temperature is
sufficiently high.

Increasing the Rashba parameter, the spin polarization also
increases. Moreover, the band edge of the lower band is shifted
down so that the peak in the spin polarization slightly shifts
towards lower values of the chemical potential. This behavior
is shown in Fig. 1(a), where different curves correspond to
different values of the parameter α. The interplay of this shift
and of the increase of the maximum spin polarization with α

leads to some nonmonotonous behavior of the spin polarization
with the Rashba parameter, especially at higher values of μ,
where the spin polarization is already very small.
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IV. SPIN POLARIZATION IN THE PRESENCE OF
EXCHANGE FIELD

Considering the full Hamiltonian Eq. (1) with the exchange
term Hex, we cast the exchange field in spherical coordinates
H = (Hx,Hy,Hz) as

Hx = JM sin θ cos ξ, (38a)

Hy = JM sin θ sin ξ, (38b)

Hz = JM cos θ, (38c)

where J is a parameter proportional to the exchange constant
and M is the effective magnetization which in general depends
on the temperature according to Bloch’s law, M (T ) = M0[1 −
(T/Tc )3/2] (with Tc being the Curie temperature and M0 stands
for the magnetization at T = 0). The angles θ and ξ are the
polar and the azimuthal angles in spherical coordinates.

The eigenvalues of the Hamiltonian Eq. (1) are

E± = εk ± λk, (39)

where now the parameter λk is defined as λk =√
J 2M2 + α2k2 + 2JMα sin θ (kx sin ξ − ky cos ξ ). The

retarded/advanced Green’s functions corresponding to the
Hamiltonian Eq. (1) read

G
R/A

k (ε) = G
R/A

k 0 (ε)σ0 + G
R/A

k x (ε)σx

+G
R/A

k y (ε)σy + G
R/A

k z (ε)σz, (40)

where

G
R/A

k 0 (ε) = 1

2
[G+(ε) + G−(ε)], (41a)

G
R/A

k x (ε) = 1

2λk
(αky + H sin θ cos ξ )[G+(ε) − G−(ε)],

(41b)

G
R/A

k y (ε) = − 1

2λk
(αkx − H sin θ sin ξ )[G+(ε) − G−(ε)],

(41c)

G
R/A

k z (ε) = 1

2λk
H cos θ [G+(ε) − G−(ε)], (41d)

while GR
±(ε) = [ε + μ − E± + i�]−1 and GA

±(ε) = [ε + μ −
E± − i�]−1. Note, we assumed � is a constant parameter for
both subbands. Apart from this, the expansion of the Green
function in Pauli materices includes now the term proportional
to σz, which was absent in the case of no exchange field, see
Eq. (8).

The operator of the heat current density is

ĵ h
x = jh

x0σ0 + jh
xxσx + jh

xyσy + jh
xzσz, (42)

where

jh
x0 =

(
(εk − μ)

h̄kx

m
+ α

h̄
(αkx − Hy )

)
, (43a)

jh
xx = h̄

m
kx (αky + Hx ). (43b)

jh
xy =

(
α

h̄
(εk − μ) + h̄

m
kx (αkx − Hy )

)
, (43c)

jh
xz = − h̄

m
kxHzσz. (43d)

A. General formula for the components of the spin polarization

In this section, we present some general formulas for the
spin polarization. Inserting Eqs. (40)–(42) into Eq. (6) and
taking the trace and integrating over ε we obtain the following
general formulas for the spin polarization:

Sx = h̄
∇xT

T

∫
d2k

(2π )2

{
1

2�

[
h̄2kx

2mλk
(εk − μ) + α

2λk
(αkx − Hy )

]
(αky + Hx )[f ′(E+) − f ′(E−)]

+α(εk − μ)

[
1

�
(αkx − Hy )(αky + Hx ) − �2

λ2
Hz

]
f ′(E+) + f ′(E−)

(2λk )2 + (2�)2

+ 1

2�

h̄2kx

2m
(αky + Hx )[f ′(E+) + f ′(E−)]+αHz

εk − μ

4λ3
k

[f (E+) − f (E−)]

}
, (44)

Sy = h̄
∇xT

T

∫
d2k

(2π )2

{
− 1

2�

[
h̄2kx

2mλk
(εk−μ)+ α

2λk
(αkx −Hy )

]
(αkx − Hy )[f ′(E+) − f ′(E−)]

− 1

2�

[
α

2λ2
k

(εk − μ)(αkx − Hy ) + h̄2kx

2m

]
(αkx − Hy )[f ′(E+) + f ′(E−)]

+ α

2
(εk − μ)

[
(αkx − Hy )2

λ2
k

− 1

]
2�

(2λk )2 + (2�)2
[f ′(E+) + f ′(E−)]

}
, (45)

Sz = h̄
∇xT

T

∫
d2k

(2π )2

{
1

2�

[
h̄2kx

2mλk
(εk − μ) + α

2λk
(αkx − Hy )

]
Hz[f

′(E+) − f ′(E−)]

+α(εk − μ)

[
�2

λ2
(αky + Hx ) + 1

�
Hz(αkx − Hy )

]
f ′(E+) + f ′(E−)

(2λk )2 + (2�)2

+ 1

2�

h̄2kx

2m
Hz[f

′(E+) + f ′(E−)]−α(αky + Hx )
εk − μ

4λ3
k

[f (E+) − f (E−)]

}
. (46)
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FIG. 2. The x and y components of the spin polarizability in a magnetic 2DEG. The upper panel (a), (c), (e), (g) corresponds to the χx

component while the lower one (b), (d), (f), (h) to the χy component. The dependence on the chemical potential (a)–(d), the magnitude of the
exchange field JM (e), (f) and the temperature T (g), (h) are shown for indicated parameters, and for � = 5 · 10−3 meV, m = 0.07m0.

In the following, these formulas will be used to calculate
numerically the spin polarization for a general orientation of
the exchange field. The formulas simplify under some specific
situations. Especially interesting is when the exchange field is
normal to the plane of 2DEG, so we will analyze in detail this
particular situation.

B. Exchange field perpendicular to the plane of 2DEG

1. Single loop approximation

When the exchange field is oriented perpendicularly to the
surface of the two-dimensional gas we obtain

Sx = αh̄
∇xT

T
Hz

∫
d2k

(2π )2

{
−(εk − μ)

�2

ζ 2

f ′(E+) + f ′(E−)

(2ζ )2 + (2�)2

+ εk − μ

4ζ 3
[f (E+) − f (E−)]

}
, (47)

Sy = h̄
∇xT

T

1

2�

∫
d2k

(2π )2

{
− h̄

2ζ

[
α

h̄k2
x

m
(εk − μ) + α

h̄
α2k2

x

]

×[f ′(E+)−f ′(E−)]− h̄

2ζ 2

[
α

h̄
(εk−μ)α2k2

x +α
h̄k2

x

m
ζ 2

]

×[f ′(E+) + f ′(E−)] + α

2
(εk − μ)

[
α2k2

x

ζ 2
− 1

]

× f ′(E+) + f ′(E−)

1 + (ζ/�)2

}
, (48)

Sz = 0, (49)

where ζ is defined as
√

J 2M2 + α2k2. Now, the component
normal to the plane of 2DEG (i.e., along the exchange field)
vanishes exactly. The in-plane component normal to the
temperature gradient is modified by the exchange field, and

additionally the component along the temperature gradient (Sx)
appears.

For clean systems, the Sx component is described only by
the second line of Eq. (47) which does not depend on relaxation
processes. Indeed, for � → 0, only topological term survives
and Sx may be rewritten in the following form:

Sx = − h̄

2

∇xT

T

∑
n

∫
d2k

(2π )2
f (En)

εk − μ

α
Bn

z (k), (50)

where Bn
z (k) = ∓α2Hz

2ζ 2 is the Berry curvature for the nth
subband (n = + and n = −). In the low-temperature limit, the
integrals in the above equations can be calculated analytically,
so the spin polarizability for small relaxation rate can be
expressed as follows:

χx = h̄3Hz

16πmα3

[
ζ+−ζ−+

(
H 2

z +2mα2 μ

h̄2

)
ζ− − ζ+
ζ+ζ−

]
,

(51)

χy = h̄

8π

α

�

{
ν+
2ζ+

[2εk+(εk+ − μ) + α2k2
+]

− ν−
2ζ−

[2εk−(εk− − μ) + α2k2
−] + [ν+εk+ + ν−εk−]

}
,

(52)

where ζ± = ζ (k±), εk± = εk (k = k±) and the density of
states ν± = ν(k = k±) with k± standing for the Fermi
wave vector corresponding to the E± branch, respectively,

k± =
√

2m

h̄2

√
mα2 + μh̄2 ∓

√
m2α4 + 2mα2h̄2μ + H 2

z h̄4. The

results above, although analytical, are not very transparent
because the Fermi wave vectors have rather entangled form.
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FIG. 3. The impurity vertex correction plotted as a function of
the Rashba coupling constant α and the exchange field Hz (a), and
as a function of the chemical potential μ and the exchange field (b).
The cross sections of these density plots are presented in (c) and (d),
respectively.

Thus, we discuss below numerical results obtained based on
Eqs. (47) and (48) for arbitrary temperatures and small �.

The corresponding results are shown in Fig. 2. The compo-
nent Sy , which is the only nonvanishing component in the non-
magnetic case, is modified by the exchange field (see the lower
panel in Fig. 2). This modification is significant especially for
chemical potentials inside the energy gap. Such behavior is in
agreement with other theoretical results obtained recently for
oxide perovskites [43]. Additionally, theSx component appears
(see the upper panel in Fig. 2).

Consider first the component Sy . Due to the modified
electronic spectrum by the exchange field, the spin polarization
depends remarkably on JM . The magnitude of the negative
peak of Sy decreases with increasing JM0. Furthermore, the
width of the peaks increases with increasing JM0; besides,
due to a gap of magnitude 2JM created by the exchange field
at k = 0, the spin polarization changes sign and is positive in
a certain range of positive chemical potentials, see Fig. 2(b)
(right of the main negative peak). These features are also
clearly seen in Figs. 2(f) and 2(g). The temperature dependence
is qualitatively similar to that in the nonmagnetic case, see
Fig. 3(d). In turn, the component Sx is solely due to the
exchange field and is roughly one order of magnitude smaller
than the Sy component (cf. upper and lower panels in Fig. 2).
The dependence of the spin polarization on the chemical
potential, the exchange field, and the Rashba parameter is
qualitatively similar to that of the Sy component, so we will
not describe it in more detail.

The physical mechanism of the y component of the spin
polarization is similar to that in the nonmagnetic case. The

appearance of the x component, in turn, is associated with the
modification of the electronic band structure by the exchange
field, and especially the modification of the corresponding
spin structure. The modified electronic bands exhibit a Berry
curvature which is related to a Berry phase. This in turn may be
represented by a magnetic field normal to the plane of 2DEG.
When the temperature gradient is along the x axis, then this
magnetic field enforces a nonzero x component of the total
spin of electrons with a positive (negative) kx . However, the
temperatures of the electrons entering a given point from x > 0
(x < 0) are different and therefore the average x components of
the spin entering a given point fromx > 0 (x < 0) are different,
which gives rise to a nonzero x component of the spin density.

2. Impurity vertex correction

Now, we consider the influence of the impurity vertex
correction on the thermally induced spin polarization. The self-
consistent equation for the renormalized spin vertex function
(x and y components) reads

�i = σi + niv
2
0

∫
d2k

(2π )2
GA

k (ε)�iG
R
k (ε), (53)

for i = x, y. Assuming solution in the form

�i = aiσ0 + biσx + ciσy + diσz, (54)

we find the following set of algebraic equations for the
coefficients ai - di :

ai = diF
(1)
0 + aiF

(2)
0 , (55)

bi = 1δix + ciF
(1)
x + biF

(2)
x , (56)

ci = 1δiy + biF
(1)
y + ciF

(2)
y , (57)

di = aiF
(1)
z + diF

(2)
z , (58)

where

F (1)
x = −iHzniv

2
0

∫
dkk

4π

1

ζ
[GR

−GA
− − GR

+GA
+], (59)

F (2)
x = F (2a)

x + F (2b)
x + F (2c)

x , (60)

F (2a)
x = niv

2
0

∫
dkk

4π
[GR

−GA
+ + GR

+GA
−], (61)

F (2b)
x = niv

2
0

∫
dkk

4π

α2k2

2ζ 2
[GR

−GA
− + GR

+GA
+], (62)

F (2c)
x = −niv

2
0

∫
dkk

4π

α2k2

2ζ 2
[GR

−GA
+ + GR

+GA
−], (63)

and F
(1)
0 = F (1)

z , F (1)
y = −F (1)

x , F (2)
y = F (2)

x .
From the solution of the above set of equations, we find

that the vertex renormalization leads to a multiplication of the
x and y spin operators by the parameter

bx = cy = κ = 1 − F (2)
x(

1 − F
(2)
x

)2 + (
F

(1)
x

)2 , (64)

Thus, ŝx = h̄
2 σx → Sx = κŝx and ŝy = h̄

2 σy → Sy = κŝy . In
other words, the numerical and analytical results obtained
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FIG. 4. The three components of the thermally induced spin
polarization as a function of the polar and azimuthal angles describing
the orientation of the exchange field. The right panel presents some
cross-sections of the density plots shown in the left panel. The other
parameters are as follows: m = 0.07m0, α = 2 · 10−11 eVm, and
� = 5 · 10−3 meV.

in the single loop approximation should be multiplied by a
constant factor given by Eq. (64). This factor varies between 1
and 2, depending on which interaction dominates: Rashba or
exchange one. The interplay between the spin-orbit coupling
and the exchange interaction is clearly seen in Fig. 3, where
the coefficient κ is plotted as a function of the Rashba constant
α and the exchange field Hz for a fixed chemical potential,
μ = 5 meV [Figs. 3(a) and 3(c)]. We also show the dependence
of κ on the chemical potential and the exchange field for
α = 20 meVμm, Figs. 3(b) and 3(d). When the exchange field
is zero, the coefficient κ is equal to 2 and decreases with
increasing Hz. Additionally, there is a sharp jump (note that this
is not a discontinuity) for the chemical potential corresponding
to the bottom of the upper subband. When only a single
subband is occupied, κ is almost independent of the exchange
field.

C. Exchange field arbitrarily oriented in space

At the end of this section, we present numerical results
for the spin polarization when the exchange field is oriented
arbitrarily in space. These results are presented for a fixed
chemical potential, fixed Rashba coupling constant, and def-
inite magnitude of the exchange field. In such a case, the

vertex correction may only change the result by a constant
factor, and therefore we plot the thermal spin polarizability
in the bare bubble approximation (note that we also keep �

small enough as to assume that we are in the quasiballistic
limit). All three components of the spin polarization are
shown in Fig. 4. The right column presents cross-sections of
the density plots in the left panel, which correspond to an
exchange field oriented in some specific planes. The density
plots indicate the orientation of the exchange field where the
spin polarization is maximal. This result is of importance for
the magnetic dynamics induced by a spin torque due the spin
polarization. Such a torque is created by the exchange coupling
of the thermally induced spin polarization and magnetization.
Since the induced spin polarization generally depends on the
orientation of the exchange field, the torque contains a fieldlike
and a dampinglike component.

V. MOTT RELATION FOR THERMALLY INDUCED
MAGNETIZATION

For the kinetic coefficients describing the transport due to
an electric field and a temperature gradient, it is possible to
define the Mott relations. Generally, the Mott formula relates
the derivative of the zero-temperature electric conductivity
with the low temperature thermal conductivity. Other Mott-
like relations have been presented recently for electrically
and thermally induced spin transfer torques [44] and for
electrically and thermally induced electric polarization [45].
However, such relations are not fundamental ones. It is well
known that the Wiedemann-Franz law and Mott relations are
satisfied for simple models, such as noninteracting electrons
with parabolic bands [46,47]. More precisely, for finite systems
where the strong energy dependence around the chemical
potential does not allow for the Sommerfeld expansion or for
strongly interacting systems, the Mott-like relations might be
violated, see for instance Refs. [48–51] as well as the review
[52] and references therein.

For spin-orbit driven phenomena, where the nonzero Berry
curvature has a significant impact on the spin and transport
properties, the Mott relation also might not be satisfied. The
current section aims at combining the thermally induced spin
polarizability with the electrically induced one (derived pre-
viously within the same formalism). We discuss the Mott-like
formula for these two quantities.

In principle, the nonequilibrium spin polarization does not
contribute to the entropy generation and does not behave like
a kinetic coefficient. Thus, let us check if a proportional-
ity between the derivative of the electrically induced spin
polarization with respect to the chemical potential and the
low-temperature thermally induced spin polarization exists.
Defining in a standard way [47] the forces: eE and −∇T/T ,
we can write

Sα = L
(3)
αβ eEβ + L

(4)
αβ

(
−∇βT

T

)
, (65)

with L
(3)
αβ = χ

(Eβ )
α and L

(4)
αβ = −χ

(∇βT )
α . Here, χ

(Eβ )
α is the

electric field spin polarizability, while χ
(∇βT )
α is the thermal

spin polarizability calculated in this paper. If the coefficients

075307-9
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FIG. 5. Comparison of the y component of thermally induced
spin polarizability and the derivative of the electrically induced spin
polarizability. The electrically induced spin polarizability is also
plotted.

L
(3,4)
αβ satisfy the Mott relation we expect that

χ
(∇βT )
α = −π2

3
(kBT )2∂μχ

(Eβ )
α . (66)

For the nonmagnetic Rashba two-dimensional gas, the
Edelstein formula does not depend on chemical potential

SE
y = eEx

mα

2πh̄2 τ, (67)

and ∂μSE
y = 0. Accordingly, one can expect that the corre-

sponding thermally induced spin polarization should be equal
to zero. Equation (67) corresponds to Eq. (19). Indeed, this
expression gives zero in the limit � → 0.

For a nonmagnetic system as well as for a system with an
exchange field normal to the plane of 2DEG, we compare the x

and y components of the thermally induced spin polarization
obtained from Eqs. (47) and (48) with the spin polarization
induced by an electric field, which we obtained in one of
our earlier works [42]. Figure 5 presents the electrically
induced polarizability, χ (E)

x,y ≡ S (E)
x,y /eEx (solid blue line) and

its numerical derivative, normalized to the prefactor on the right
side of Eq. (66) (dashed green line). Such normalized function
overlaps very well with the thermally induced polarizability,
χ (∇T )

y (represented by solid red line). Note, the relaxation rate
� is small and satisfies the relation � � (2ζ ) � μ. Thus, the
y components of the thermally and the electrically induced
polarizations satisfy the Mott relation quite well, both in the
nonmagnetic [Fig. 5(a)] and the magnetic [Figs. 5(b) and 5(d)]
cases.

However, the Mott relation is not fulfilled for the x com-
ponent of the thermally and electrically induced polarization.
This is not surprising considering the fact that the x component
of the polarization appears as a consequence of the two inter-
actions: the spin-orbit interaction (here of the Rashba type),
which mixes states for different subbands, and the exchange
coupling, which breaks the time-reversal symmetry and leads
to a nonzero Berry curvature. Both the x component of the
thermally and electrically induced nonequilibrium polarization
are determined by this topological term. Consequently, the
states from the Fermi see are responsible for the effects. This
is opposite to the case of the y components, where they are
determined by the states at the Fermi level and, therefore, in the
limit of small �, the Mott relation is fulfilled. Physically, one
cannot expect a Mott-type relation when the spin polarizations
are due to Berry curvature as there is no relation between
derivative at the Fermi level and contribution from the whole
band. Thus, the condition for the existence of the Mott relation
between the field-induced and the thermally induced spin
polarizations is the absence of the topological terms due to
the Berry curvature. This condition may be formulated as (see
Appendix B):

Tr
∫

dε

2π
f (ε)

〈
σα

(
GR

k (ε)v̂xG
R
k (ε) + GA

k (ε)v̂xG
A
k (ε)

)〉 = 0.

(68)

VI. SUMMARY AND CONCLUSIONS

We analyzed the spin polarization driven by a temperature
gradient in a magnetized 2DEG with Rashba spin-orbit in-
teraction. The limit of a nonmagnetic 2DEG has also been
studied in detail. This limit was already studied earlier [12],
but some approximations concerning the limit of small Rashba
parameter turned out not to be adequate. Therefore, we have
reconsidered this limit here in more detail and obtained results
that properly describe the temperature dependence of the spin
polarization.

For a magnetized 2DEG, we calculated the spin polarization
for an arbitrary orientation of the exchange field, when all
three components of the spin polarization can be nonzero.
Such a general situation is important from the point of view
of magnetic dynamics. Since the spin polarization leads to
a spin torque exerted on the magnetization, the results can
be useful when considering magnetic dynamics driven by
an external thermal gradient. The torque due to the spin
polarization can be presented generally as a sum of a fieldlike
and a damping/antidamping term similarly, as in the spin-orbit
torques driven by an external electric field or the spin transfer
torques driven by an electric field in spin valves.

We note that the physical origin of the spin polarization
due to a thermal gradient is different from that of the spin
polarization driven by an external electric field. In the former
case, the spin polarization is driven by a statistical force, while
in the latter case this is an electrical force. As evidenced by
the numerical calculations, the spin polarization induced by
a temperature gradient reveals a peak whose maximum is
around the band edge of the lower Rashba subband, where
the asymmetry between the subbands generated by the Rashba
coupling is largest.
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We find that the electrically induced and the thermally
induced spin polarizations obey the Mott relation in a nonmag-
netic 2DEG as well as in the magnetic system but in the latter
case only for the spin polarization normal to the electric field
and the thermal gradient. The components along the driving
forces in a magnetic system do not obey this relation. This is
because this component is mainly due to the Berry curvature of
the electronic bands formed by the spin-orbit and the exchange
interactions.

Finally, we would like to point out that the thermally induced
spin polarization discussed here is different from the spin
polarization due to the spin current in a magnetic system
without a spin-orbit coupling (spin Seebeck effect) [53,54]. In
the case of a spin Seebeck effect, the spin polarization appears
as a spin accumulation in nanoscale systems. Moreover, the
induced spin is oriented along the magnetic moment of the
system, and therefore does not generate a torque on the
magnetic moment. This is in the contrast to the thermally
induced polarization discussed here. Due to the spin-orbit in-
teraction, the leading term describing the nonequilibrium spin
polarization is oriented perpendicularly to the magnetization
and generates a torque.
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APPENDIX A: KINETIC COEFFICIENTS AND
ENTROPY GENERATION

Macroscopic equations for electric current j, heat flux q̃ =
q − ϕj (with q being the energy flux and ϕ = μ/e) and spin
polarization S induced by the temperature gradient and electric
field E in the 2D system with Rashba spin-orbit coupling and
magnetization M along axis z can be written as

j = σE − αS∇T + σH M × E + αN M × ∇T , (A1)

q̃ = βE − κ∇T + αq M × E + αR M × ∇T , (A2)

S = γ M + αE n × E + αET n × ∇T + αC n × (M × E)

+αCT n × (M × ∇T ), (A3)

where n is the Rashba SO vector perpendicular to the plane, σ
is the conductance, αS is the Seebeck coefficient, σH is the
anomalous Hall conductance, αN is the Nernst coefficient,
β is the thermoelectric coefficient, κ is heat conductance,
αE is coefficient of electrically induced magnetization, etc.
These phenomenological equations take into account that j, E,
∇T , n are polar vectors, whereas M and S are axial vectors
(pseudovectors). These equations in components, assuming

that the magnetization M is along axis z:

jx = σEx − αS∇xT − σHMEy − αNM∇yT , (A4)

jy = σEy − αS∇yT + σHMEx + αNM∇xT , (A5)

q̃x = βEx − κ∇xT − αqMEy − αRM∇yT , (A6)

q̃y = βEy − κ∇yT + αqMEx + αRM∇xT , (A7)

Sx = −αEEy − αET ∇yT − αCMEx − αCT M∇xT , (A8)

Sy = αEEx + αET ∇xT − αCMEy − αCT M∇yT . (A9)

The generation of entropy in a small area per unit time is
δS = δQ/T , where δQ is the generated heat. Then we get

∂S
∂t

= −
∫

d2r
∇ · q
T

=
∫

d2r
j · E − ∇ · q̃

T

=
∫

d2r
(

j · E
T

− q̃ · ∇T

T 2

)
, (A10)

where integration is over the area of 2D system. In accordance
with the Onsager principle,

∂S
∂t

= −
∫

d2r Xa

∂xa

∂t
. (A11)

We can choose ẋ1 = jx , ẋ2 = jy , ẋ3 = q̃x , ẋ4 = q̃y . Then
comparing Eqs. (A10) and (A11), we get X1 = −Ex

T
,

X2 = −Ey

T
, X3 = ∇xT

T 2 , X4 = ∇yT

T 2 . On the other hand, the
kinetic coefficients γab should be defined from the Onsager
relation:

∂xa

∂t
= −γabXb. (A12)

Correspondingly, we have to rewrite the set of Eqs. (A4)–(A9)
in a matrix form⎛

⎜⎜⎜⎝
jx

jy

q̃x

q̃y

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

−σT σH MT −αST
2 −αNMT 2

−σH MT −σT αNMT 2 −αST
2

−βT αqMT −κT 2 −αRMT 2

−αqMT −βT αRMT 2 −κT 2

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎝

−Ex

T

−Ey

T
∇xT

T 2

∇yT

T 2

⎞
⎟⎟⎟⎟⎠. (A13)

Since the symmetry of kinetic coefficients is expressed by
relation

γab(M ) = γba (−M ), (A14)

we obtain

β = αST , (A15)

αq = −αNT . (A16)

The other symmetry relations are fulfilled automatically.
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Let us assume that jy = 0, Ex = 0 and ∇yT = 0. Then,
from Eq. (A5), we find

Ey = −αNM

σ
∇xT . (A17)

Substituting Eq. (A17) into Eqs. (A4)–(A9), we obtain

jx = −
(

αS − σHαNM2

σ

)
∇xT , (A18)

q̃x = −
(

κ − αqαNM2

σ

)
∇xT , (A19)

q̃y =
(

αR − βαN

σ

)
M∇xT , (A20)

Sx = −
(
αCT + αEαN

σ

)
M∇xT , (A21)

Sy =
(

αET + αCαNM2

σ

)
∇xT , (A22)

which demonstrates the effect of anomalous Hall and Nerst
effects on the Seebeck current, the heat flux and the spin
polarization.

The entropy generation rate is

∂S
∂t

=
∫

d2r
(κσ − αqαNM2)(∇xT )2

σT 2
. (A23)

Thus, the entropy generation is not affected by spin polarization
S but is determined by the heat flux along axis x.

In the limit of ∇xT /T → 0 and T → 0, from Eq. (A23)
follows that ∂S/∂t → 0 if κ → 0 and σ → const (due to the
Wiedemann-Franz law). It does not automatically mean that
the corresponding coefficients for Sx and Sy are zero in this
limit (even if αN → 0) because αCT and/or αCE can be finite
at T → 0, and it does not contradict to the thermodynamics.

APPENDIX B: CONDITION FOR THE MOTT RELATION

Here we discuss the general conditions when the Mott
Relation is satisfied. In the general case, the electric-field
induced spin polarization can be written as follows:

SE
α (ω) = h̄

ω
Tr

∫
dε

2π
fε

〈
ŝα

[
GR

k (ε + ω)v̂x

(
GR

k (ε) − GA
k (ε)

)
+ (

GR
k (ε) − GA

k (ε)
)
v̂xG

A
k (ε − ω)

]〉
, (B1)

where the triangle bracket means an averaging over impurities.
In the dc limit, we find

SE
α = h̄Tr

∫
dε

2π

〈
ŝα

[
f ′(ε)GR

k (ε)v̂xG
A
k (ε) − f (ε)

[
GR

k (ε)
]2

v̂x

×GR
k (ε) − f (ε)GA

k (ε)v̂x

[
GA

k (ε)
]2

]〉
. (B2)

In turn, the thermally induced spin polarization is given by
the expression

S∇T
α (ω) = h̄

2ω
Tr

∫
dε

2π
f (ε)

〈
ŝα

[
GR

k (ε + ω)[Ĥ − μσ0, v̂x]+

×(
GR

k (ε) − GA
k (ε)

) + (
GR

k (ε) − GA
k (ε)

)
×[Ĥ − μσ0, v̂x]+GA

k (ε − ω)
]〉
. (B3)

This equation in the dc limit leads to the expression

S∇T
α = h̄Tr

∫
dε

2π

〈
ŝα (ε − μ)

[ − f (ε)
[
GR

k (ε)
]2

v̂xG
R
k (ε)

+f ′(ε)GR
k (ε)v̂xG

A
k (ε) − fk(ε)GA

k (ε)v̂x

[
GA

k (ε)
]2]

+1

2
ŝαf (ε)

[
GR

k (ε)v̂xG
R
k (ε) + GA

k (ε)v̂xG
A
k (ε)

]〉
.

(B4)

Thus, the Mott relation is fulfilled if

Tr
∫

dε

2π
f (ε)

〈
σα

(
GR

k (ε)v̂xG
R
k (ε) + GA

k (ε)v̂xG
A
k (ε)

)〉 = 0.

(B5)
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