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Andreev reflection in graphene is special since it can be of two types, retro or specular. Specular Andreev
reflection (SAR) dominates when the position of the Fermi energy in graphene is comparable to or smaller
than the superconducting gap. Bilayer graphene (BLG) is an ideal candidate to observe the crossover from retro
to specular since the Fermi energy broadening near the Dirac point is much weaker compared to monolayer
graphene. Recently, the observation of signatures of SAR in BLG have been reported experimentally by looking
at the enhancement of conductance at finite bias near the Dirac point. However, the signatures were not very
pronounced possibly due to the participation of normal quasiparticles at bias energies close to the superconducting
gap. Here, we propose a scheme to observe the features of enhanced SAR even at zero bias at a normal metal
(NM)–superconductor (SC) junction on BLG. Our scheme involves applying a Zeeman field to the NM side of
the NM-SC junction on BLG (making the NM ferromagnetic), which energetically separates the Dirac points
for up spin and down spin. We calculate the conductance as a function of chemical potential and bias within the
superconducting gap and show that well-defined regions of specular- and retro-type Andreev reflection exist. We
compare the results with and without superconductivity. We also investigate the possibility of the formation of a
p-n junction at the interface between the NM and SC due to a work function mismatch.
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I. INTRODUCTION

Andreev reflection (AR)—a scattering process by which
a current can be driven into a superconductor (SC) from a
normal metal (NM) by applying a bias within the supercon-
ducting gap—was first discovered by Andreev [1] and has
been extensively studied for several decades [2,3]. Graphene,
on the other hand, has attracted a huge interest in the past
decade owing to its electronic and material properties [4–7].
Graphene is a semimetal whose electronic structure can be
described by a Dirac Hamiltonian (with a vanishingly small
mass). Andreev reflection has been studied both theoretically
[8–12] and experimentally [13] in graphene. What makes
Andreev reflection in graphene special is that it can be of two
types: one where the reflected hole retraces the path of the
incident electron (called retro reflection) and another where
the reflected hole moves away, not tracing back the path of the
incident electron (called specular reflection) [9,13]. Specular
Andreev reflection has not been observed in graphene due
to charge-density fluctuations across the sample [13], but a
weak qualitative agreement is observed in bilayer graphene
[14,15]. Bilayer graphene (BLG) [16] is a better candidate
to observe specular Andreev reflection since charge-density
fluctuations are much smaller than in monolayer graphene. In
the experimental setup, a part of the BLG is kept in proximity
to a SC, which induces superconducting correlations on BLG.
It can be seen in Fig. 3(a) of Ref. [14], which shows only a weak
qualitative agreement between the experimental observations
and underlying theoretical calculations (note also the very
different color scales of the experimental and theoretical plots
required to arrive at even this level of agreement).

Generally speaking, Andreev reflection is a process where
an electron incident from a normal metal into the supercon-
ductor results in a reflected hole. This is equivalent to saying
that two electrons on the normal metal side—one from above
the Fermi energy and one from below the Fermi energy—pair
up and go into the superconductor as a Cooper pair [2]. We use
the latter convention for our analysis.

In a manner similar to that for Andreev reflection in
monolayer graphene [9], retro and specular Andreev reflection
can also be understood in bilayer graphene [14,15]. If both
the electrons participating in the reflection come from the
same side of the charge neutrality point (CNP), the Andreev
reflection is of the retro type, while if the two electrons come
from opposite sides of the CNP, the Andreev reflection is
of the specular type. This is because the momentum of the
reflected hole along the y direction has to be same as that of
the incident electron. This means that when the hole originates
from the same side of the CNP as that of the incident electron,
the velocities along the y direction of the two electrons
participating in Andreev reflection have opposite signs. On the
other hand, when the hole originates from the opposite side of
the CNP as that of the incident electron, the velocities along
the y direction of the two electrons participating in Andreev
reflection have the same sign. This is shown in Fig. 1(a).

Furthermore, the two electrons must have opposite spin.
This allows us to separate the CNPs for the up-spin and the
down-spin bands by applying a Zeeman field. In this work,
we add a Zeeman field Ez0 to the NM part of the NM-SC
junction on BLG and calculate the conductance spectrum as a
function of chemical potential and bias energy. As shown in
Fig. 1(b), for small chemical potential (|μ| < Ez0) and small
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FIG. 1. The subgap band structures of the NM part of the NM-SC
setup. (a) Zero Zeeman field in the NM part. The points R and R′

correspond to two electrons contributing to retro Andreev reflection,
while the points S and S ′ correspond to electrons contributing to
specular Andreev reflection. (b) Finite Zeeman field Ez0 in the NM
part. The dispersion for up spin and down spin have the CNPs
separated well energetically. Both the electron states shown contribute
to specular Andreev reflection.

bias (|eVbias| < Ez0 − |μ|) the Andreev reflection is specular.
We discuss several features of the conductance spectrum in
the presence of a Zeeman field, where the main highlight is the
enhanced specular Andreev reflection (SAR) at zero chemical
potential and zero bias energy.

The paper is organized as follows. In Sec. II, the calcu-
lation is presented. In Sec. III, we show the main results. In
Sec. IV, a comparative analysis replacing the superconductor
with normal metal is discussed. In Sec. V, connection to
experiments is discussed. Finally, in Sec. VI, the work is
summarized. In Appendix A, calculations for the system where
the superconductor is replaced with normal metal are shown.
In Appendix B, the system where the effect of step height is
extended in the normal metal region is studied.

II. CALCULATION

The BLG Hamiltonian at either of the two degeneracy
points is

H0 = h̄v(kxσx − kyσyλz) − t⊥(λx + λxσz)/2, (1)

where �k = (kx, ky ) is the momentum with respect to the �K
point at the top layer and, for the bottom layer, �k = (kx, ky ) is
the momentum with respect to �K ′, v is the Fermi velocity, and
t⊥ is the coupling between the two layers. The layer asymmetry
term is absent in this Hamiltonian. The choice of basis is
[uA1, uA2, uB1, uB2]. A and B refer to two kinds of lattice
points in each layer of graphene, while 1 and 2 refer to the two
layers of graphene. σ ’s are the Pauli matrices in the A,B basis,
while λ’s are the Pauli matrices in the 1,2 basis. This Hamil-
tonian can be diagonalized to get the eigenspectrum E(�k) =
νσ

√
(h̄v�k)2 + t2

⊥/2 + νλt⊥
√

(h̄v�k)2 + t2
⊥/4, where νλ, νσ =

±1. The index σ corresponds to the bipartite pseudospin in
graphene and the index λ corresponds to the two layers of
BLG.

The eigenvector at an energy E and momentum (kx, ky ) is

�u(E, kx ) = 1

N

⎡
⎢⎢⎢⎣

−t⊥E2

[E2 − (h̄v�k)2]E

−t⊥h̄vk−E

h̄vk+[E2 − (h̄v�k)2]

⎤
⎥⎥⎥⎦, (2)

where k± = kx ± iky and N is the normalization factor for the
pseudospin such that �u†�u = 1.

The Hamiltonian for the NM-SC junction on BLG is

H = [H0 − μ − U (x)]τz − Ez(x)sz + �(x)τx, (3)

where U (x) = U0η(−x), sz corresponds to the real spin,
Ez(x) = Ez0η(x) is the Zeeman field and can be nonzero only
on the NM side, �(x) = �η(−x), η(x) is the Heaviside step
function, and the τ matrices act in the particle-hole sector.
The wave function for an electron at energy E (in the range
|E| < � � t⊥) and spin s (s = ±1 is the eigenvalue of the
operator sz), incident from the NM side onto the SC, has the
form ψs (x)eikyy , such that

ψs (x) = (
e−ike

xx �uN,s

(
ε,−ke

x

) + rNeike
xx �uN,s

(
ε, ke

x

))[1
0

]

+ rAe−ikh
x x �vN,s

(
εh,−kh

x

)[0
1

]

+ r̃Ne−κx �uN,s (ε, iκ )

[
1
0

]

+ r̃Ae−κhx �vN,s (εh, iκ
h)

[
0
1

]
, for x > 0,

=
4∑

j=1

wj,se
ikS

j x �uS

(
kS
j

)
, for x < 0, (4)

where �uN,s (ε̃, kx ) and �vN,s (ε̃, kx ) are the electron and hole
sector eigenspinors of the Hamiltonian on the NM side [given
by Eq. (2)] with x component of momentum kx , and �uS (kS

j ) is
the eigenspinor on the SC side with x component of momentum
kS
j ; furthermore, the x component of the electron and hole

momenta on the NM side are given by

h̄vke
x = sign(ε)

√
ε2 + 2t⊥|ε| − (h̄vky )2,

h̄vkh
x = sign(εh)

√
ε2
h + 2t⊥|εh| − (h̄vky )2,

(5)
h̄vκ =

√
(h̄vky )2 + 2t⊥|ε| − ε2,

h̄vκh =
√

(h̄vky )2 + 2t⊥|εh| − ε2
h,

where ε = (E + μ + sEz0) and εh = (μ − sEz0 − E). On the
SC side, kS

j has a nonzero imaginary part at subgap energies.
The complex values of kS

j arise as complex conjugates and
thus there are eight in all. Normalizability allows only four
modes (out of eight) which have a negative imaginary part.
Different values of kS

j are obtained numerically from the
eigenvalue-eigenvector equation. We employ the boundary
condition that the wave function is continuous at x = 0 to solve
for the scattering coefficients.
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FIG. 2. (a)–(c) Ghv/W in units of t⊥2e2/h is plotted. Parameters:
(a) � = 0.003t⊥, U0 = �, and Ez0 = 0; (b) � = 0.003t⊥, U0 = �,
and Ez0 = 0.5�; and (c) � = 0.003t⊥, U0 = �, and eVbias = 0. (d)
Schematic diagram showing regions of specular (SAR) and retro
(RAR) Andreev reflections.

Current operator and the conductance. From the Hamilto-
nian, it can be shown that the current for the NM part of the
BLG has the form �Js = evψ

†
s (σx,−σyλz)ψs . The differential

conductance is obtained by summing over Js for all possible
values of (kx, ky ) and s = ±1 at a given energy E such that
the x component of the velocity of the incident electron points
along the −x̂ direction. We calculate the scattering amplitudes
and the conductance of the junction. The cross terms (rNrA)
drop out while calculating the conductance and only the terms
proportional to |rN |2 and |rA|2 contribute to the current. The
total current is �I = ∫

dkx

∫
dky

∑
s

�Js (kx, ky ) and the only
nonzero component of �I is along −x̂ (i.e., �I = −x̂ · I ). We are
interested in calculating the conductance G = dI/dV , which
is given by the expression [17]

G = 2e2

h

∑
s

W (μ + sEz0 + E + t⊥/2)

hv

∫ θc,s

−θc,s

dθψ†
s σxψs,

(6)

where W is the width of the bilayer graphene–superconductor
interface and the factor of 2 is for valley degener-
acy. The critical angle for spin s is given by θc,s =
sin−1 [min {(kh,s̄/ke,s ), 1}] where kh,s̄ and ke,s are the mag-
nitudes of the momenta �k in the hole band with spin s̄ and
the electron band with spin s (s̄ is opposite to s) at energy
E = eVbias, respectively.

III. RESULTS

Results of the conductance calculation for two choices of
parameters have been plotted as contour plots in Figs. 2(a)
and 2(b). We discuss the features observed in the contour plots
below.

Zero Zeeman field. In Fig. 2(a), a dominant feature is two
dark, thick lines that appear along the diagonals: eVbias =

±μ. These correspond to one of the two electron Fermi
surfaces participating in Andreev reflection at eVbias = ±μ

having zero circumference. The lines eVbias = ±μ correspond
to crossover from retro to specular Andreev reflection. An-
other feature is that there are two islands of light blue color
around μ = 0, eVbias ∼ ±0.8�. This corresponds to specular
Andreev reflection since the two electrons participating in
the Andreev reflection come from above and below the CNP.
All the data points in the region |eVbias| > |μ| correspond to
specular Andreev reflection. Similarly, all the data points in the
region |eVbias| < |μ| correspond to retro Andreev reflection.
We also notice an asymmetry in μ → −μ, which is due to a
finite U0. These results and the discussion agree with that in
Ref. [15].

Nonzero Zeeman field. In Fig. 2(b), the Zeeman field in the
normal metal region Ez0 is chosen to be 0.5�. The striking
features of this contour plot are (i) three light blue islands,
two of which are located around μ = 0, eVbias ∼ ±0.8� and
one located around μ = 0, eVbias ∼ 0, and (ii) two dark blue
patches located around μ = 0.5�, eVbias ∼ 0.

To understand the features of Fig. 2(b), let us define different
points on the contour plot: A = (−0.5�, 0), B = (0, 0.5�),
C = (0.5�, 0), D = (0,−0.5�), P = (−�, 0.5�), Q =
(−�,−0.5�), R = (�, 0.5�), and S = (�,−0.5�) [each of
these points is written in the form (eVbias, μ)]. Now, within the
diamond ABCDA, both the electrons contributing to Andreev
reflection lie on different sides of the charge neutrality point.
So, Andreev reflection is specular within this diamond. Also,
in the triangles PAQ and RCS the two electrons contributing
to Andreev reflection lie on different sides of the CNP. Hence,
Andreev reflection is specular in these regions. Outside of the
two triangles and the diamond, the two electrons contributing to
Andreev reflection lie on the same side of the charge neutrality
point. Hence, in these regions, Andreev reflection is retro. In
each of the two dark blue patches around the points B and D

the data points are in proximity to CNP for both the electrons
participating in the Andreev reflection. Since the size of the
Fermi surface approaches zero as one tends to the CNP, the
conductance is suppressed around points B and D. In contrast,
along the lines PA, QA, AB, BC, CD, DA, RC, and CS

away from points B and D, data points for only one of the two
participating electrons (in Andreev reflection) is at the charge
neutrality point.

More generally, for a given choice of Ez0, the diamond
ABCDA is formed by the points A = (−Ez0, 0), B =
(0, Ez0), C = (Ez0, 0), and D = (0,−Ez0), and the points
P = (−�,� − Ez0), Q = (−�,−� + Ez0), R = (�,� −
Ez0), and S = (�,−� + Ez0) form the triangles PAQ and
RCS. Hence, in the case when Ez0 = 0, the diamond ABCDA

has zero area as can be seen in Fig. 2(a). And the regions
inside the two triangles PAQ and RCS are described by
the inequalities −(eVbias + Ez0) > |μ| and (eVbias − Ez0) >

|μ|, respectively. These are the regions where the Andreev
reflection is specular. Outside these regions, the Andreev
reflection is retro.

Zero-bias cuts of Figs. 2(a) and 2(b) have been plotted in
Fig. 2(c). These clearly show that around the CNP, the zero-bias
conductance is enhanced under an applied Zeeman field, while
in the case of zero Zeeman field, the zero-bias conductance is
suppressed.
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FIG. 3. Conductance spectra for the choice of parameters (a)
U0 = 0, (b) U0 = �, (c) U0 = 2�, and (d) U0 = 5�. Ghv/W in
units of t⊥2e2/h is plotted. The x axis is eVbias/� and the y axis is
μ/�. Parameters: � = 0.003t⊥ and Ez0 = 0.5�.

Choice of the parameter U0. Previously, we chose U0 = �

so as to allow for significant conductance despite accounting
for a work function mismatch [modeled by the step function
U (x)]. Now, we examine the features of the conductance
spectrum for different choices of U0 and make a connection to
previous works.

The step height U0 essentially captures the junction trans-
parency. For larger magnitudes of U0, the junction is less
transparent and has a high resistance. We can see from Fig. 3
that for larger values of U0, the features of crossover from retro
to specular Andreev reflection discussed earlier get blurred.
From the works of Efetov et al. [14,15], we note that when
NbSe2 is used as the superconductor on top of the BLG, the
parameters are U0 = 5 meV and � = 1.2 meV. This closely
corresponds to Fig. 3(d) and we see that the features of the
crossover from retro to specular Andreev reflection begin to
vanish for the value of U0 = 5�. To see the features for higher
values of U0, we plot the conductance on a logarithmic scale
in Fig. 4. We see that the features discussed earlier vanish
smoothly over the values of U0 = 5�, 10�, 100�, and t⊥,
except for two dips at (eVbias, μ) = (0,±Ez0). However, the
dips correspond to orders-of-magnitude-smaller conductance.
Thus, we find that a transparent junction is very crucial to
observing the features of crossover from retro to specular
Andreev reflection.

IV. COMPARATIVE ANALYSIS OF THE RESULTS
REPLACING THE SUPERCONDUCTOR WITH

NORMAL METAL

In this section, we discuss the results of the system where
superconductivity in the system is absent and make comparison
to the results with the system containing superconductivity.
We denote the part of the system having a nonzero Zeeman
field by F (ferromagnet), and N refers to the normal metal
part which has no Zeeman field. �(x) = 0 for all x in the
NF junction. The calculation for the NF junction is presented
in Appendix A. As can be seen from the calculations, the
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FIG. 4. Conductance spectra on a logarithmic scale for the choice
of parameters (a) U0 = 5�, (b) U0 = 10�, (c) U0 = 100�, and (d)
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the y axis is μ/�. Parameters: � = 0.003t⊥ and Ez0 = 0.5�.

bias eVbias and the chemical potential μ enter the equations
as (eVbias + μ). Hence, the conductance depends only on the
linear combination (eVbias + μ) in the contour plot which is
apparent in Fig. 5.

In Fig. 6, the conductance is plotted as a function of
(eVbias + μ), for different values of step height U0. For U0 = 0,
the conductance goes to zero at (μ + eVbias) = 0, since the size
of the Fermi surface on the normal metal side goes to zero, and
there are no momentum modes to carry the current. For finite
values of U0, the situation changes since at (eVbias + μ) = 0
the Fermi surface has a finite size, and the current can flow from
the F side to the N side. The asymmetry around (μ + eVbias) =
0 is because of a finite value of U0.

Now, we turn to the comparison of conductances of different
systems (NN, NF, SN, and SF) for a given choice of U0 and
other parameters. For U0 = 0 (Fig. 7, top), all the curves are
symmetric, while for U0 = � the curves are not symmetric
(except for SN and SF). For SF, the minima at eVbias = ±Ez0

and maximum at eVbias = 0 are due to the dispersions displaced
due to Zeeman fields. This bump is where the specular Andreev
reflection is enhanced by the Zeeman field. For NN, NF, and
SN in the case U0 = 0, the conductance is zero at eVbias =
0, which is due to zero size of the Fermi surface of the N
region. When U0 = � (see Fig. 7, bottom), the size of Fermi
surface is nonzero in the N region to the left in the NN and
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NF configurations, and there is a finite conductance even at
eVbias = 0 for the NF configuration.

Now, we compare different curves in the bottom panel
of Fig. 7. For NN and SN configurations, the N region for
x > 0 has zero-sized Fermi surface at zero bias. Hence the
conductance at zero bias is zero (despite a non-zero-sized
Fermi surface in the region x < 0 for NN). Now, when we
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FIG. 7. Conductance Ghv/W in units of t⊥2e2/h is plotted for
different configurations of the setup: normal-normal (NN), normal-
ferromagnet (NF), superconductor-normal (SN), and superconductor-
ferromagnet (SF). See text for further information. Top, U0 = 0; bot-
tom, U0 = �. Parameters: Ez0 = 0.5� (for F), where � = 0.003t⊥
and μ = 0 (for all curves).

turn to the case of NF, the Fermi surfaces on both sides
of the junction at eVbias = 0 have nonzero size. Hence, the
conductance is finite around eVbias = 0. The conductance for
NF approaches zero as eVbias → � since the size of the Fermi
surface approaches zero on the N side of the junction as we
have chosen U0 = �. For the case of SF, the conductance is
nonzero in the entire range shown since the size of the Fermi
surface on the F side is always nonzero due to a finite value
of the Zeeman field (Ez0 = 0.5�), and on the S side there is
superconducting gap which favors Andreev reflection. Finally,
the conductances in the lower panel are smaller than those in
the upper panel since the step height U0 is zero in the upper
panel and � in the lower panel, reducing the transparency of
the junctions studied in the lower panel.

V. EXPERIMENTAL RELEVANCE

To implement our scheme experimentally, it is important
to apply a Zeeman field in the NM part of the junction. An
in-plane magnetic field which is less than the critical field to
kill the superconductivity of the SC part in the system will
achieve this. Another way to implement a Zeeman field is to
bring a ferromagnetic insulator in proximity to the NM side
of the junction. It has been shown that ferromagnetism can be
induced in graphene by such proximity coupling with several
materials such as EuO, YIG, and EuS [18–20].

A typical sample will have a disorder which manifests as
Fermi energy broadening δεF . This means that the BLG sample
must be of a sufficiently high quality so that the Fermi energy
broadening δεF is small (δεF � �). Furthermore, observing
the features of crossover for a fixed bias eVbias � � as μ is
varied is important as the quasiparticle contribution to transport
is the least in this regime. In addition, a finite temperature will
result in thermal broadening; hence, performing the experiment
at a low temperature is necessary to observe the features
discussed here. The temperature has to be low compared to both
the superconducting gap (∼14 K in NbSe2 [14]) and Zeeman
energy (∼10 K). Experimentally, reaching temperatures of
about 100 mK is possible and hence temperature does not pose
a hindrance to implementing our scheme in realistic systems.

In a realistic system, the work function mismatch between
the NM and SC regions can result in the formation of a NM
region having a length scale a at the interface as discussed
in Ref. [21]. Also, from the value of the work functions of
NbSe2 and BLG, the step height U0 is chosen to be 1eV > t⊥
in Ref. [21] in contrast to the limit U0 � t⊥ in Refs. [14,15],
where the value of U0 is chosen to match the experimental
results. Our calculations combined with the choice of U0 in
Refs. [14,15] point to a small value of a (a � 100 nm) in
contrast to the assertion made in Ref. [21]. This means that the
effects of a p-n junction formed at the NM-SC interface may
be negligible. In Appendix B, we study the effect of having a
finite a and show that it can be negligible.

VI. SUMMARY AND CONCLUSION

We have studied Andreev reflection at a junction of bilayer
graphene and a superconductor. Since our main objective has
been to observe the enhanced signatures of specular Andreev
reflection, we introduce a Zeeman field and study the features

075301-5



SOORI, SAHU, DAS, AND MUKERJEE PHYSICAL REVIEW B 98, 075301 (2018)

on a contour plot of conductance versus chemical potential
and bias voltage when these two energy scales are less than
the superconducting gap. We find that a finite Zeeman field
produces a diamond-shaped region at the center where the
Andreev reflection is purely specular. Furthermore, the lines
bordering the diamond-shaped region and two patches around
the low-bias region at the corners of the diamond show a low
conductance, where the crossover from specular- to retro-type
Andreev reflection occurs. Importantly, we find that for a
barrier step height that is of the same order of magnitude as
the superconducting gap, the features of the crossover from
retro to specular Andreev reflection are observable and for a
barrier step height much larger than the superconducting gap,
the features vanish except for small regions of low conductance
at (eVbias, μ) = (0,±Ez0). We have also analyzed the relative
contributions from normal-state conductance, where the super-
conductivity is switched off. Furthermore, we have discussed
how our calculations can be tested in an experimental system.
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APPENDIX A

In this section, we give details of the calculation for
the system comprising a Zeeman-field-induced ferromagnetic
region in contact with the normal metal region. This is simply
the limit of the NM-SC junction described by Eq. (3) where
�(x) = 0 for all x. The wave function for an electron incident
on the junction from x > 0 onto x < 0, with energy E, has the
form φs (x)eikyy , where

φs (x) = e−ike
xx �uN,s

(
ε,−ke

x

) + rNeike
xx �uN,s

(
ε, ke

x

)
+r̃Ne−κx �uN,s (ε, iκ ), for x > 0,

= tNe−ik̃e
xx �uN,s

(
ε̃,−k̃e

x

) + t̃N eκ̃x �uN,s (ε̃,−iκ̃ )

for x < 0. (A1)

Here, ε = E + μ + sEz0, ε̃ = E + μ + U0, ky =√
ε2 + t⊥|ε| sin θ/(h̄v) (θ is the angle of incidence so that the

normal incidence corresponds to θ = 0),

ke
x = sign(ε)

√
ε2 + t⊥|ε| − (h̄vky )2/(h̄v),

κ =
√

(h̄vky )2 + t⊥|ε| − ε2/(h̄v),

k̃e
x = sign(ε̃)

√
ε̃2 + t⊥|ε̃| − (h̄vky )2/(h̄v),

and κ̃ =
√

(h̄vky )2 + t⊥|ε̃| − ε̃2/(h̄v). (A2)

Now, using the boundary condition, which is continuity of
the wave function at x = 0, one can determine the scattering
amplitudes rN , r̃N , tN , and t̃N . With this, the wave function
is determined and, using a formula similar to Eq. (6), the
conductance can be calculated.

APPENDIX B

In this part, we study the effect of having a finite region
of length a on the NM part of the junction where U (x) �= 0.
The Hamiltonian has the same form as in Eq. (3), except for
two changes: U (x) = U0η(a − x) and Ez(x) = Ez0η(x − a),
where η(x) is a Heaviside step function. The wave function for
an electron at energy E (in the range |E| < � � t⊥) and spin
s (s = ±1 is the eigenvalue of the operator sz), incident from
the NM side onto the SC, has the form ψs (x)eikyy , such that

ψs (x)= (
e−ike

xx �uN,s

(
ε,−ke

x

) + rNeike
xx �uN,s

(
ε, ke

x

))[1
0

]

+ rAe−ikh
x x �vN,s

(
εh,−kh

x

)[0
1

]
+r̃Ne−κx �uN,s (ε, iκ )

[
1
0

]

+ r̃Ae−κhx �vN,s (εh, iκ
h)

[
0
1

]
, for x > a,

= (
se−e−ike′

x x �uN ′,s
(
ε′,−ke′

x

)+ se+eike′
x x �uN ′,s

(
ε′, ke′

x

))[1
0

]

+ (
sh−e−ikh′

x x �vN ′,s
(
ε′,−kh′

x

)

+ sh+eikh′
x x �vN ′,s

(
ε′, kh′

x

))[0
1

]

+(
s̃e−e−κe′

x x �uN ′,s
(
ε′, iκe′

x

)

+ s̃e+eκe′
x x �uN ′,s

(
ε′,−iκe′

x

))[1
0

]

+ (
s̃h−e−κh′

x x �vN ′,s
(
ε′, iκh′

x

)

+ s̃h+eκh′
x x �vN ′,s

(
ε′,−iκh′

x

))[0
1

]
, for 0 < x < a,

=
4∑

j=1

wj,se
ikS

j x �uS

(
kS
j

)
, for x < 0, (B1)

FIG. 8. Conductance spectra for the choice of parameters a =
10, 50, 100, 150 (in units of h̄v/t⊥) for top-left, top-right, bottom-
left, bottom-right respectively. x-axis is eVbias/� and y-axis is μ/�.
Parameters: � = 0.003t⊥, U0 = � and Ez0 = 0.
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FIG. 9. Conductance spectra for the choice of parameters a = 10,
100, 500, and 1000 (in units of h̄v/t⊥) for top left, top right, bottom
left, and bottom right panels, respectively. The x axis is eVbias/� and
the y axis is μ/�. Parameters: � = 0.003t⊥, U0 = 5t⊥, and Ez0 = 0.

where �uN,s (ε̃, kx ) and �vN,s (ε̃, kx ) are the electron- and hole-
sector eigenspinors of the Hamiltonian on the NM side [given
by Eq. (2)] with x component of momentum kx , and �uS (kS

j )
is the eigenspinor on the SC side with x component of
momentum kS

j . Furthermore, the x component of electron and
hole momenta on the NM side are given by

h̄vke
x = sign(ε)

√
ε2 + t⊥|ε| − (h̄vky )2,

h̄vkh
x = sign(εh)

√
ε2
h + t⊥|εh| − (h̄vky )2,

h̄vκ =
√

(h̄vky )2 + t⊥|ε| − ε2,

h̄vκh =
√

(h̄vky )2 + t⊥|εh| − ε2
h,

(B2)
h̄vke′

x = sign(ε′)
√

ε′2 + t⊥|ε′| − (h̄vky )2,

h̄vkh′
x = sign(ε′

h)
√

ε′2
h + t⊥|ε′

h| − (h̄vky )2,

h̄vκe′
x =

√
(h̄vky )2 + t⊥|ε′| − ε′2,

h̄vκh′
x =

√
(h̄vky )2 + t⊥|ε′

h| − ε′2
h,

where ε = (E + μ + sEz0), εh = (μ − sEz0 − E), ε′ =
(E + μ + U0), and ε′

h = (μ + U0 − E). The continuity of
ψs (x) at x = 0 and x = a in total give 16 equations for 16
scattering amplitudes to be solved. Then, the conductance is
calculated using Eq. (6).

FIG. 10. Conductance spectra for the choice of parameters a =
10, 50, 100, and 150 (in units of h̄v/t⊥) for top left, top right, bottom
left, and bottom right panels, respectively. The x axis is eVbias/� and
the y axis is μ/�. Parameters: � = 0.003t⊥, U0 = �, and Ez0 =
0.5�.

First, the conductance is calculated for Ez0 = 0, for various
values of a and a fixed value of U0 = � in Fig. 8. It can be
seen that for higher values of a, Fabry-Pérot-type oscillations
[22] are observed in the conductance spectra. Comparing
this with the experimental results in Ref. [14], the absence
of conductance oscillations there suggests that in a realistic
system, a is small (a � 50h̄v/t⊥).

Next, we study the case ofU0 = 5t⊥ (discussed in Ref. [21]),
keeping Ez0 = 0 in Fig. 9 for different values of a. We see
that for larger values of a (a > 100h̄v/t⊥), there are Fabry-
Pérot-type oscillations in conductance. Comparing these with
the experimental results in Ref. [14], we see that a must be
small (a � 100h̄v/t⊥). While the precise values of U0 and
a are unknown in a realistic system, our results suggest that
U0 ∼ � and a � 10h̄v/t⊥. Furthermore, this limit of U0 and a

is important to observe the features of the crossover from retro
to specular Andreev reflection in a system with finite Ez0.

Now, we turn to the case of Ez0 = 0.5�. In Fig. 10, we
see how the conductance spectrum changes as a is changed,
keeping U0 = � fixed. The features of crossover still remain,
but there are oscillations in the conductance spectrum due to
Fabry-Pérot-type interference, which occur due to modes in the
region 0 < x < a. The two dark regions of low conductance
around the points B and D, and the dark lines PD and DS,
remain. Furthermore, the dark lines BA and BC remain, while
the dark lines along AQ and CS vanish. It is not possible
to distinguish the Fabry-Pérot oscillations in the conductance
spectrum from the crossover from specular to retro Andreev
reflection, but with a knowledge of Ez0 and � the points P ,
Q, R, S, A, B, C, and D in the conductance spectrum can be
identified, thereby finding the crossover lines.
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