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We develop a theory of the direct interband and indirect intraband photogalvanic effects in Weyl semimetals
belonging to the gyrotropic classes with improper symmetry operations. At zero magnetic field, an excitation of
such a material with circularly polarized light leads to a photocurrent whose direction depends on the light helicity.
We show that in the semimetals of the C2v symmetry, an allowance for the tilt term in the effective Hamiltonian is
enough to prevent cancellation of the photocurrent contributions from the Weyl cones of opposite chiralities. In
the case of the C4v symmetry, in addition to the tilt, it is necessary to include terms of the second- or third-order
in the electron quasimomentum. For indirect intraband transitions, the helicity-dependent photocurrent generated
within each Weyl node takes on a universal value determined by the fundamental constants, the light frequency
and electric field. We have complementarily investigated the magneto-gyrotropic photogalvanic effect, i.e., an
appearance of a photocurrent under unpolarized excitation in a magnetic field. In quantized magnetic fields, the
photocurrent is caused by optical transitions between the one-dimensional magnetic subbands. A value of the
photocurrent is particularly high if one of the photocarriers is excited to the chiral subband with the energy below
the cyclotron energy.
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I. INTRODUCTION

Weyl semimetals (WSMs) represent materials allowing
for a solid-state realization of three-dimensional massless
fermions. After discovery of a nonvanishing neutrino mass,
the Weyl fermions in condensed matter systems are unique
particles with a massless linear energy dispersion and a
definite chirality. This determines the remarkable properties
of WSMs, for a recent review see Ref. [1]. A unique feature
is the chiral anomaly consisting in a nonconservation of the
particle number of a given chirality and leading to a negative
magnetoresistance. Another important fact is that each Weyl
node serves as a magnetic monopole in the reciprocal space
with a nonzero Berry curvature. An important consequence is
the existence of topologically induced Fermi arcs at a surface
of a Weyl semimetal. Due to topological reasons, each Weyl
node has its counterpart of opposite chirality. In contrast to
neutrinos, the dispersion cones can be tilted or even overtilted,
which is realized, respectively, in type-I and type-II WSMs [1].

The discovery of WSMs has been followed by theoretical
and experimental studies of their transport and optical prop-
erties, both linear and nonlinear. In particular, it has been
shown that the interaction of circularly polarized light with
chiral fermions is governed by the Berry curvature of the Weyl
node. This allows a new look at the Circular PhotoGalvanic
Effect (CPGE), an appearance of a helicity-dependent electric
photocurrent upon illumination of the sample by circularly
polarized light [2]. The CPGE is allowed by the symmetry
of gyrotropic (or optically active) media, and many WSMs
belong to the family of gyrotropic crystals. It has been
demonstrated that, in each Weyl node, the CPGE has universal
features independent of details of the material. In particular,
the generation rate of the CPGE current density is determined,
except for the intensity of the exciting light, by fundamental

constants [3]. However, the corresponding CPGE current has
the opposite polarity in the Weyl node of opposite chirality.
Since the Weyl nodes exist in pairs of opposite chirality, the
universality of CPGE is preserved only in those semimetals
where such Weyl nodes have different energies. This is possible
in the absence of any improper symmetry operations because
such an operation transforms a given Weyl node to another one
of the opposite chirality. In contrast, the point-group symmetry
of available WSMs contains improper operations, and the
universal contributions of individual nodes to the CPGE current
mutually compensate each other. The net photocurrent can be
generated in real Weyl semimetals owing to corrections to the
Weyl Hamiltonian and, hence, to the carrier energy dispersion.
It has been shown [4] that the net CPGE current induced within
two Weyl nodes of opposite chirality becomes nonvanishing
in tilted WSMs where it, however, loses its universality and
depends on the tilt. As we pointed out [5], the net CPGE current
is sensitive to the sign of parameters describing corrections
to the Weyl Hamiltonian rather than to the chirality of the
Weyl fermions. This opens a possibility to study the real
Hamiltonians in WSMs with the help of CPGE. The theoretical
study is also stimulated by the recent observations of the CPGE
in the TaAs semimetal [6,7].

In the present paper, we consider WSMs of the crystal
classes containing improper symmetry operations and derive
minimal models which allow for the CPGE. For this purpose,
we include into the electron effective Hamiltonian linear and
nonlinear, spin-dependent and spin-independent terms leading
to the net CPGE current under direct optical transitions
between the valence- and conduction-band states as well as
under intraband indirect transitions. It is demonstrated that
the intraband CPGE current induced in an individual Weyl
node has a universal value independent of the momentum
relaxation details.
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A. Phenomenological description of the photocurrents

The circular photogalvanic effect (CPGE) consists in the
generation of a photocurrent that reverses sign with the helicity
of light and is phenomenologically described by [2,8]

jα = γαβ i(E × E∗)β. (1)

Here, E is the amplitude of the electromagnetic wave
propagating in the material and j is the injected cw current. The
second-rank pseudotensor γαβ is subjected to the same symme-
try restrictions as the gyration tensor describing the (natural)
optical activity of crystals. Among 21 noncentrosymmetric
crystal classes, 18 are gyrotropic, see, e.g., Refs. [3,12]. For
enantiomorphic point groups O and T, the tensor γ is isotropic
and characterized by a single linearly independent component,
γαβ = γ δαβ . In orthorhombic crystals of the C2v symmetry
with the reflection planes σv (xz) and σv (yz), the γ tensor
has two linearly independent components γxy and γyx in the
Cartesian system x, y, z, or γx ′x ′ = −γy ′y ′ and γx ′y ′ = −γy ′x ′

in the Cartesian system x ′, y ′, z with the axes x ′ and y ′
rotated around z by 45◦ with respect to the axes x and y. TaAs
crystalizes in a body-centered tetragonal lattice system of the
C4v point symmetry, the nonzero components of the γ tensor
are γxy = −γyx , irrespective of the choice of axes in the plane
perpendicular to z.

An additional effect specific to gyrotropic media is a
Magneto-gyrotropic PhotoGalvanic Effect (MPGE), which is
a generation of photocurrent odd in the magnetic field and
independent of the light polarization. It has been investigated
in bulk semiconductors [8,9] and quantum-well structures [10].
Recently, the MPGE has been theoretically studied in WSMs
in weak magnetic fields and termed the helical magnetic effect
[11]. Here, we consider gyrotropic WSMs in a quantizing
magnetic field and investigate the MPGE current injected
by direct optical transitions between magnetic subbands. In
multivalley semimetals of the C2v symmetry with Weyl nodes
of opposite chiralities, the net MPGE current appears with
allowance for the tilt.

The MPGE electric current is induced under the unpolarized
photoexcitation in the presence of a magnetic field B and flows
backwards with the field reversal. In weak magnetic fields,
the corresponding photocurrent j can be expanded in powers
of B,

jα = (SαβBβ + . . . )|E|2 , (2)

where S is another rank-2 tensor inherent for the gyrotropic
crystals. In Sec. IV, we consider strong magnetic fields where
a current transverse to the magnetic field B is suppressed
because of the quantized cyclotron motion. In WSMs of the C2v

symmetry, the magnetic field can conveniently be applied along
the x ′ or y ′ axis defined above. Then, phenomenologically, the
MPGE current density is described by [5]

jx ′ = Bx ′ |E|2χ(
B2

x ′
)
, jy ′ = −By ′ |E|2χ(

B2
y ′
)
, (3)

where χ is an even function of the magnetic field.
The paper is organized as follows. In Sec. II, we study

the CPGE in semimetals of the C2v and C4v point-group
symmetries at zero magnetic field. We take into account both
the tilt and spin-dependent nonlinear terms in the effective
Hamiltonian. The photocurrent generated under intraband

indirect optical absorption is calculated in Sec. III. In Sec. IV,
we consider the MPGE realized under the unpolarized photoex-
citation in an external magnetic field. In Sec. V, we present and
analyze a typical spectral dependence of the MPGE current and
make some comments concerning nonstationary photocurrents
and the role of the electron-electron interactions. Section VI
concludes the paper.

II. CIRCULAR PHOTOCURRENT
AT INTER-BAND TRANSITIONS

A. Basic equations of microscopic theory

We start with the effective electron Hamiltonian

H = σxdx (k) + σydy (k) + σzdz(k) + σ0d0(k) , (4)

where σα (α = x, y, z) are the Pauli spin matrices, σ0 is the
unit 2×2 matrix, k is the electron wave vector referred to a
particular Weyl node kW , and the functions dα (k), d0(k) can
be expanded in a Taylor series starting from the first-order
terms. The energy dispersion consists of two branches E±,k =
d0(k) ± d(k), where d = |d|. The photocurrent generated
under direct optical transitions in the vicinity of a Weyl node
is given by [2]

j = e
∑

k

v+−(k)τpW+−(k). (5)

Here, W+−(k) is the transition rate related with the optical
matrix element M+− by the Fermi golden rule

W+− = 2π

h̄
|M+−|2F (k)δ[2d(k) − h̄ω] , (6)

F (k) is the difference f0(E−,k ) − f0(E+,k ) of the electron
occupations of the initial and final states with f0 being
the Fermi-Dirac distribution function, ω is the light wave
frequency, τp is the electron and hole momentum relaxation
times assumed to coincide, and v+−(k) is the difference of the
group velocities:

v+−(k) = 1

h̄

∂

∂k
(E+,k − E−,k ) = 2

h̄

∂d(k)

∂k
. (7)

We note that the CPGE current is given solely by the “ballis-
tic” contribution (5) because the “shift” contribution to this
photocurrent is negligible, see Ref. [2] for details. This is
in contrast to the linear photogalvanic effect where the two
contributions can have the same order of magnitude.

A special property of WSMs is the following relation
between the contribution to |M+−|2 dependent on the light
circular polarization and the Berry curvature �k [5]:

|M+−|2circ = |E|2 2e2d2

(h̄ω)2
� · �k, (8)

where E is the amplitude of the light’s electric field and
� = i(E × E∗)/|E|2 is the photon helicity. For the transverse
electromagnetic wave, � is expressed via the light wave vector
q and the degree of circular polarization Pcirc as � = Pcircq/q.
The Berry curvature is given in terms of the vector d(k) as
follows:

�k,i = d
2d3

·
(

∂d
∂ki+1

× ∂d
∂ki+2

)
, (9)
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where the cyclic permutation of indices is assumed. Below,
we consider minimal models allowing for CPGE in multinode
WSM caused, in particular, by the point symmetry.

B. Linear spin-orbit coupling

If the spin-dependent part of the Hamiltonian (4) is linear
in k and the tilt term vanishes then the circular photocurrent
takes the universal form [3]

γαβ = δαβ C�0τp. (10)

Here, �0 = πe3/3h2, e is the electron charge, h is the Planck
constant, and C = ±1 is the chirality (or topological charge)
of the Weyl node,

C = 1

2π

∫
�

�k · dSk, (11)

where the integration is performed over a closed surface �

with the Weyl point inside.
The presence of crystal symmetry operations transforming

the Weyl node kW to another point of the Brillouin zone
determines a multivalley character of the WSM electron band
structure. If the gyrotropic crystal class does not contain
refection planes then the circular photocurrent related to the
node kW is given by Eq. (10) times the number of valleys
and retains the universality. However, if the gyrotropic class
contains a reflection plane σ (or a rotoinversion axis Sn) then
the nodes kW and σ kW (or SnkW ) are characterized by opposite
chiralities, and their contributions to j can compensate each
other, partly or completely.

Let us analyze how the presence of reflection planes in the
point-symmetry group F of a gyrotropic crystal affects the
CPGE if the Hamiltonian has the form

H = Ch̄v0σ · k + σ0d0(k), (12)

where v0 > 0 is the electron effective velocity, and the tilt
d0(k) is an analytical function of k vanishing at the point kW .
For this purpose, it is useful to consider the one-dimensional
representation Dv of the group F defined as follows: Dv (g) =
Cg/C, where C and Cg are the chiralities of the fixed node
kW and the node gkW . It is worth to note that under the
point-group operations the first term in Eq. (12) is invariant for
the proper transformations and changes the sign for improper
transformations, which is a fundamental property of any
pseudoscalar including the scalar product σ · k. Unlike the
Pauli matrices in the first term of Eq. (12), the unit matrix σ0

is invariant under any symmetry operations and the operation
g acts only on the tilt function: d0(k) → d0(gk). The time
inversion does not change σ · k and transforms d0(k) into
d0(−k).

For the Hamiltonian (12), one has v+−(k) = 2v0k/k and
� · �k ∝ C� · k/2k3. Therefore the photocurrent summed up
over all the valleys gkW can be presented as

γαβ = C
∑

k

Q(k)kαkβ

∑
g∈F

Dv (g)F (g−1k), (13)

where Q(k) is a function of the modulus k. By the variable
transformation k → gk the sum is reduced to

γαβ = C
∑

k

Q(k)F (k)
∑
g∈F

Dv (g) g(kαkβ ). (14)

Thus, denoting by D(1) the three-dimensional representation
according to which the wave-vector components kα transform,
we can formulate a theorem: among jβ

α there are nonzero values
only if the symmetrized direct product [D(1) × D(1)] contains
the representation Dv .

For the point group C2v with the reflection planes σv (xz) and
σv (yz), the representationDv coincides with the representation
A2. Among linear combinations of the functions kαkβ only the
product kxky transforms according to A2. It follows then that
the sum in Eq. (14) is nonzero only for the pairs α = x, β = y

and α = y, β = x. With allowance for the fraction of F (k) of
the A2 symmetry, the photocurrent off-diagonal components
γxy = γyx become nonzero. However, the antisymmetric con-
tribution (γxy − γyx )/2 to the photocurrent also allowed by the
C2v point group is absent in the model (12). Note that in the
axes x ′, y ′ rotated around z by 45◦ with respect to the x, y axes,
model (12) allows the diagonal components γx ′x ′ = −γy ′y ′ .

For the point group C4v , the representation Dv coincides
with the representation denoted also by A2 (or �2 in the other
notation). In this group, however, the symmetrized product
[D(1) × D(1)] is decomposed into irreducible representations
2A1 + B1 + B2 + E in the Mulligan notation (or 2�1 + �3 +
�4 + �5 in the Bethe notation) and does not contain the
representation A2. All the components γαβ vanish for the
linear spin-orbit coupling and an arbitrary tilt function d0(k).
Thus we eventually come to conclusion that the CPGE in
the C4v symmetry crystals, as well as the difference between
γxy and γyx (or the components γx ′y ′ = −γy ′x ′ ) allowed by
the C2v symmetry, can be obtained only by adding to the
spin-dependent part of H corrections of the higher order in
k. In the next section, we demonstrate how this is done for the
C4v point-group symmetry.

Note that the tilt of energy spectrum breaks the electron-hole
symmetry, and this can result in a difference in the momentum
relaxation times in the conduction and valence bands. However,
all symmetry statements are valid even for unequal momentum
relaxation rates because the electron and hole contributions to
the photocurrent are additive.

C. Account for spin-dependent nonlinear terms

In order to calculate the CPGE in WSMs of the C4v

symmetry, we replace the linear functions dα (k) = Ch̄v0kα of
Eq. (12) by more general functions,

Ch̄v0kx + Px (k), Ch̄v0ky + Py (k), Ch̄v0kz, (15)

respectively, where the expansion of Pα (k) in powers of k
starts from the second- or third-order terms. We focus on the
calculation of the symmetry allowed component γxy given by
a sum of the individual contributions:

γxy (Wi) = 2πe3τp

h̄2

∑
k

∂d

∂kx

�k,yF (k) δ(2d − h̄ω), (16)

where the index i runs from 1 to the number N of the equivalent
nodes. The component γyx (Wi) differs from Eq. (16) only
in sign.

We assign number 1 to one of the Weyl nodes kW1 lying, e.g.,
in the region of the Brillouin zone with the positive components
kW1,α > 0. Bearing in mind 8 elements of spatial symmetry of
the C4v group and the time-inversion symmetry, we have 16
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equivalent nodes. To analyze the net electric photocurrent, it is
sufficient to consider only two nodes, the fixed one, kW1, and
the node kW2 obtained by the reflection in the diagonal plane
σd , which transforms kx, ky, kz into ky, kx, kz and σx, σy, σz

into −σy,−σx,−σz. This restriction to the two selected nodes
is applicable because the eight nodes obtained from the node
W1 by the C2v group operations e, σv (xz), σv (yz), C2, and
the time-inversion T make coinciding contributions to γxy ,
and the remaining eight nodes also contribute equally. For
example, we demonstrate this for the nodes kW3 = σv (xz)kW1

and kW4 = T kW1 = −kW1. In these valleys, the components
d (Wi)

α (kx, ky, kz) (i = 3, 4) have the form

d (W3)
x = −Ch̄v0kx − Px (kx,−ky, kz),

d (W3)
y = −Ch̄v0ky + Py (kx,−ky, kz), (17)

d (W3)
z = −Ch̄v0kz,

and d (W4)
α (kx, ky, kz) = −d (W1)

α (−kx,−ky,−kz). One can
check that the substitution of d (Wi)

α (k) into the sum (16)
followed by the variable transformation kx, ky, kz to
kx,−ky, kz or −kx,−ky,−kz completely restores the modulus
d(k), and the product of functions to be summed over k.

We take account for the additional terms Pα (k) in the first
order of the perturbation theory. There are several possible
contributions to the photocurrent (5) related to P (k). They
come from the corrections to (i) the Berry curvature (9), (ii) the
velocity v+−(k) in Eq. (5), and (iii) the modulus d(k) in Eq. (6)
as well as to the energy dependence of τp and F (k). Below,
we analyze these contributions, one after another. To avoid
cumbersome formulas, we simplify the functions Px (k), Py (k)
assuming that they depend on kx, ky but are independent of kz.

It is shown in Appendix A that the photocurrent is given by

γxy = 4Nπe3v3
0τp

h̄2ω3

∑
k

S F (k) δ(2h̄v0k − h̄ω),

S = 2
kxky

k

(
∂Px

∂kx

− ∂Py

∂ky

)
− k2

x − k2
y

k

(
∂Px

∂ky

+ ∂Py

∂kx

)
. (18)

D. Particular cases

Taking Px = Dxk
n
xk

m
y and Py = Dyk

n′
x km′

y , we obtain

kS = Dxk
n
xk

m−1
y

[
(2n + m)k2

y − mk2
x

]
+Dyk

n′−1
x km′

y ′
[−(2m′ + n′)k2

x + n′k2
y

]
. (19)

1. Quadratic nonlinearity

For a combination of linear-k and double-Weyl Hamil-
tonians with Px = Dx1(k2

x − k2
y ) + 2Dx2kxky and Py =

Dy1(k2
x − k2

y ) + 2Dy2kxky one obtains from Eq. (19)

S = 2k2 sin3 θ [(Dx1 − Dy2) sin 3ϕ − (Dx2 + Dy1) cos 3ϕ],

(20)

where θ, ϕ are the polar angles of the wave vector k. There-
fore the photocurrent becomes nonzero due to the angular

harmonics of the third-order contributing to the difference
F (k) of the occupations of the initial and final states. Then
at Dx1 − Dy2 = 0, we obtain from Eq. (18),

γxy = −(Dx2 + Dy1)
Ne3τpω

8πh̄3v2
0

〈
kx

(
k2
x − 3k2

y

)
k3

F (k)

〉
, (21)

where the angular brackets mean averaging over directions of
the vector k at a fixed absolute value k = ω/(2v0).

To move further, we consider the particular case of
zero temperature and linear-k dependence of the tilt
d0(k) = a · k = axkx + ayky . Then for the negative chemical
potential μ = −|μ| the function F (k) reduces to

�(−|μ| + h̄ω/2 − a · k) − �(−|μ| − h̄ω/2 − a · k), (22)

where �(x) is the Heaviside step function. For definiteness,
we set ay = 0 and ax > 0, the general case of ax, ay �= 0 is
treated analogously.

Introducing the coordinate system, which is obtained from
(xyz) by a rotation around the y axis by 90◦, we can present
the photocurrent as follows:

γxy = − (
Dx2 + Dy1

)Ne3τpω

8πh̄3v2
0

×
∫ 1

−1
dt

5t3 − 3t

2
[�(C − t ) − �

(
C ′ − t

)
], (23)

where

C = h̄ω − 2|μ|
h̄ωb

, C ′ = h̄ω + 2|μ|
h̄ωb

, (24)

and we use the dimensionless tilt parameter

b = ax

h̄v0
. (25)

In type-I WSMs where b < 1, C ′ > 1 for any ω and μ,
and the photocurrent is nonzero at |C| < 1 only. This gives the
lower and higher edges for the optical absorption [13] (see also
Ref. [14]):

1

1 + b
<

h̄ω

2|μ| <
1

1 − b
. (26)

Integration yields for type-I WSM,

γxy = −(Dx2 + Dy1)
Ne3τp|μ|
64πh̄4v2

0

× (1 − C2)(1 − 5C2)

1 − bC
�(1 − |C|). (27)

In type-II WSMs where b > 1, the photocurrent is nonzero
at C > −1. This means that the low-frequency range is cut by
[15]

1

b + 1
<

h̄ω

2|μ| . (28)

For C ′ > 1, i.e., for 2|μ|/h̄ω > b − 1, the photocurrent in
type-II WSM is also given by Eq. (27). For C ′ < 1, i.e., for
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FIG. 1. Spectral dependence of the CPGE current calculated in
type-I (a) and type-II (b) WSMs for two values of the tilt parameter
b defined by Eq. (25).

2|μ|/h̄ω < b − 1, it is equal to

γxy = (
Dx2 + Dy1

)Ne3τp|μ|
8πh̄4v2

0

× 1

b4

{
5

[
1 +

(
2|μ|
h̄ω

)2
]

− 3b2

}
�

(
h̄ω

2|μ| − 1

b − 1

)
.

(29)

Excitation spectra for type-I and type-II WSMs are shown
in Fig. 1. The spectra are similar in the low-frequency part. At
high frequencies, the photocurrent is zero for a type-I WSM
while it raises with frequency in type-II WSMs.

2. Cubic nonlinearity

In general, the cubic contribution to Px (kx, ky ), Py (kx, ky )
can be presented as

Px =
3∑

n=0

Dxnk
n
xk

3−n
y , Py =

3∑
n=0

Dynk
3−n
x kn

y . (30)

Substitution of these expressions into Eq. (20) and averaging
over the solid angle 4π , hereafter indicated by a bar, gives

S̄ = 2k3

15
[3(Dx0 − Dy0) + Dx2 − Dy2]. (31)

For illustration, in Ref. [5], we used the model with
Px = Dky (k2

x + k2
y ), Py = Dkx (k2

x + k2
y ). In the notation (30),

this corresponds to the choice Dx0 = Dx2 = Dy0 = Dy2 = D,
Dx1 = Dx3 = Dy1 = Dy3 = 0 in which case the average value
S̄ vanishes and the circular photocurrent becomes nonzero only
with allowance for the tilt. However, if the combination of
coefficients in square brackets of Eq. (31) is nonzero then the
photocurrent is induced even in the absence of tilt, particularly
for F (k) ≡ 1 in Eq. (18).

III. CPGE UNDER INDIRECT TRANSITIONS

Here, we consider a WSM with a finite chemical potential
μ > 0. At the photon energies h̄ω < 2μ and low temperature,
light absorption is possible due to indirect defect-assisted
transitions via virtual intermediate states. We show that such
indirect quantum-mechanical transitions are also accompanied
by a photocurrent. For simplicity, we assume a pure Weyl
Hamiltonian neglecting the tilt and consider a short-range
scattering potential.

The photocurrent density is given by [2]

j = e
∑
kk′

Wk′k[v(k′)τp(k′) − v(k)τp(k)]. (32)

Here, Wk′k is the probability of the indirect optical absorption,
and we introduced the momentum scattering time according to

1

τp(k)
= 2π

h̄

∑
k′

∣∣Ucc
k′k

∣∣2
(1 − cos �)δ[h̄v0(k − k′)] (33)

with � being the angle between k′ and k. For the short-range
scattering potential, the scattering matrix element Ucc

k′k is equal
to U0〈ck′|ck〉 where the Fourier image U0 of the potential is a
constant. After the summation, we obtain

1

τp(k)
= N |U0|2k2

3πh̄2v0
, (34)

where N is the concentration of the static scatterers. Here we
specify the momentum dependence τp(k) because, as usual at
Drude absorption, τp(k) stays in the integrand over k. This is
in contrast to the case of interband transitions, Sec. II, where
the CPGE current is determined by τp at a fixed k = ω/(2v0).

A. c → c processes

The probability of the intraband optical absorption is de-
scribed by the Fermi golden rule

Wk′k = 2π

h̄
|Mk′k|2(fk − fk′ )δ(h̄v0k

′ − h̄v0k − h̄ω), (35)

where fk = f0(h̄v0k). The electron-photon interaction opera-
tor is taken in the form

V = Cv0
ie

ω
σ · Ee−iωt + H.c. (36)
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μ μ

c → vc  → c

μ μ

(a) (b)

FIG. 2. Quantum transitions resulting in the CPGE at h̄ω < 2μ. Dashed arrows indicate the direct optical transitions, and dotted arrows
show the processes of impurity scattering. The photon energy h̄ω shown by the length of solid vertical arrows is smaller (a) and larger (b) than
μ. Only transitions with the initial state in the conduction band (a) are allowed at h̄ω < μ. At h̄ω > μ, the transitions with the initial state in
the valence band (b) also contribute to the CPGE.

Then the compound matrix element of the indirect optical
transition via the valence band, Fig. 2(a), reads

Mck′ck = Ucv
k′kV

vc
k

Ev (k) − Ec(k) − h̄ω
+ V cv

k′ Uvc
k′k

Ev (k′) − Ec(k)
, (37)

with the interband scattering matrix elements being

Ucv
k′k = U0〈ck′|vk〉, Uvc

k′k = U0〈vk′|ck〉, (38)

and the interband optical matrix elements, for the σ+ and σ−
circular polarizations, being

V cv
k (σ+) = −V

vc,∗
k (σ−) = i

e|E|v0

ω

C cos θk + 1√
2

eiϕk ,

V vc
k (σ+) = −V

cv,∗
k (σ−) = i

e|E|v0

ω

C cos θk − 1√
2

eiϕk .

Here we choose the polar axis of the spherical coordinate
system directed along �. Note that the half difference of
squared moduli of V cv

k (σ+) and V cv
k (σ−) yields Eq. (8).

The energy conservation law and the electron-hole symme-
try imply that

Ec(k′) − Ec(k) = h̄ω, Ev (k) = −Ec(k) = −h̄v0k. (39)

Therefore the energy denominators in Eq. (37) coincide, and
this equation reduces to

Mck′ck = −Ucv
k′kV

vc
k + V cv

k′ Uvc
k′k

2h̄v0k + h̄ω
. (40)

As a result, we obtain for the circular photocurrent density

j c→c = 4e3v3
0

3ω2
�C|E|2

∑
k

f0(h̄v0k) − f0(h̄v0k + h̄ω)

(2h̄v0k + h̄ω)2

×
[

1 + τp(k)

τp(k + ω/v0)

]
. (41)

At low temperatures, integration yields

j c→c = 4�0

πω
�C|E|2

{
1

1−(h̄ω/2μ)2 , if h̄ω < μ

2μ(h̄ω+μ)
h̄ω(2μ+h̄ω) , if μ < h̄ω < 2μ

. (42)

B. Photocurrent caused by v → c transitions

At h̄ω > μ but still h̄ω < 2μ, the transitions from the
valence-band states also contribute to both light absorption and
the CPGE, Fig. 2(b). The probability rate and matrix element
of the indirect transitions v → c → c and v → v → c are
given by

Wck′vk = 2π

h̄

(
f v

k − fk′
)
δ(h̄v0k

′ + h̄v0k − h̄ω)|Mck′vk|2,
(43)

Mck′vk = Ucc
k′kV

cv
k + V cv

k′ Uvv
k′k

2h̄v0k − h̄ω
, (44)

where f v
k = f0(−h̄v0k). As a result, we obtain for the pho-

tocurrent density

jv→c = e
∑
kk′

Wck′vk[vk′τp(k′) + vkτp(k)], (45)

where we took into account that the initial electron state has
the velocity −vk. Summation over k′ yields

jv→c = 4e3v3
0

3ω2
�C|E|2

∑
k

f0(−h̄v0k) − f0(−h̄v0k + h̄ω)

(2h̄v0k − h̄ω)2

×
[

1 + τp(k)

τp(k − ω/v0)

]
. (46)

At low temperatures, we have

jv→c = �|E|2 C 4�0

πω

2μ(h̄ω − μ)

h̄ω(2μ − h̄ω)
. (47)

C. Total photocurrent at intraband absorption

Summing up the contributions from both the c → c and
v → c transitions, for h̄ω > μ, we obtain the dependence
which is a continuation of the expression (42) for j c→c

calculated at h̄ω < μ. Therefore, for the whole region 0 <

h̄ω < 2μ of intraband absorption, we have

j = �|E|2 C 4�0

πω

1

1 − (h̄ω/2μ)2
. (48)
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We see that at small photon energies h̄ω 
 μ (but still
ωτ � 1), the CPGE current in the given Weyl node has a
universal form

j (h̄ω 
 μ) = �|E|2 C 4�0

πω
(49)

determined by the fundamental constants and the frequency.
The concentration of scatterers N cancels in the final result as
usual for intraband CPGE [2]. Indeed, the longer is the mo-
mentum scattering time, the weaker is the light absorption rate
because the intraband absorption requires scattering. Hence the
current generation rate increases withN . At the same time, the
elastic scattering by the same disorder limits the photocurrent:
j ∝ τp ∝ N−1, Eq. (32). This results in cancellation of N in
the intraband CPGE.

IV. MAGNETOGYROTROPIC PHOTOGALVANIC EFFECT

In this section, we develop a theory of the magnetogy-
rotropic photocurrent independent of the light polarization
and antisymmetric in the magnetic field B. We consider
here only the quantizing magnetic fields and find the field-
dependent coefficient χ in the phenomenological equations
(3). In Sec. IV A, we calculate the MPGE current in one node
assuming the pure Weyl Hamiltonian. Then in Sec. IV B, we
account for the tilt which results in a net MPGE current in
WSM of the C2v point symmetry.

A. Contribution of an individual Weyl node

The magnetic field is included into the Weyl Hamiltonian
by the Peierls substitution. In accordance with Eq. (3), the
field B is assumed to be directed along the x ′ axis. The energy
spectrum consists of one chiral subband:

E0(px ′ ) = −Csgn(Bx ′ )h̄v0kx ′ , (50)

and a series of the valence (v) and conduction (c) magnetic
subbands enumerated by the positive integer n = 1, 2, . . . and
having the dispersion relations E(c,v)

n (kx ′ ) = ±En(kx ′ ), where

En(kx ′ ) = h̄

√
(v0kx ′ )2 + nω2

c (51)

and

ωc = v0

√
2

lB
, lB =

√
h̄c

|eBx ′ | . (52)

The energy dispersion in conduction and valence magnetic
subbands is shown in Fig. 3.

The density of the interband photocurrent is given by

jx ′ = e

h̄l2
B

∑
n,kx′

(
vx ′

n+1τn+1 + vx ′
n τn

)|Mc,n+1←v,n|2

× Fδ[En+1(kx ′ ) + En(kx ′ ) − h̄ω]. (53)

Here, τn is the momentum relaxation time in the nth magnetic
subband, vx ′

n is the velocity h̄v2
0kx ′/En,

F = (
f v

n − f c
n+1

) − (
f v

n+1 − f c
n

)
, (54)

f c,v
n are the equilibrium occupations of the nth subbands in

the conduction and valence bands. While deriving Eq. (53),
we took into account that the odd parts of the squared

μ

n

n+1

kx'

E

j

xxxx

FIG. 3. Scheme of direct optical transitions between the one-
dimensional subbands in a quantized magnetic field in the case
CBx′ > 0. The transitions v, n → c, n + 1 result in the MPGE current
since the v, n + 1 → c, n transitions are blocked (crosses) by the
Pauli principle. For n �= 0, each transition occurs at two points kx′

of opposite signs. The arrows illustrate the optical transitions, their
starting points (open circles) are chosen at the side with the more
probable transition rate.

matrix elements |Mc,n←v,n+1(kx ′ )|2 and |Mc,n+1←v,n(−kx ′ )|2
are opposite in sign but equal in magnitude.

By using the wave functions given in Appendix B and the
perturbation (36), one can find the squared matrix element
|Mc,n′←v,n|2 for the direct optical transitions of electrons
between the nth magnetic subband in the valence band and the
n′th conduction subband. For the linear polarization, E⊥ ⊥ B,
the selection rules are n′ − n = ±1. The direct calculation
gives

|Mc,n+1←v,n(kx ′ )|2

=
(

ev0|E⊥|
2ω

)2

×
[

1 + (h̄v0kx ′ )2

EnEn+1
+ Ch̄v0sgn(Bx ′ )kx ′

(
1

En

+ 1

En+1

)]
,

(55)

|Mc,n←v,n+1(kx ′ )|2 = |Mc,n+1←v,n(−kx ′ )|2, (56)

for n, n′ �= 0, and

|Mc1←0(kx ′ )|2 = |M0←v1(−kx ′ )|2

= (ev0|E⊥|)2

2ω2

[
1 + Ch̄v0sgn(Bx ′ )kx ′

E1

]
(57)

for n = 0 either n′ = 0. Here the even in kx ′ terms are
responsible for light absorption [16].

Equations (55) and (56) allow one to explain the origin
of a photocurrent under the v, n → c, n + 1 transitions with
n > 0. Due to the terms odd both in kx ′ and Bx ′ , the prob-
ability rates are asymmetric with a predominance of states
with Csgn(Bx ′ )kx ′ > 0 for the transitions v, n → c, n + 1 and
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Csgn(Bx ′ )kx ′ < 0 for the transitions v, n + 1 → c, n. In these
two kinds of transitions, the electron energies of the initial
(or final) states are different, Fig. 3, and, therefore, their
equilibrium occupation can be also different. This gives rise to
the MPGE current in the polarization E ⊥ B. For the light
polarized along the magnetic field, the selection rules read
n′ = n, the squared matrix elements are even in kx ′ and the
electron photoexcitation is not accompanied by the current
generation. It is instructive to divide the relevant light spectral
area into three ranges as presented below.

1. Range 1: ω/ωc >
√

2 + 1

The interband transitions v, n → c, n + 1, Fig. 3, con-
tribute to the photocurrent with n satisfying the cutoff
frequency relation

h̄ωc(
√

n + √
n + 1) � h̄ω or n � ν ≡

(
ω2 − ω2

c

)2

4ω2ω2
c

. (58)

For n �= 0, the direct transitions occur at the points kx ′ = ±k(n)
ω .

The quasimomentum h̄k(n)
ω as well as the initial and final

energies, −En(ω) and En+1(ω), are found from the energy
conservation En(k(n)

ω ) + En+1(k(n)
ω ) = h̄ω as follows:

h̄k(n)
ω = En(ω)

v0

√
1 − n

ν
, En/n+1(ω) = h̄

ω2 ∓ ω2
c

2ω
. (59)

For n = 0, i.e., for the process 0 → c1, the transition occurs
in the point kx ′ = k(0)

ω if CBx ′ > 0 and the point kx ′ = −k(0)
ω

if CBx ′ < 0. In the former case, Eq. (59) is also valid if En

is replaced by −E0(k(0)
ω ), where E0(k(0)

ω ) is the initial energy
in the chiral subband, Eq. (50). We draw attention to the fact
that the energies of electrons involved in the transitions v, n →
c, n + 1 are independent of n and shifted relative to those in
the v, n + 1 → c, n transitions by h̄ω2

c/ω.
We start the analysis from zero temperature, the effect

of temperature is considered in Sec. IV A 4. In range 1, the
contributions of the transitions v, n → c, n + 1 and v, n +
1 → c, n to the photocurrent do not compensate each other if
the latter transition is suppressed by the Pauli principle, Fig. 3.
This takes place at values of the chemical potential μ > h̄ωc

where f c
n+1 = 0 but f c

n = 1, i.e., at

En(ω) < μ < En+1(ω), or |2μ − h̄ω| <
h̄ω2

c

ω
, (60)

or, equivalently, in the frequency range �−(μ) < ω < �+(μ),
where

h̄�±(μ) = μ +
√

μ2 ± (h̄ωc )2. (61)

In fact, the lower frequency edge is determined by the largest
value between (1 + √

2)h̄ωc and μ +
√

μ2 − (h̄ωc )2. The
crossover between these two values occurs at the point μ =√

2h̄ωc.
Assuming the momentum relaxation times in all magnetic

subbands to coincide and be equal to τp, we obtain

jx ′ = Csgn(Bx ′ )�0τp|E|2 2ω2
c

ω2 + ω2
c

∑
0�n<ν

√
1 − n

ν
, (62)

where �0 is introduced in Eq. (10) and we replaced |E⊥|2 by
(2/3)|E|2.

kx'

E

j

x

μ

kx'

E

x

j

FIG. 4. Schematics of the magneto-gyrotropic photogalvanic
effect and the related scattering times controlling the photocurrent
formation. The current is governed by a combination of three relax-
ation times, namely, the intranode energy relaxation time τε and the
internode elastic scattering times between the chiral subbands (τ̃0) and
between the first excited subbands (τ̃1), see Eq. (64). The position of
chemical potentialμprevents the transitions from the valence subband
v1 to the chiral subband with the linear dispersion.

In the weaker (but still quantized) fields such as ωc 

ω ≈ 2μ/h̄, we have ν ≈ (ω/2ωc )2 � 1 and, replacing the
summation by integration, obtain a universal result:

jx ′ (ωc 
 ω) = Csgn(Bx ′ )
�0

3
τp|E|2. (63)

2. Range 2: 1 < ω/ωc <
√

2 + 1

The elastic scattering of electrons (or holes) in the chiral
subband (50) with the energies within the interval (−h̄ωc, h̄ωc )
radically differs from that in all other subbands. For energies
outside this interval, the backward scattering of the quasimo-
mentum within the same Weyl node is the main mechanism
of the free-carrier momentum relaxation resulting in a short
intravalley relaxation time τp comparable to the zero-field one.
However, the energies between −h̄ωc and h̄ωc are available
only for the states in the chiral subband which has a linear
dispersion and, therefore, forbids an intravalley backscattering.
In this case, the momentum relaxation occurs due to scattering
to the chiral subbands in other Weyl points, Fig. 4, with a
characteristic time τ̃0 obviously by far exceeding τp.

A photohole excited in the transition 0 → c1 in range 2 has
an energy |E0| below h̄ωc. The consideration of steady-state
kinetics yields the following effective relaxation time which
controls the photocurrent [5]:

τ̃ = τ̃0τε

τ̃1
� τp. (64)

Here, τ̃1 is the time of elastic scattering of carriers between
the first subbands in different monopoles, and τε is the energy
relaxation time describing phonon-involved transitions from
the excited states in the first conduction subband to the 0th
chiral subband, Fig. 4. Here, we take into account that the
intranode energy relaxation time is shorter than the internode
scattering times: τε 
 τ̃0,1. These scattering processes in
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WSMs and their effect on CPGE are discussed in Ref. [17].
It follows from the inequality (64) that the contribution to
the photocurrent from the photoholes in the chiral subband
dominates.

The squared matrix element |Mc1←0|2 is even in magnetic
field because, under the inversion of Bx ′ , the slope of dispersion
E0(px ′ ) changes from negative to positive, and the direct
transition 0 → c1 is replaced by the transition v1 → 0 that
takes place in the inverted value of kx ′ . However, the velocity
in the chiral subband vx ′

0 = −Cv0sgn(Bx ′ ) is odd in Bx ′ , and
we obtain from Eq. (53) accounting only for n = 0 and for
τ1 
 τ0 = τ̃ (see also Ref. [5]):

jx ′ = Bx ′ |E|2 C�0τ̃
2v2

0e

h̄cω2
. (65)

Here, the chemical potential lies between the Weyl-point en-
ergy and the energy

√
2h̄ωc, and the temperature is set to zero.

For h̄ωc > μ > 0, the frequency range narrows to (h̄ωc, μ +√
μ2 + (h̄ωc )2), while for

√
2h̄ωc > μ > h̄ωc the photocur-

rent is generated in the range [μ +
√

μ2 − (h̄ωc )2, h̄ωc(1 +√
2)]. For Bx ′ = 1 T, v0 = c/300, and ω/(2π ) = 1 THz a value

of jx ′ is estimated as j0 = 80 �0τ̃ |E|2.

3. Range 3: ω < ωc. Direct intraband transitions

If the chemical potential lies in the energy interval (0, h̄ωc ),
then the main contribution to the photocurrent comes from the
0 → c1 transition under an excitation in the window√

μ2 + (h̄ωc )2 − μ < h̄ω < h̄ωc (66)

and is described by Eq. (65). Thus we turn to the samples with
chemical potential located above h̄ωc, i.e., above the bottom
of the first conduction subband.

At zero temperature, the direct optical transitions c, n →
c, n + 1 (n > 0) between the conduction subbands occur if
the chemical potential lies above the bottom of the c1 subband
and n < ν [16]. The intraband absorption is accompanied by a
photocurrent generation because in this case the probability
rate as well contains a part odd in kx ′ . The corresponding
photocurrent has the form

jintra = eτp

h̄l2
B

∑
kx′ ,n�ν

∣∣Modd
c,n+1←c,n(kx ′ )

∣∣2

× (
vx ′

n+1 − vx ′
n

)
δ[En+1(kx ′ ) − En(kx ′ ) − h̄ω]. (67)

Here the transition matrix element is given by Eq. (55) where
En+1 should be replaced by −En+1. The electron energies of
the initial and final states are equal to

En/En+1 = h̄
ω2

c ∓ ω2

2ω
. (68)

The conditions En+1 − En = h̄ω, En < μ < En+1, and n > 0
restrict the frequency range to

h̄ω ∈ (
√

μ2 + (h̄ωc )2 − μ,μ −
√

μ2 − (h̄ωc )2). (69)

Analytically, the photocurrent jx ′ is described by the same
equation, Eq. (62), derived for the interband excitation bearing
in mind that now ω < ωc.

4. Temperature dependence

The discontinuities in the dependence of the MPGE current
on the magnetic field are smeared by temperature T . At finite
T , the populations of the initial and final states take values
other than just 0 and 1. As a result, the “complementary”
transitions v, n + 1 → c, n forbidden in Fig. 3 by the Pauli
exclusion principle become possible. Using Eq. (59) for the
initial and final energies, we obtain for the populations

f c,v
n = f0

(
± h̄(ω2 − ω2

c )

2ω

)
,

f
c,v
n+1 = f0

(
± h̄(ω2 + ω2

c )

2ω

)
. (70)

Substitution of these functions into Eqs. (53) and (54) results
in the following temperature dependence of the photocurrent
for the interband transitions:

jx ′ = jx ′ (T = 0)
2 sinh

(
h̄ωc

2T

)
sinh

(
h̄ω
2T

)
sinh

(
μ

T

)
Z

, (71)

where

Z =
[

cosh

(
μ

T

)
+ cosh

(
h̄ωc

2T

)
cosh

(
h̄ω

2T

)]2

−
[

sinh

(
h̄ωc

2T

)
sinh

(
h̄ω

2T

)]2

.

B. Allowance for tilt

The derived expressions for the MPGE current are different
in sign for monopoles of opposite chirality. Here we demon-
strate that account for the tilt terms in the Hamiltonian gives
rise to the net MPGE current in gyrotropic WSMs.

In the linear-in-k approximation, the tilt term in Eq. (4)
can be written as d0(k) = a · k and is characterized by the
vector a, which describes the magnitude of a spin-independent
correction to the Hamiltonian. Let us use, instead of x ′, y ′, z,
the axes x ′, y ′′, z′′ with y ′′ being the axis along the component
a⊥ of the tilt vector a perpendicular to B. Then the Hamiltonian
(12) takes the form

H = Ch̄v0σ · k + ax ′kx ′ + a⊥ky ′′ . (72)

With account for tilt, the energy dispersion in the magnetic
subbands transforms to

E0 = [−Ch̄sgn(Bx ′ )ṽ0 + ax ′ ]kx ′ ,

E(c,v)
n = ax ′kx ′ ± Ẽn. (73)

Here, Ẽn = h̄

√
(ṽ0kx ′ )2 + nω̃2

c , the tilde marks the renormal-
ized Fermi velocity, cyclotron frequency, and magnetic length

ṽ0 = v0

γ
, ω̃c = ṽ0

√
2

l̃B
= ωcγ

3/2, l̃B = lB
√

γ , (74)

where

γ = 1√
1 − β2

, β = a⊥
h̄v0

. (75)

We calculate the photocurrent due to the 0 → c1 transitions
assuming that the chemical potential lies below the bottom of
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kx'

E

x'

E c1

v1

0

μ

x

j

c1

v1

0

kx'

E

x

j

FIG. 5. Microscopic mechanism of the MPGE in a tilted Weyl
semimetal. The net current is caused by a disbalance between
contributions of the Weyl nodes of opposite chiralities: due to the
tilt-dependent factor � defined by Eq. (84) the direct transition rate
in the Weyl node with C > 0 becomes larger than that in the node
with C < 0.

the c1 subband: 0 < μ < h̄ωc, Fig. 5. At ω/ω̃c <
√

2 + 1, the
photocurrent is given by Eq. (53) (accounting only for n = 0
and for τ1 
 τ0 = τ̃ ) where the substitutions lB → l̃B , E0,1 →
Ẽ0,1 are made and the velocity in the zeroth subband is

vx ′
0 = −Csgn(Bx ′ )ṽ0 + ax ′

h̄
.

The electron-photon interaction operator can still be taken in
the form of Eq. (36) because the tilt term does not result in
interband transitions. According to Appendix B, the MPGE
current with allowance for tilt has the form

jx ′ =
[
Csgn(Bx ′ ) − ax ′

h̄ṽ0

]
|E|2�0τ̃

×
(

ω̃c

ω

)2

exp

[
−

(
βω

ω̃c

)2
]
F. (76)

Here the current is averaged over polarization assuming an
unpolarized light, and

F =
∑
±

[f0(±Ẽ0 + Csgn(Bx ′ )ax ′kω )

−f0(±Ẽ1 + Csgn(Bx ′ )ax ′kω )], (77)

where

Ẽ0,1 = h̄
(
ω2 ∓ ω̃2

c

)
2ω

, kω = Ẽ0

h̄ṽ0
. (78)

Equation (76) demonstrates that for B ‖ x ′, the MPGE
current in each Weyl node depends on ax ′ and

a2
⊥ = a2

y ′ + a2
z . (79)

For the Weyl semimetals of C2v symmetry, the monopoles are
located in four points of the Brillouin zone if they belong to
the plane z = 0 and in eight points if they are shifted from this
plane. For simplicity, we consider the former case. Let the first
Weyl node be characterized by the chirality C and the tilt vector

components be ax ′ , ay ′ , az. The C2 rotation makes a transition
to another monopole:

C, ax ′ , a2
y ′ + a2

z → C,−ax ′ , a2
y ′ + a2

z . (80)

The mirror reflections σv yield two other monopoles:

C, ax ′ , a2
y ′ + a2

z → −C, ay ′ , a2
x ′ + a2

z (81)

and

C, ax ′ , a2
y ′ + a2

z′ → −C,−ay ′ , a2
x ′ + a2

z . (82)

Therefore, at zero temperature, there are two sources of
the MPGE. The first mechanism is realized at the chemical
potential lying below the bottom of the c1 subband, Fig. 5. In
the first mechanism F = 1, the photocurrent is dependent on
a2

⊥ via the parameters β and γ [5], and the summation over
four monopoles yields

jx ′ = Bx ′ |E|2C�0τ̃
2v2

0e

h̄cω2

×[
�

(
a2

y ′ + a2
z

) − �
(
a2

x ′ + a2
z

)]
, (83)

where

�(a2
⊥) = 2γ 3 exp

[
− a2

⊥
h̄2v2

0γ
3

(
ω

ωc

)2
]
. (84)

We remind that γ = [1 − (a⊥/h̄v0)2]−1/2. This equation
demonstrates that the net MPGE current appears due to a
difference in the direct optical transition rates in differently
tilted Weyl nodes, Fig. 5.

The second mechanism is related with the interference of
the ax ′ -linear term in the velocity with the ax ′ -dependent part of
the distribution functions, Eq. (76). The photocurrent becomes
nonzero due to a difference in the relaxation times τ̃ and
τp. This mechanism working at a quantized magnetic field is
similar to that considered in Ref. [11] for low magnetic fields.

V. DISCUSSION

We start the discussion from the MPGE. Using the results
of Sec. IV A, we have calculated the MPGE current in one
Weyl node. The frequency dependence of the MPGE current is
shown in Fig. 6. In agreement with considerations of Sec. IV A,
at zero temperature, the photocurrent is induced in a limited
interval of frequencies dependent on the level of chemi-
cal potential. For μ = 1.2h̄ωc <

√
2h̄ωc, the photocurrent is

controlled within the interval �− < ω < (
√

2 + 1)ωc by the
longer relaxation time τ̃ . On passing from range 2 to range
1, the photocurrent abruptly decreases because, although it is
now contributed by the two transitions, 0 → c1 and v1 → c2,
the relaxation time shortens from τ̃ to τp. For μ = 1.6h̄ωc >√

2h̄ωc, the interband photocurrent is generated under the
transitions 0 → c1, v1 → c2 and v2 → c3 and controlled
by the time τp. In Fig. 6, dashed lines illustrate the effect
of temperature on the photocurrent spectral dependence. At
ω > ωc(

√
2 + 1), the photocurrent density is close to the

universal value (63).
Now we switch to the discussion of CPGE due to the

interband transitions. In Ref. [18], the CPGE current is derived
from the Boltzmann kinetic equation taking into account the
anomalous velocity term in the framework of the semiclassical
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FIG. 6. Frequency dependence of the MPGE current related to
|E|2�0τp and calculated for two values of the chemical potential μ.
The relaxation times τ̃ and τp are taken at a ratio of 10 to 1. The vertical
arrows show the onset of the corresponding interband transition. The
frequencies �−(μ) and �+(μ) defined by Eq. (61) indicate the range
where the photocurrent is induced at T = 0. Solid and dashed curves
are calculated for zero temperature and T = 0.01h̄ωc, respectively.
The horizontal arrow shows the universal photocurrent value, Eq. (63).
At ω < ωc, the photocurrent is also contributed by the intraband
transitions (not shown).

approach developed in Ref. [19]. This result is valid for
arbitrary relation between ω and τp but for h̄ω 
 μ while
the results of Sec. III are obtained for the optical range where
ωτp � 1 and h̄ω < 2μ. These two approaches meet and can be
compared at ωτp � 1 and h̄ω 
 μ. The result of Ref. [18] (see
also Ref. [20]) in this limiting case is of the same order as that of
Eq. (49) but differs by a factor of 4. The side jump contribution
has the same order of magnitude [17]. All the semiclassical
contributions together should have the asymptotics (49).

It should be noted that, in addition to the circular pho-
togalvanic photocurrent (5), a transient electric current can
be generated under time-dependent optical excitation. Such
a current appears due to a light-induced renormalization of the
electron energy [21]. For the Weyl semimetal Hamiltonian (4)
with a zero tilt term, the renormalized energy Ẽ±,k differs from
the unperturbed energy E±,k by a correction δE±,k, which in
the second-order approximation can be written as

δE±,k = ±|M+−|2 2h̄ω

(2h̄v0k)2 − (h̄ω)2
. (85)

The contribution (8) to the squared modulus of the matrix
element M+− dependent on the circular polarization of the
radiation is odd in the wave vector k and, therefore, the
correction to the electron velocity δv±,k = h̄−1∂δE±,k/∂k
averaged over the direction of k does not vanish. As a result, at
an abrupt switch-on of the light intensity at the moment t = 0,
a transient current δ j tr (t ) = e−t/τp j0

tr does appear, where

j0
tr = e

h̄

∑
k

∂δE+,k

∂k
f+(E+,k ). (86)

The calculation performed at low temperature T ≈ 0 for an
n-doped sample with the Fermi wave vector satisfying the

condition 2v0kF < ω results in

j0
tr = w

π

jCPGE

ωτp

, (87)

where the circular current jCPGE is given by Eq. (10) and

w = 2ω2

(2v0kF)2 − ω2
.

It follows then that the nonstationary current δ j tr (t ), as com-
pared with the photocurrent (10), contains an additional small
parameter (ωτp )−1 and can be ignored, even in experiments
with time-dependent light intensity.

Finally, we briefly discuss the effects of the electron-
electron interaction on the universal photocurrent (1). Coulomb
interaction effects on the direct optical absorption in systems
with a linear dispersion have been investigated in graphene
[22–26]. For three-dimensional WSMs, it has been shown
that the electron-electron interaction yields a correction to the
light absorption coefficient containing the factor 1/(N + 1),
which is small if N � 1, where N is the number of Weyl
points [27,28]. We remind that, for a Weyl semimetal of the
C4v symmetry, N = 16 for the nodes lying out of the plane
z = 0 and N = 8 for the nodes on this plane. The Coulomb
correction to the CPGE current at interband transitions also
contains the factor 1/(N + 1). However, the analysis shows
that the electron-electron effects are additionally suppressed in
the CPGE current by a small factor ln−1 (D/ω), where D � ω

is the high-frequency cutoff.

VI. CONCLUSION

We have developed a theory of the circular and magne-
togyrotropic photogalvanic effects in Weyl semimetals with
the point groups containing improper symmetry operations.
In semimetals of the C2v symmetry with the linear energy
dispersion, the net CPGE photocurrent becomes nonzero
taking into account a spin-independent tilt term in the electron
effective Hamiltonian. However, this is insufficient for the
crystal class C4v , like the TaAs Weyl semimetal. In this case,
one needs to add to the Hamiltonian not only the tilt but
also spin-dependent terms of the second or third order in the
electron quasimomentum and take into account the nonlinear
corrections, respectively, to the velocity and Berry curvature
in the equation for the current density. Additionally, the theory
has been extended by consideration of the indirect intraband
optical transitions and their contribution to the CPGE. Here,
an important point to bear in mind is that the probability rate
is contributed by the composite (two-quantum) processes with
virtual states both in the conduction and valence bands.

Developing a theory of the polarization independent
photocurrents in an external quantized magnetic field we
have, in turn, analyzed three frequency ranges, namely,
ω > ωc(

√
2 + 1), ωc(

√
2 + 1) > ω > ωc, and ωc > ω

and found restrictions imposed by the level of chemical
potential at zero temperature on the spectral intervals where
the MPGE current is generated. The temperature smooths
out the edges of these intervals. The calculation reveals that,
for the C2v point-group symmetry, the net MPGE current is
an even function of the tilt parameters aα .
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APPENDIX A: DERIVATION OF EQ. (18)

In the linear in P (k) approximation, one has for the Berry
curvature in the valley W1:

�(W1)
y (k) = (h̄v0)2

2d3

(
Ch̄v0ky + Py + ky

∂Px

∂kx

− kx

∂Py

∂kx

)
.

In the W2 valley, one has d (W2)
x = −Ch̄v0kx − Py (ky, kx ),

d (W2)
y = −Ch̄v0ky − Px (ky, kx ), d (W2)

z = −Ch̄v0kz, and

d
(W2)
0 = d0(ky, kx, kz). It follows from Eq. (9) that

�(W2)
y (k) = (h̄v0)2

2d3

[
− Ch̄v0ky − Px (ky, kx )

− ky

∂Py (ky, kx )

∂kx

+ kx

∂Px (ky, kx )

∂kx

]
. (A1)

Substituting ∂d/∂kx = h̄v0kx/k, �(W1)
y (k), or �(W2)

y (k) into
Eq. (16) and changing variables kx, ky to ky, kx in the sum for
the W2 node contribution, we obtain for the N -valley WSM,

γxy = 4Nπe3v3
0τp

h̄2ω3

∑
k

S�F (k) δ(2h̄v0k − h̄ω), (A2)

where

S� = kx

k

(
Py (k) + ky

∂Px (k)

∂kx

− kx

∂Py (k)

∂kx

)

+ ky

k

(
−Px (k) − kx

∂Py (k)

∂ky

+ ky

∂Px (k)

∂ky

)
.

Now, we take into account corrections to the velocity. For
the node W1, the corrections to the energy and the group
velocity linear in P (k) can be written as

E±,k = d0(k) ± d(k), d(k) ≈ h̄v0k + C k · P (k)

k
(A3)

and

δv+−,x (k) = 2C
h̄k

(
Px − kx

k

k · P
k

+ k · ∂ P
∂kx

)
. (A4)

The similar quantities for the node W2 are given by

d (W2)(k) ≈ h̄v0k + C k̃ · P̃
k

,

δv
(W2)
+−,x = 2C

h̄k

(
P̃y − kx

k

k̃ · P̃
k

+ k̃ · ∂ P̃
∂kx

)
, (A5)

where k̃ = σd k = (ky, kx ), P̃ = P (σd k) = P (ky, kx ). Substi-
tuting Eq. (A4) or (A5) into Eq. (16), we obtain an equation
that differs from Eq. (A2) by the replacement S� → Sv , where

Sv = ky

k

(
Px + k · ∂ P

∂kx

)
− kx

k

(
Py + k · ∂ P

∂ky

)
.

A sum of the contributions due to the corrections to the Berry
curvature and velocity reduces to

γxy = 4Nπe3v3
0τp

h̄2ω3

∑
k

S F (k) δ(2h̄v0k − h̄ω),

S = 2
kxky

k

(
∂Px

∂kx

− ∂Py

∂ky

)
− k2

x − k2
y

k

(
∂Px

∂ky

+ ∂Py

∂kx

)
. (A6)

Finally, we take into account corrections to the energy. In
this case, the product vx

+−�y is proportional to kxky because of
the linear dependence d(k) = Ch̄v0k. This allows one to write
the corresponding contribution to (16) in the following general
form:

C
∑

k

kxky

k
R[d(k)]F (k),

where R is a function of the modulus |d(k)|. The same sum
related to the node W2 differs by the sign of the Berry curvature
C and the variable change in the product

R[d(k)]F (k) → R[d(σd k)]F (σd k).

Changing the variable k → σd k in this sum and taking into
account that the bilinear function kxky is invariant under the
operation σd , we immediately find that the contributions from
the nodes W1 and W2 differ in sign and cancel each other.
It follows then that Eq. (A6) equivalent to Eq. (18) gives the
total photocurrent linear in P and this equation can be used as
the working formula for calculations in particular cases of the
wave-vector dependence of P .

APPENDIX B: WAVE FUNCTIONS IN MAGNETIC FIELD

For pure Weyl Hamiltonian and Bx ′ > 0, the wave functions
are given by

�0 =
[

0

�0

]
, �

(c,v)
n>0 =

[
an,±�n−1

±Can,∓�n

]
, (B1)

while for the opposite direction, Bx ′ < 0, they are obtained
from the above functions by the transformation

� (c,v)
n (Bx ′ < 0) = −iCσ2�

(v,c)
n (Bx ′ > 0). (B2)

Here, σ2 is the second Pauli matrix,

�n = ei(kx′x ′+ky′y ′ )φn

(
z − h̄ky ′c

eBx ′

)
, (B3)

φn are the Landau-level oscillator functions, and the coeffi-
cients an,± = √

(1 ± Ch̄v0kx ′/En)/2.
With account for tilt, at Bx ′ > 0, the wave functions in

the conduction and valence magnetic subbands are given by
[29–31]

�0 = eiα

√
γ

e−θσ1/2

[
0

φ0(z′′ − ζ0)

]
, (B4)

�
(c,v)
n>0 = eiα

√
γ

e−θσ1/2

[
ãn,±φn−1

(
z′′ − ζn,±

)
±Cãn,∓φn

(
z′′ − ζn,±

)
]
, (B5)

where σ1 is the first Pauli matrix, α = kx ′x ′ + ky ′′y ′′, ãn,± =√
(1 ± Ch̄ṽ0kx ′/Ẽn)/2, tanh θ = β, and the centers of the
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cyclotron orbits depend on the energies due to the tilt:

ζ0 = ch̄

eBx ′
(ky ′′ − βγ Ckx ′ ), ζn,± = ch̄

eBx ′

(
ky ′′ ± βγ Ẽn

h̄ṽ0

)
.

(B6)

Using the relations

〈φ0(z′′ − ζ0)|φ1(z′′ − ζ1,+)〉 = √
ue−u/2, (B7)

〈φ0(z′′ − ζ0)|φ0(z′′ − ζ1,+)〉 = e−u/2, (B8)

where u = [(ζ1,+ − ζ0)/(l̃B
√

2)]
2
, we obtain that the matrix

element of the direct optical transition is given by

Mc1←0 = Cṽ0
ie

ω
e−u/2[γEy ′′ (ã1,+ − β

√
uã1,−)

− iã1,+Ez′′ − √
uã1,−Ex ′ ]. (B9)

Energy conservation yields u = (βω/ω̃c )2, and we obtain the
MPGE current with allowance for tilt in the form of Eq. (76).
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